

Decimeter Accurate, Long Range Non-Line-of-Sight RF Wireless Localization Solution for Public Safety Applications

Hun-Seok Kim

Assistant Professor EECS, University of Michigan

DISCLAIMER

This presentation was produced by guest speaker(s) and presented at the National Institute of Standards and Technology's 2019 Public Safety Broadband Stakeholder Meeting. The contents of this presentation do not necessarily reflect the views or policies of the National Institute of Standards and Technology or the U.S. Government.

Posted with permission

Motivation: Fast and Accurate Indoor Localization

Applications for Indoor Localization

- Public safety
 - Firefighter / first responder rescue operations
 - Emergency evacuation path planning / guidance
 - Medicine, equipment, patients, and staffs in hospitals
- Customer Applications
 - Indoor navigation (airport, retail malls, museum, conference center, etc.)
- Industrial Applications
 - Intelligent logistics by tracking robots, packages, and workers in warehouses

Image from http://scanonline.com/rtls/

Indoor Localization Technologies

- Inertial measurement unit (IMU) based
 - Accelerometer and gyroscope for 6 degree-of-freedom measurement
 - Susceptible to error integration
- Computer vision based
 - Simultaneous localization and mapping (SLAM)
 - Sensitive to light conditions
 - Computationally demanding
- Radio frequency (RF) based
 - Non-line-of-sight operable
 - Faster measurement time
 - Challenges to obtain long range, decimeter accuracy indoors
- Sensor fusion
 - IMU + CV + RF: fusion with adaptive filter

Indoor Localization Technologies

- Inertial measurement unit (IMU) based
 - Accelerometer and gyroscope for 6 degree-of-freedom measurement
 - Susceptible to error integration
- Computer vision based
 - Simultaneous localization and mapping (SLAM)
 - Sensitive to light conditions
 - Computationally demanding

Radio frequency (RF) based

- Non-line-of-sight operable
- Faster measurement time
- Challenges to obtain long range, decimeter accuracy indoors
- Sensor fusion
 - IMU + CV + RF: fusion with adaptive filter

Research Scope

New Indoor RF Localization Solutions

- Year1: RF-Echo with custom ASIC tag
- Year2: iLPS for simultaneous communication and localization
- Year3: Sound-RF hybrid solution
- Application specific integrated circuit (ASIC) fabrication
 - Year1: Low power active reflection tag ASIC
 - Year2 and 3: Low power processor for software-defined radio ASIC
 - Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
 - RF localization
 - Deep learning neural network processing for RF

Available RF Localization Solutions and Challenges

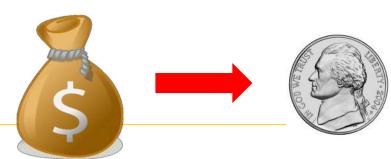
- Global Positioning System (GPS)
 - Covered Area
 - Accuracy
 - Indoor Usage

Available RF Localization Solutions and Challenges

- Global Positioning System (GPS)
 - Covered Area
 - Accuracy
 - Indoor Usage
- WiFI / Bluetooth (Received signal strength indicator (RSSI)-based)
 - Covered Area
 - Accuracy
 - Indoor Usage

Available RF Localization Solutions and Challenges

- Global Positioning System (GPS)
 - Covered Area
 - Accuracy
 - Indoor Usage
- WiFI / Bluetooth (Received signal strength indicator (RSSI)-based)
 - Covered Area
 - Accuracy
 - Indoor Usage
- Ultra-wide Band (UWB, IEEE802.15.4a, Decawave)
 - Covered Area
 - Accuracy
 - Indoor Usage

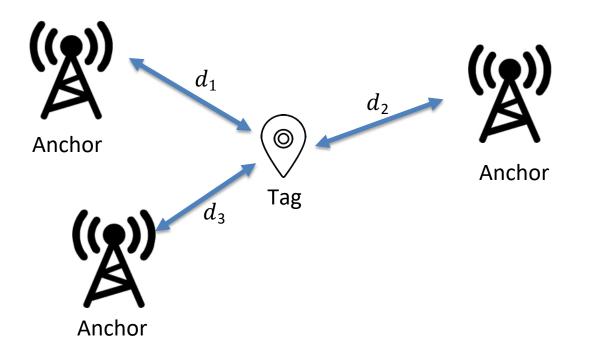

- Easily and quickly deployable infrastructure
 - First responder rescue missions
 - Portable and mobile infrastructure desirable

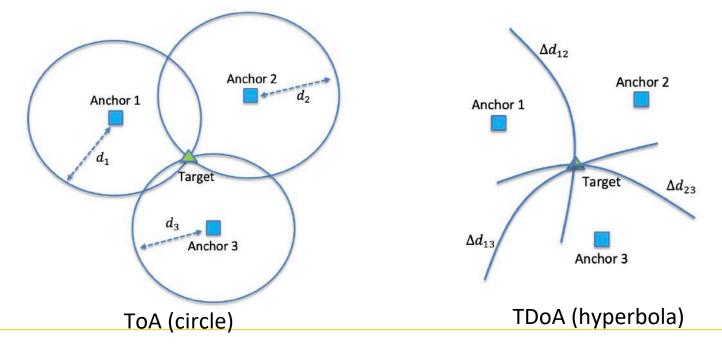
- Easily and quickly deployable infrastructure
 - First responder rescue missions
 - Portable and mobile infrastructure desirable
- Decimeter-level accuracy in non-line-of-sight indoors
 - Long range (~100m) operable
 - Milli-second refresh rate, tens of centimeter accuracy

