Designing a Cross-Slot for Extensional-FlowSANS

Shooting Neutrons at Soap

Koty McAllister (UD, NCNR SURF), Katie Weigandt (NCNR)

Complex Fluids and Flow

Consumer Products

Polymer processing and extrusion

Processing and delivery of pharmaceuticals

Shear and Extensional Flow

Extensional Strain

Cross-Slot Flow Cell

Haward, S.; McKinley, G. *Physical Review.* **2012**, 85, 031502-1-031502-14

Wormlike Micelles (WLM)

© Copyright 2012. University of Waikato. All rights reserved. www.sciencelearn.org.nz

From University of Waikato, January 11, 2012, sciencelearn.org.nz

75mM CPyCl/ 45 mM NaSal in D₂O $\tau_r \approx 7 \ sec$

Personal care products

Home care products

Oil recovery and fracking Drag reducers

Small Angle Neutron Scattering

NCNR."NG7."<u>www.ncnr.nist.gov</u>

Why Small Angle Neutron Scattering?

Transparency

Contrast Variation

Scattering Cross-Sections

Extensional Flow within a Cross Slot

J. Penfold, I. Tucker. J. Phys. Chem. B. 2007, 111, 9496-9503

Asymmetric Flow within a Cross Slot

Occurs when $\dot{\epsilon} > \dot{\epsilon}_c$

[1] Haward, S.; McKinley, G. *Physical Review.* **2012**, 85, 031502-1-031502-14

Small Angle Neutron Scattering (SANS)

Alignment Factor

$$A_f(q) = \frac{\int_0^{2\pi} I(q,\phi) \cos(2[\phi - \phi_0]) \, d\phi}{\int_0^{2\pi} I(q,\phi) \, d\phi}$$
$$-A_f(q \ge 0.03 \, A^{-1}) \approx S_m^{[2]}$$

[2] L.M. Walker, "Rheology and Rheo-optics of liquid crystal polymers under flow." 1995

Nematic Orientation Parameter

 $\overline{P_2}$ and A_f

ODF:
$$g(\beta) = \sum_{n=0}^{\infty} a_n P_{2n}(\cos\beta)$$

 $\overline{P}_2 = \left\langle \frac{3\cos^2(\beta) - 1}{2} \right\rangle = 1 - \frac{3}{2}\overline{\sin^2(\beta)} = S_m^{[3]}$

Therefore
$$\overline{P}_2 \approx -A_f \ (q \ge 0.03 \ A^{-1})$$

[3] W. H. DeJeu, Mol. Cryst. Liq. Cryst. 1997, 292, 13.

Data from $\dot{\varepsilon}=0.8~s^{-1}$, AR = 2.5, 5 sec bins

$\dot{\epsilon} = 0.8 \, \mathrm{s}^{-1}$ Time Resolved

Equilibrium Structure (AR=2.5)

[1] Haward, S.; McKinley, G. Physical Review. 2012, 85, 031502-1-031502-14

Orientation for Different Aspect Ratios

Conclusions

- Measured the amount of orientation and the angle of orientation as a function of nominal extensional strain rate
- Characterized the transition between symmetric and asymmetric flow
- Showed that the behavior of the higher aspect ratios is nearly identical

Future Work

Acknowledgements

- Katie Weigandt
- NSF
- NIST- NCNR
- Julie Borchers
- David Hoogerheide, Chirag Parikh, and Frank Hess

Questions?

Aspect Ratio

$$\frac{AR = .1}{v = 42cm/s}$$
$$(\dot{\epsilon}_{nom} = 1s^{-1})$$

 $\odot \odot \odot \odot \odot$

 \times \times \times \times \times

Plug-like flow: $\dot{\epsilon}_{nom} = \frac{Q}{w^2 D}$ ^[1]

Preferential Asymmetry

 $\dot{\epsilon} = 3s^{-1}$, AR = 0.7

Stress overshoot

$\dot{\epsilon} = 8.3 \text{ s}^{-1}$ Time Resolved

Flow

80

120

160

Relax

[1] Haward, S.; McKinley, G. Physical Review. 2012, 85, 031502-1-031502-14

Aspect Ratios and Shear

Symmetric Flow

References

- 1. Haward, S.; McKinley, G. *Physical Review.* **2012**, 85, 031502-1-031502-14
- 2. W. H. DeJeu, *Mol. Cryst. Liq. Cryst.* **1997,** 292, 13.
- 3. L.M. Walker, "Rheology and Rheo-optics of liquid crystal polymers under flow." **1995**