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Motivation: Fast and Accurate Indoor Localization

§ Applications for Indoor Localization
§ Public safety

§ Firefighter / first responder rescue operations
§ Emergency evacuation path planning / guidance
§ Medicine, equipment, patients, and staffs in 

hospitals
§ Customer Applications

§ Indoor navigation (airport, retail malls, museum, 
conference center, etc.)

§ Industrial Applications
• Intelligent logistics by tracking robots, packages, 

and workers in warehouses

Image from http://scanonline.com/rtls/



Indoor Localization Technologies
▪ Inertial measurement unit (IMU) based

– Accelerometer and gyroscope for 6 degree-of-freedom measurement
– Susceptible to error integration

▪ Computer vision based
– Simultaneous localization and mapping (SLAM)
– Sensitive to light conditions

– Computationally demanding

▪ Radio frequency (RF) based
– Non-line-of-sight operable
– Faster measurement time
– Challenges to obtain long range, decimeter accuracy indoors

▪ Sensor fusion
– IMU + CV + RF: fusion with adaptive filter 
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Research Scope
▪ New Indoor RF Localization Solutions

– Year1: RF-Echo with custom ASIC tag
– Year2: iLPS for simultaneous communication and localization
– Year3: Sound-RF hybrid solution

▪ Application specific integrated circuit (ASIC) fabrication
– Year1: Low power active reflection tag ASIC
– Year2 and 3: Low power processor for software-defined radio ASIC

• Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
• RF localization
• Deep learning neural network processing for RF



Available RF Localization Solutions and Challenges
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▪ Global Positioning System (GPS)
– Covered Area
– Accuracy
– Indoor Usage
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▪ Global Positioning System (GPS)
– Covered Area
– Accuracy
– Indoor Usage

▪ WiFI / Bluetooth (Received signal strength indicator (RSSI)-based)
– Covered Area
– Accuracy
– Indoor Usage

▪ Ultra-wide Band (UWB, IEEE802.15.4a, Decawave)
– Covered Area
– Accuracy
– Indoor Usage
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– First responder rescue missions
– Portable and mobile infrastructure desirable
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Requirements for Public Safety Apps
▪ Easily and quickly deployable infrastructure

– First responder rescue missions
– Portable and mobile infrastructure desirable

▪ Decimeter-level accuracy in non-line-of-sight indoors 
– Long range (~100m) operable
– Milli-second refresh rate, tens of centimeter accuracy

▪ Ultra-low cost tags
– To be ported on numerous IoT devices
– Tracking of disposable tags
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Requirements for Public Safety Apps
▪ Small form factor

– Unobtrusive integration into IoT
▪ Low power consumption

– Sustainable with a small coin-cell battery
– No manual battery management

Small Low-power



General RF Localization System
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▪ Find the distance between anchors and tags

Anchor

Anchor

Anchor

Tag

𝑑1

𝑑3

𝑑2



General RF Localization System
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▪ Find the distance between anchors and tags
▪ Distance à Lateration

– Time of Arrival (ToA), Time Difference of Arrival (TDoA)

ToA (circle) TDoA (hyperbola)



Why RF Indoor Localization is Difficult
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▪ Multipath and Non-Line-of-Sight (NLOS) 

Wall
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Direct Path

Reflected Path 
(much weaker)

Channel Impulse 
Response (CIR)
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Time of Arrival (ToA) from Channel Impulse Response (CIR)
▪ Speed of light: 𝑐,Time of Arrival (ToA): 𝜏
▪ Distance: 𝑑 = 𝑐𝜏 à 30cm with ToA of 1ns
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Time of Arrival (ToA) from Channel Impulse Response (CIR)
▪ Speed of light: 𝑐,Time of Arrival (ToA): 𝜏
▪ Distance: 𝑑 = 𝑐𝜏 à 30cm with ToA of 1ns
▪ Indoor channel is multi-path rich
▪ ToA or distance is estimated from channel 

impulse response (CIR)

t=0 time t=0 timet=𝜏

𝑥 𝑡 =𝛿(𝑡)
@ receiver

@ transmitter

Multipath 
channel

Delay spread

ToA

Channel Impulse Response (CIR)



TDoA Localization Challenges
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▪ CIR estimation in multi-path indoor channels
– Direct path can be much weaker than multipaths

▪ Time synchronization between transmitter and receiver
– 1ns mismatch à 30cm error