- Easily and quickly deployable infrastructure
 - First responder rescue missions
 - Portable and mobile infrastructure desirable
- Decimeter-level accuracy in non-line-of-sight indoors
 - Long range (~100m) operable
 - Milli-second refresh rate, tens of centimeter accuracy
- Ultra-low cost tags
 - To be ported on numerous IoT devices
 - Tracking of disposable tags

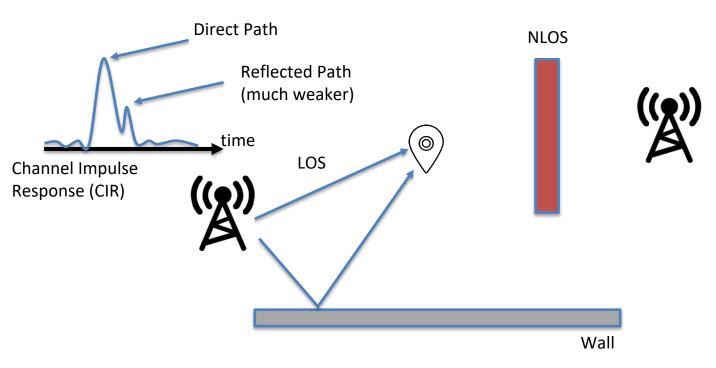
- Small form factor
 - Unobtrusive integration into IoT

Small

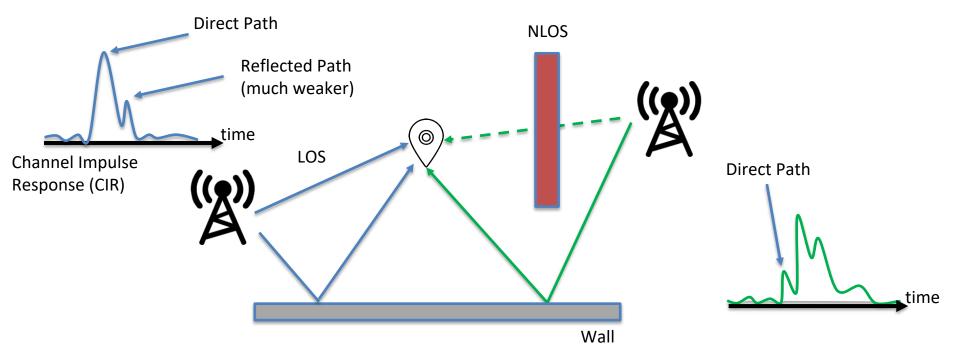

- Small form factor
 - Unobtrusive integration into IoT
- Low power consumption
 - Sustainable with a small coin-cell battery
 - No manual battery management


General RF Localization System

Find the distance between anchors and tags


General RF Localization System

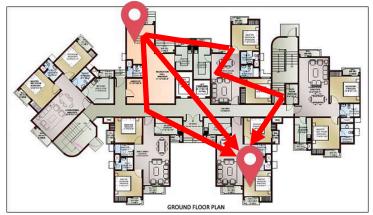
- Find the distance between anchors and tags
- Distance → Lateration
 - Time of Arrival (ToA), Time Difference of Arrival (TDoA)


Why RF Indoor Localization is Difficult

Multipath and Non-Line-of-Sight (NLOS)

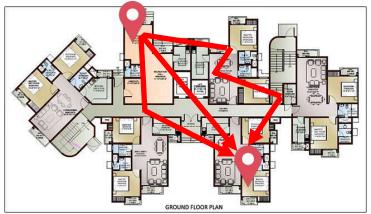
Why RF Indoor Localization is Difficult

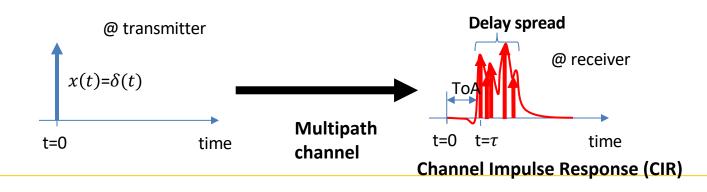
Multipath and Non-Line-of-Sight (NLOS)



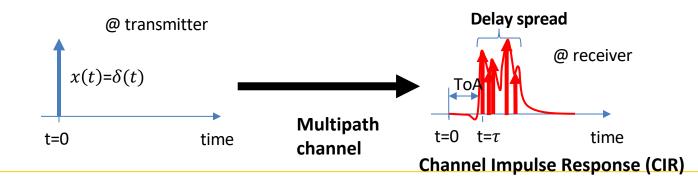
Time of Arrival (ToA) from Channel Impulse Response (CIR)

- Speed of light: *c*, Time of Arrival (ToA): *τ*
- Distance: $d = c\tau \rightarrow 30$ cm with ToA of 1ns


Time of Arrival (ToA) from Channel Impulse Response (CIR)

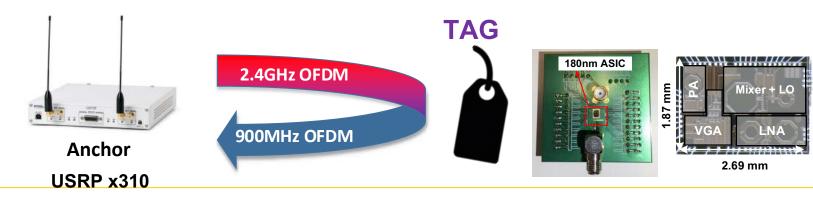

- Speed of light: c, Time of Arrival (ToA): τ
- Distance: $d = c\tau \rightarrow 30$ cm with ToA of 1ns
- Indoor channel is multi-path rich

Time of Arrival (ToA) from Channel Impulse Response (CIR)


- Speed of light: c, Time of Arrival (ToA): τ
- Distance: $d = c\tau \rightarrow 30$ cm with ToA of 1ns
- Indoor channel is multi-path rich
- ToA or distance is estimated from channel impulse response (CIR)

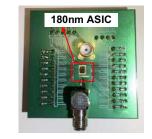
TDoA Localization Challenges

- CIR estimation in multi-path indoor channels
 - Direct path can be much weaker than multipaths
- Time synchronization between transmitter and receiver
 - 1ns mismatch \rightarrow 30cm error
- Limited bandwidth (80MHz) for ISM band operation \rightarrow 3.75m resolution

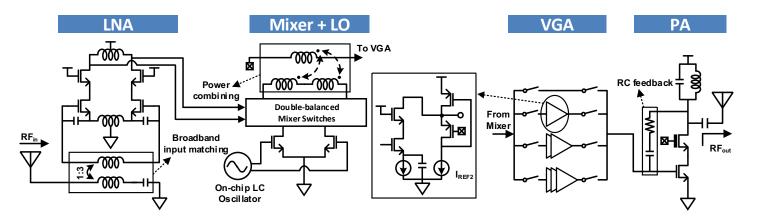


Proposed System: RF-Echo and iLPS

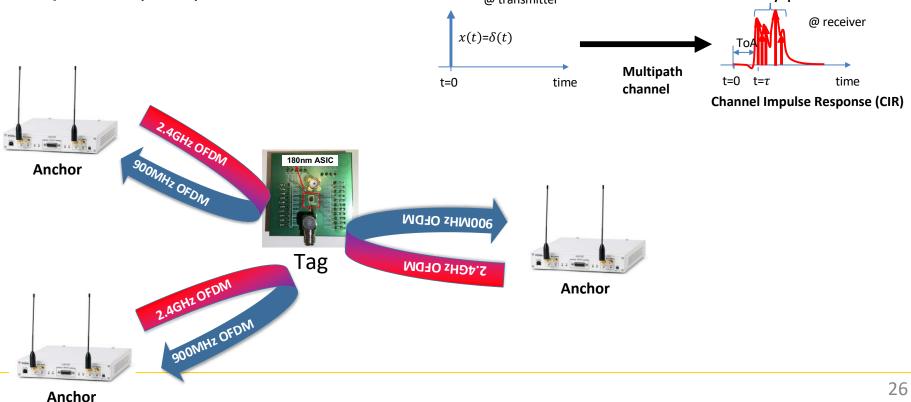
- Decimeter-level (tens of centimeter) ranging accuracy
- Large covered area: >100m distance
- GPS-like local positioning scheme
 - Indefinite number of tags localize themselves simultaneously
- Reliable wireless communications between anchors and tags
 - Localization and communication at the same time
- Deployable without heavy infrastructure investment


Overview: RF-Echo (Year1)

- RF-Echo Operating Principle:
 - Round-trip Time-of-Flight (RToF)
 - Introduce active reflector tag with frequency conversion
 - Full-duplex tag: simultaneous TX and RX
 - Increase ranging distance by active signal amplification at tag
 - Tag reflection has different frequency from passive reflection
 - All analog tag design: deterministic echo processing delay


RF-Echo ASIC Tag

- Tag ASIC in TSMC 180 nm
- Low-cost simple tag design
 - Crystal-less, PLL-free
- Analog-only design
 - No digital signal processing circuitry
 - Deterministic delay

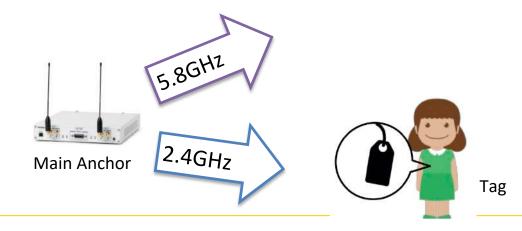


2.69 mm

RF-Echo System

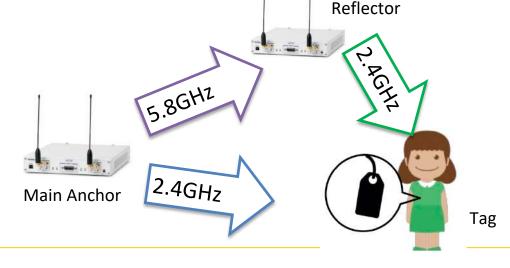
 Round-trip ToF or distance measurement by analyzing channel impulse response (CIR)
 Pelay spread

RF-Echo System Evaluation

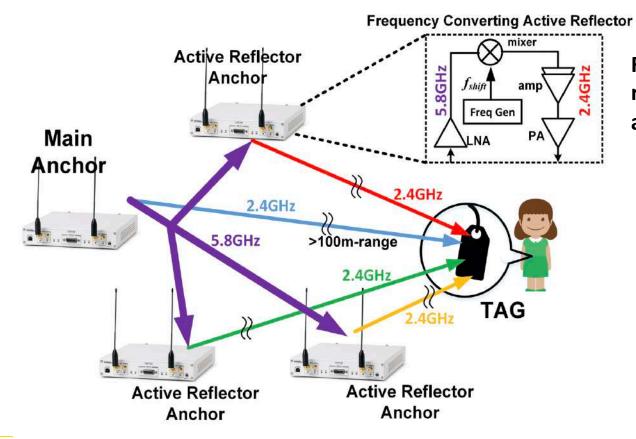

System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	Tag Power	System Bandwidth	Signal Type	Time per Fix	Energy per Fix
WiTrack	FMCW ToF	31 cm (90%)	40 cm (90%)	LOS: 3-11 m NLOS: 6 x 5 m ²	No Tag	1.69 GHz	FMCW	> 2.5 ms	N/A
Harmonium	UWB TDoA	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	75 mW	3.5 GHz	Impulse	52 ms	3900 μJ
Ubicarse	SAR + Motion sensor	39 cm (median)	59 cm (median)	LOS/NLOS: 15 x 15 m ²	N/A	N/A	WiFi	100 ms	N/A
Tagoram	RFID SAR	12 cm (median)	N/A	LOS: 1 x 2 m ²	Passive	6 MHz (UHF)	UHF RFID	> 33 ms	N/A
Chronos	802.11 WiFi + Band-stiching	14.1 cm (median)	20.7 cm (median)	LOS/NLOS: 20 x 20 m ²	1.6 W	20 MHz x 35 ch.	OFDM	84 ms	1.34x 10 ⁵ μJ
RF-Echo	ASIC Active reflection + Neural network	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	62.8 mW	80 MHz	OFDM	20 μs per sym.	18 µJ 10 sym.

Research Scope

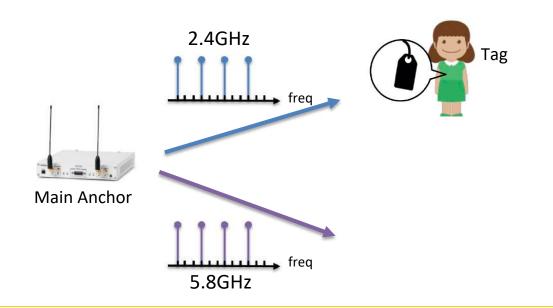
- New Indoor RF Localization Solutions
 - Year1: RF-Echo with custom ASIC tag
 - Year2: iLPS for simultaneous communication and localization
 Year3: Sound-RF hybrid solution
- Application specific integrated circuit (ASIC) fabrication
 - Year1: Low power active reflection tag ASIC
 - Year2 and 3: Low power processor for software-defined radio ASIC
 - Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
 - RF localization
 - Deep learning neural network processing for RF


Overview: iLPS (Year2)

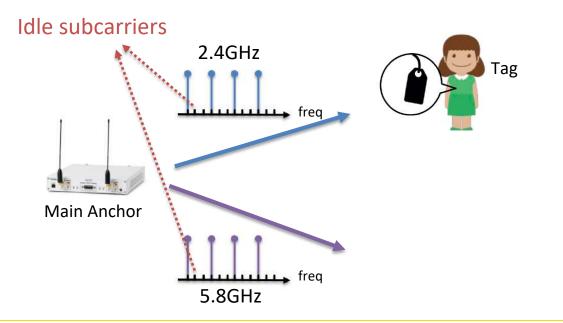
- iLPS: Indoor Local Positioning System
- Two kinds of anchors: Main anchor & Reflector anchor
 - Main anchor broadcasts OFDM signal at 2.4GHz and 5.8GHz


Overview: iLPS (Year2)

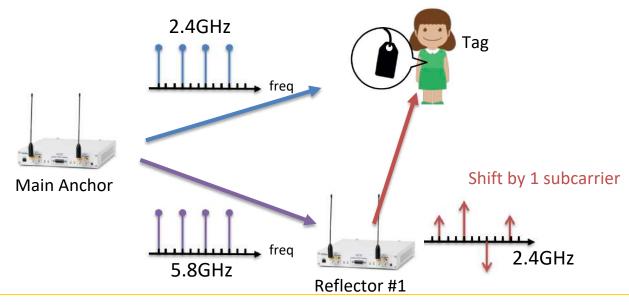
- iLPS: Indoor Local Positioning System
- Two kinds of anchors: Main anchor & Reflector anchor
 - Main anchor broadcasts OFDM signal at 2.4GHz and 5.8GHz
 - Reflector anchors reflects the signal at 5.8GHz with signal amplification and frequency conversion to 2.4GHz
 - Estimate TDoA without strict time synchronization between anchors

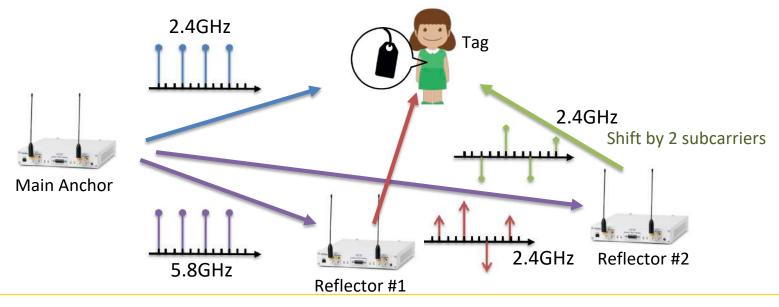

TDoA

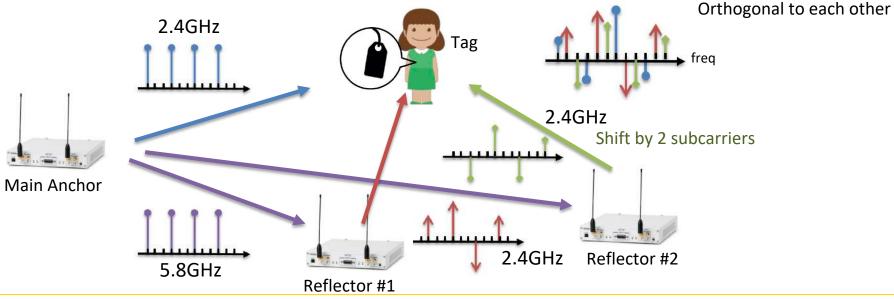
iLPS operation principle



Reflectors can be realized with allanalog processing

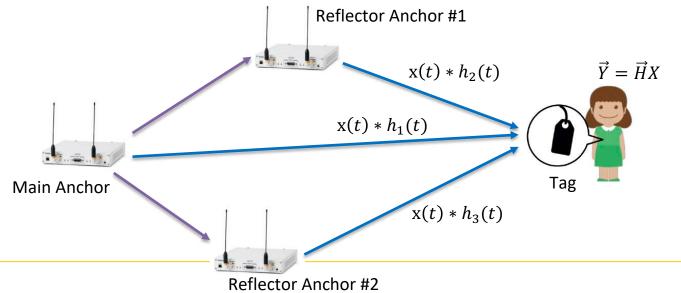

• Orthogonal (OFDMA) subcarrier allocation for different reflectors


• Orthogonal (OFDMA) subcarrier allocation for different reflectors


- Orthogonal (OFDMA) subcarrier allocation for different reflectors
- Frequency conversion with offset at reflector anchors
 - Orthogonal subcarrier allocations
 - Different subcarriers allocated to different reflector anchors

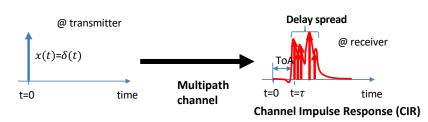
- Orthogonal (OFDMA) subcarrier allocation for different reflectors
- Frequency conversion with offset at reflector anchors
 - Orthogonal subcarrier allocations
 - Different subcarriers allocated to different reflector anchors

- Orthogonal (OFDMA) subcarrier allocation for different reflectors
- Frequency conversion with offset at reflector anchors
 - Orthogonal subcarrier allocations
 - Different subcarriers allocated to different reflector anchors


iLPS Communication

- Packet structure based on IEEE802.11a/g/n WiFi
 - STF for packet detection, LTF for CIR estimation
 - Data symbols contain anchor coordinate information and other general data

Prea	mble ———		Data OFD	M Symbols –	
Short Training Field	Long Training Field	Data1	Data2		DataN
(2 syms)	(1 sym)	(1 sym)	(1 sym)		(1 sym)

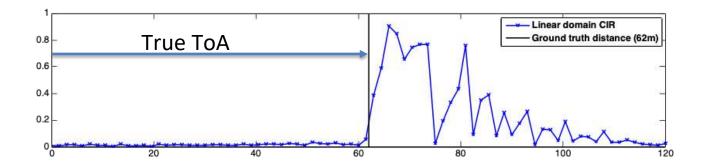

iLPS Communication

- Packet structure based on IEEE802.11a/g/n WiFi
 - STF for packet detection, LTF for CIR estimation
 - Data symbols contain anchor coordinate information and other general data
- Distributed MISO system with frequency diversity
 - Improves communication reliability

Ranging accuracy vs Signal bandwidth

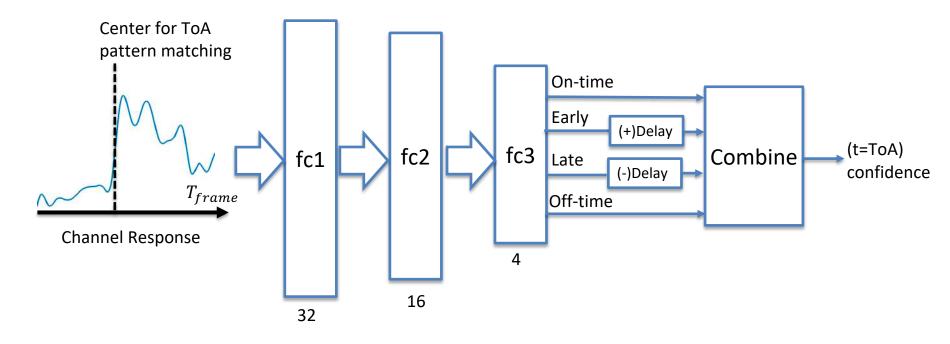
Distance resolution $\propto \frac{1}{BW}$

- Ranging accuracy vs Signal bandwidth $Distance resolution \propto \frac{1}{BW}$ $e^{\text{transmitter}}$ $e^{\text{transmitter}}$
- UWB uses large BW (typically GHz) to achieve high ToA resolution
 - Transmit power is limited \rightarrow localization range is limited
 - Wider bandwidth \rightarrow more interference

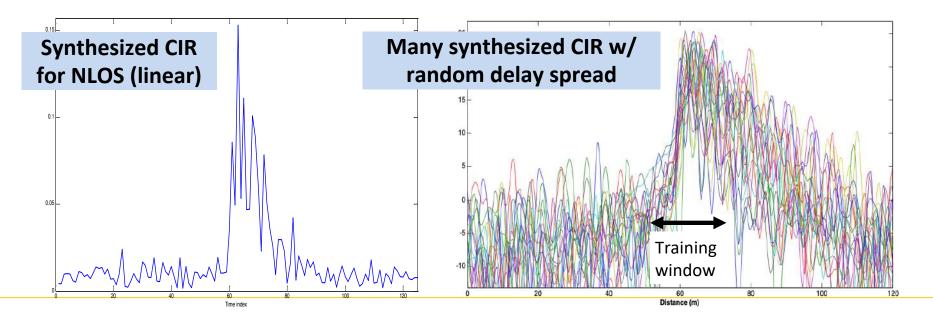

- Ranging accuracy vs Signal bandwidth $Distance resolution \propto \frac{1}{BW}$ e transmitter f = 0 time Multipath t = 0 time Multipath t = 0 time Channel Impulse Response (CIR)
- UWB uses large BW (typically GHz) to achieve high ToA resolution
 - Transmit power is limited \rightarrow localization range is limited
 - Wider bandwidth \rightarrow more interference
- Available sub-10GHz ISM bandwidth is <<1GHz
 - 80MHz → only 3.75m resolution

- Ranging accuracy vs Signal bandwidth $Distance resolution \propto \frac{1}{BW}$ $(e) transmitter (t) = \delta(t)$ $(f) time (t) = \delta(t)$ (f) time (t) (f) time (t) (f) time (t) (f) time (t) (f) time (t)
- UWB uses large BW (typically GHz) to achieve high ToA resolution
 - Transmit power is limited \rightarrow localization range is limited
 - Wider bandwidth \rightarrow more interference
- Available sub-10GHz ISM bandwidth is <<1GHz
 - − 80MHz \rightarrow only 3.75m resolution

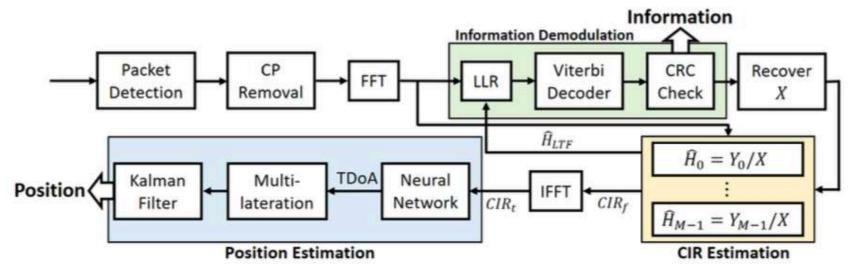
Machine learning based accuracy enhancement


Neural Network Based ToA Estimation

How do we estimate ToA from coarsely measured (BW limited) CIR?

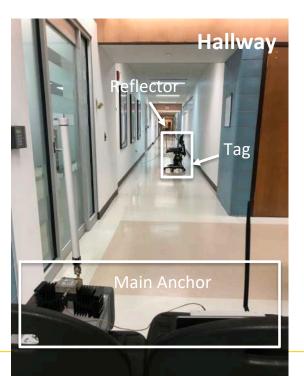

Neural Network Based ToA Estimation

- CIR pattern recognition via neural networks
 - Train neural network to learn the shape around the first path

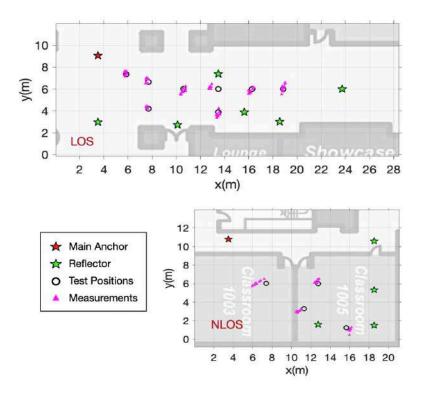

Neural Network Based ToA Estimation

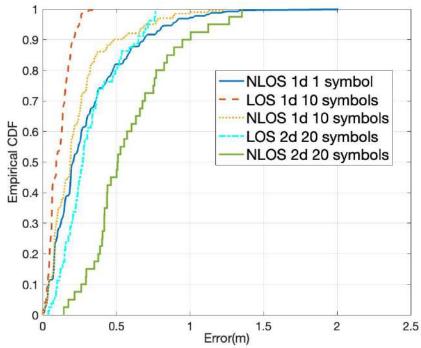
- CIR pattern recognition via neural networks
 - Train neural network to learn the shape around the first path
- Training set generated in Matlab simulation
 - No need of collecting real-world data before deploying tags

Baseband Signal Processing at Tags


- Tag implementation on USRP Software Defined Radio (SDR)
- Similar to WiFi 802.11 a/g/n
- Tag only requires a receiver for localization (similar to GPS receiver)

iLPS System Evaluation


- Experiment environment and testing setup
- Main anchor, reflector and tags all implemented using USRP X310 SDR



iLPS System Evaluation

2D localization in University of Michigan EECS building

System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	System Bandwidth	Latency for K tags Local.	Simultaneous Communication & Localization
WiTrack 2.0	FMCW+TDMA (ToA)	15.9 cm (median	16.1 cm (median)	LOS: 5 x 7 m ² NLOS: 6 x 5 m ²	1.79GHz	10s (K < 5)	No
Harmonium	UWB+TDMA (TDOA)	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	3.5GHz	K x 52ms	No
WASP	OFDM+TDMA (ToA)	50 cm (85%)	50 cm (65%)	LOS: 10m NLOS: 15 x 15 m ²	125MHz	K x 2.5ms	Yes No diversity gain
Chronos	OFDM+TDMA (Band-stiching ToA)	14.7 cm (median)	20.7 cm (median)	LOS/NLOS: 20x 20 m ²	20MHz x 35 overlapped	3 x 84ms	Possible, Not demonstrated
RF-Echo	OFDM+TDMA (ToA)	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	80MHz x 2	К х 200µs	No
iLPS	OFDMA (TDoA)	20 cm (90%)	50 cm (90%)	LOS: 15-105m NLOS: 20 x 12 m ²	80MHz x 2	84µs	Yes MISO diversity gain

System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	System Bandwidth	Latency for K tags Local.	Simultaneous Communication & Localization
WiTrack 2.0	FMCW+TDMA (ToA)	15.9 cm (median	16.1 cm (median)	LOS: 5 x 7 m ² NLOS: 6 x 5 m ²	1.79GHz	10s (K < 5)	No
Harmonium	UWB+TDMA (TDOA)	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	3.5GHz	K x 52ms	No
WASP	OFDM+TDMA (ToA)	50 cm (85%)	50 cm (65%)	LOS: 10m NLOS: 15 x 15 m ²	125MHz	K x 2.5ms	Yes No diversity gain
Chronos	OFDM+TDMA (Band-stiching ToA)	14.7 cm (median)	20.7 cm (median)	LOS/NLOS: 20x 20 m ²	20MHz x 35 overlapped	3 x 84ms	Possible, Not demonstrated
RF-Echo	OFDM+TDMA (ToA)	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	80MHz x 2	K x 200µs	No
iLPS	OFDMA (TDoA)	20 cm (90%)	50 cm (90%)	LOS: 15-105m NLOS: 20 x 12 m ²	80MHz x 2	84µs	Yes MISO diversity gain

System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	System Bandwidth	Latency for K tags Local.	Simultaneous Communication & Localization
WiTrack 2.0	FMCW+TDMA (ToA)	15.9 cm (median	16.1 cm (median)	LOS: 5 x 7 m ² NLOS: 6 x 5 m ²	1.79GHz	10s (K < 5)	No
Harmonium	UWB+TDMA (TDOA)	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	3.5GHz	K x 52ms	No
WASP	OFDM+TDMA (ToA)	50 cm (85%)	50 cm (65%)	LOS: 10m NLOS: 15 x 15 m ²	125MHz	K x 2.5ms	Yes No diversity gain
Chronos	OFDM+TDMA (Band-stiching ToA)	14.7 cm (median)	20.7 cm (median)	LOS/NLOS: 20x 20 m ²	20MHz x 35 overlapped	3 x 84ms	Possible, Not demonstrated
RF-Echo	OFDM+TDMA (ToA)	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	80MHz x 2	К х 200µs	No
iLPS	OFDMA (TDoA)	20 cm (90%)	50 cm (90%)	LOS: 15-105m NLOS: 20 x 12 m ²	80MHz x 2	84µs	Yes MISO diversity gain

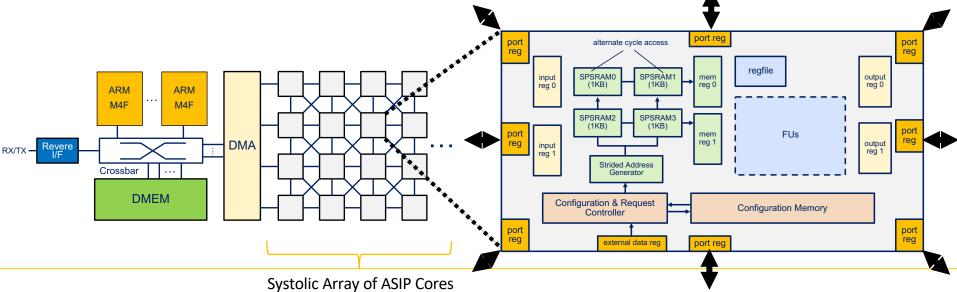

System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	System Bandwidth	Latency for K tags Local.	Simultaneous Communication & Localization
WiTrack 2.0	FMCW+TDMA (ToA)	15.9 cm (median	16.1 cm (median)	LOS: 5 x 7 m ² NLOS: 6 x 5 m ²	1.79GHz	10s (K < 5)	No
Harmonium	UWB+TDMA (TDOA)	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	3.5GHz	K x 52ms	No
WASP	OFDM+TDMA (ToA)	50 cm (85%)	50 cm (65%)	LOS: 10m NLOS: 15 x 15 m ²	125MHz	K x 2.5ms	Yes No diversity gain
Chronos	OFDM+TDMA (Band-stiching ToA)	14.7 cm (median)	20.7 cm (median)	LOS/NLOS: 20x 20 m ²	20MHz x 35 overlapped	3 x 84ms	Possible, Not demonstrated
RF-Echo	OFDM+TDMA (ToA)	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	80MHz x 2	K x 200µs	No
iLPS	OFDMA (TDoA)	20 cm (90%)	50 cm (90%)	LOS: 15-105m NLOS: 20 x 12 m ²	80MHz x 2	84µs	Yes MISO diversity gain

System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	System Bandwidth	Latency for K tags Local.	Simultaneous Communication & Localization
WiTrack 2.0	FMCW+TDMA (ToA)	15.9 cm (median	16.1 cm (median)	LOS: 5 x 7 m ² NLOS: 6 x 5 m ²	1.79GHz	10s (K < 5)	No
Harmonium	UWB+TDMA (TDOA)	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	3.5GHz	K x 52ms	No
WASP	OFDM+TDMA (ToA)	50 cm (85%)	50 cm (65%)	LOS: 10m NLOS: 15 x 15 m ²	125MHz	K x 2.5ms	Yes No diversity gain
Chronos	OFDM+TDMA (Band-stiching ToA)	14.7 cm (median)	20.7 cm (median)	LOS/NLOS: 20x 20 m ²	20MHz x 35 overlapped	3 x 84ms	Possible, Not demonstrated
RF-Echo	OFDM+TDMA (ToA)	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	80MHz x 2	К х 200µs	No
iLPS	OFDMA (TDoA)	20 cm (90%)	50 cm (90%)	LOS: 15-105m NLOS: 20 x 12 m ²	80MHz x 2	84µs	Yes MISO diversity gain

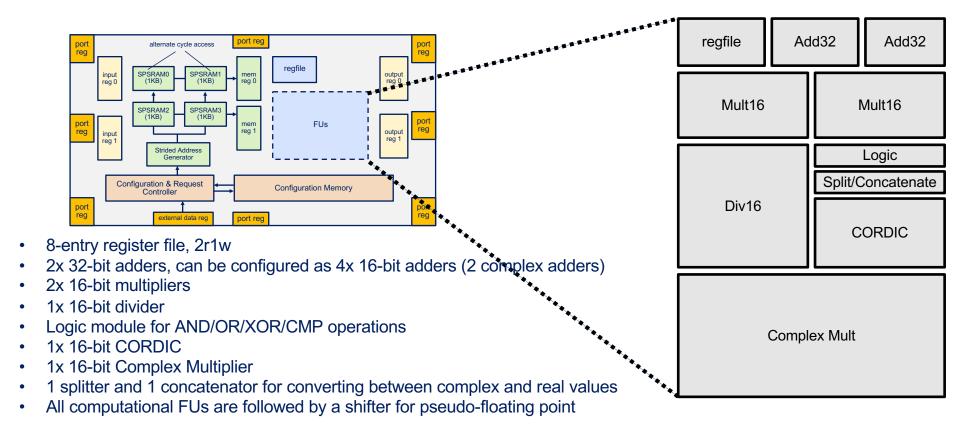
System	Technology	LOS Accuracy	NLOS Accuracy	Testing Dimension	System Bandwidth	Latency for K tags Local.	Simultaneous Communication & Localization
WiTrack 2.0	FMCW+TDMA (ToA)	15.9 cm (median	16.1 cm (median)	LOS: 5 x 7 m ² NLOS: 6 x 5 m ²	1.79GHz	10s (K < 5)	No
Harmonium	UWB+TDMA (TDOA)	31 cm (90%)	42 cm (90%)	LOS/NLOS: 4.6 x 7.2 x 2.7 m ³	3.5GHz	K x 52ms	No
WASP	OFDM+TDMA (ToA)	50 cm (85%)	50 cm (65%)	LOS: 10m NLOS: 15 x 15 m ²	125MHz	K x 2.5ms	Yes No diversity gain
Chronos	OFDM+TDMA (Band-stiching ToA)	14.7 cm (median)	20.7 cm (median)	LOS/NLOS: 20x 20 m ²	20MHz x 35 overlapped	3 x 84ms	Possible, Not demonstrated
RF-Echo	OFDM+TDMA (ToA)	26 cm (90%)	46 cm (90%)	LOS: 7 x 90 m ² NLOS: 30 x 20 m ²	80MHz x 2	K x 200µs	No
iLPS	OFDMA (TDoA)	20 cm (90%)	50 cm (90%)	LOS: 15-105m NLOS: 20 x 12 m ²	80MHz x 2	84µs	Yes MISO diversity gain

Summary of iLPS

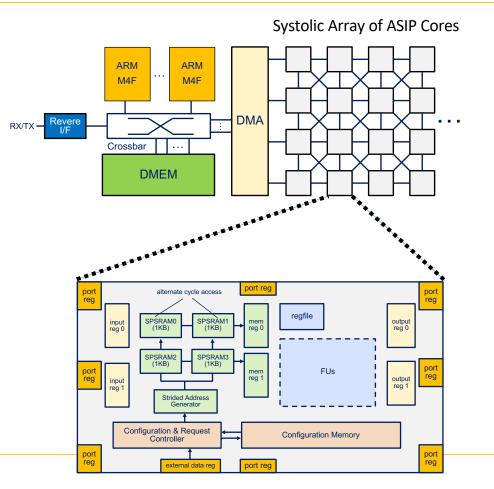
- Decimeter ranging accuracy
- Large covered area: 105m LOS distance
- GPS-like local positioning scheme
 - Able to localize infinite number of tags simultaneously
- Reliable wireless communications between anchors and tags
- Deployable without heavy infrastructure investment

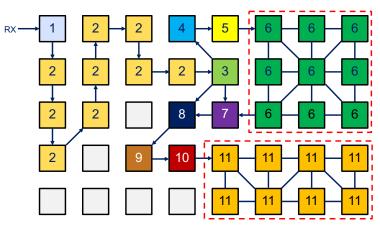


Research Scope


- New Indoor RF Localization Solutions
 - Year1: RF-Echo with custom ASIC tag
 - Year2: iLPS for simultaneous communication and localization
 - Year3: Sound-RF hybrid solution
- Application specific integrated circuit (ASIC) fabrication
 - Year1: Low power active reflection tag ASIC
 - Year2 and 3: Low power processor for software-defined radio ASIC
 - Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
 - RF localization
 - Deep learning neural network processing for RF

SDR Processor Architecture


- Systolic array of ASIP cores + Arm cores
 - Systolic array of application specific instruction set processor (ASIP)
 - Custom instruction set architecture designed for RF localization and communication
 - Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
 - RF localization
 - Deep learning neural network processing for RF applications


SDR Processor Core Functional Unites

Algorithm Mapping on SDR Processor

 iLPS localization processing mapping onto SDR

- 1. Auto-correlation packet detection
- 2. FFT (1024 point)
- 3 & 4. Channel estimation and equalization (complex multiplication)
- 5. QAM demapping LLR
- 6. Soft-input Viterbi
- ... 11. Neural network

Target Performance

Processor	Area (mm²)	Clock Freq. (GHz)	Performance (GOPs)	Power (W)
Arm Quad-core A72 cluster	3.72	1.6	51.2	1.268
Proposed 256-core SDR Processor	4.12	3.2	3277	~ 2.0

Proposed SDR processor achieves ~30x higher efficiency compared to commercial low power mobile processor for wireless applications

Conclusion

New Indoor RF Localization Solutions

- Year1: RF-Echo with custom ASIC tag
- Year2: iLPS for simultaneous communication and localization
- Year3: Sound-RF hybrid solution
- Application specific integrated circuit (ASIC) fabrication
 - Year1: Low power active reflection tag ASIC
 - Year2 and 3: Low power processor for software-defined radio ASIC
 - Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
 - RF localization
 - Deep learning neural network processing for RF

Thank you !

#PSCR2019

Get your hands on the tech!

Demos Open

BACK TOMORROW