▪ Limited bandwidth (80MHz) for ISM band operation à 3.75m resolution 

t=0 time t=0 timet=𝜏

𝑥 𝑡 =𝛿(𝑡)
@ receiver

@ transmitter

Multipath 
channel

Delay spread

ToA

Channel Impulse Response (CIR)



Proposed System: RF-Echo and iLPS
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▪ Decimeter-level (tens of centimeter) ranging accuracy
▪ Large covered area: >100m distance
▪ GPS-like local positioning scheme

– Indefinite number of tags localize themselves simultaneously 
▪ Reliable wireless communications between anchors and tags

– Localization and communication at the same time
▪ Deployable without heavy infrastructure investment



Overview: RF-Echo (Year1)
▪ RF-Echo Operating Principle: 

– Round-trip Time-of-Flight (RToF)
– Introduce active reflector tag with frequency conversion

• Full-duplex tag: simultaneous TX and RX
• Increase ranging distance by active signal amplification at tag
• Tag reflection has different frequency from passive reflection
• All analog tag design: deterministic echo processing delay

TAG

Anchor

2.4GHz OFDM

900MHz OFDM

180nm ASIC

Tag
USRP x310

LNA

Mixer + LO

VGA

PA

2.69 mm

1.
87

 m
m



RF-Echo ASIC Tag
▪ Tag ASIC in TSMC 180 nm
▪ Low-cost simple tag design

– Crystal-less, PLL-free
▪ Analog-only design

– No digital signal processing circuitry
– Deterministic delay

RFin
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3
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input matching
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combining

From 
Mixer
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180nm ASIC

Tag

RF-Echo System
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▪ Round-trip ToF or distance measurement by analyzing channel impulse 
response (CIR)

Tag

Anchor

2.4GHz OFDM900MHz OFDM

2.4GHz OFDM

900MHz OFDM

Anchor

2.4GHz OFDM

900MHz OFDM

Anchor
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RF-Echo System Evaluation

System Technology LOS
Accuracy

NLOS
Accuracy

Testing
Dimension

Tag 
Power

System 
Bandwidth

Signal 
Type

Time per 
Fix

Energy 
per Fix

WiTrack FMCW ToF 31 cm
(90%)

40 cm
(90%)

LOS: 3-11 m
NLOS: 6 x 5 m2 No Tag 1.69 GHz FMCW > 2.5 ms N/A

Harmonium UWB TDoA 31 cm
(90%)

42 cm
(90%)

LOS/NLOS: 
4.6 x 7.2 x 2.7 m3 75 mW 3.5 GHz Impulse 52 ms 3900 µJ

Ubicarse SAR + Motion 
sensor

39 cm
(median)

59 cm
(median)

LOS/NLOS: 
15 x 15 m2 N/A N/A WiFi 100 ms N/A

Tagoram RFID SAR 12 cm
(median)

N/A LOS: 1 x 2 m2 Passive 6 MHz
(UHF)

UHF RFID > 33 ms N/A

Chronos 802.11 WiFi + 
Band-stiching

14.1 cm
(median)

20.7 cm
(median)

LOS/NLOS: 
20 x 20 m2 1.6 W 20 MHz x 35 

ch.
OFDM 84 ms 1.34x 105

µJ

RF-Echo

ASIC Active 
reflection + 

Neural 
network

26 cm
(90%)

46 cm
(90%)

LOS: 7 x 90 m2

NLOS: 30 x 20 m2 62.8 mW 80 MHz OFDM 20 µs per 
sym.

18 µJ
10 sym.



Research Scope
▪ New Indoor RF Localization Solutions

– Year1: RF-Echo with custom ASIC tag
– Year2: iLPS for simultaneous communication and localization
– Year3: Sound-RF hybrid solution

▪ Application specific integrated circuit (ASIC) fabrication
– Year1: Low power active reflection tag ASIC
– Year2 and 3: Low power processor for software-defined radio ASIC

• Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
• RF localization
• Deep learning neural network processing for RF



Overview: iLPS (Year2)
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▪ iLPS: Indoor Local Positioning System
▪ Two kinds of anchors: Main anchor & Reflector anchor

– Main anchor broadcasts OFDM signal at 2.4GHz and 5.8GHz

2.4GHzMain Anchor
Tag

5.8GHz



Overview: iLPS (Year2)
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▪ iLPS: Indoor Local Positioning System
▪ Two kinds of anchors: Main anchor & Reflector anchor

– Main anchor broadcasts OFDM signal at 2.4GHz and 5.8GHz
– Reflector anchors reflects the signal at 5.8GHz with signal amplification and frequency 

conversion to 2.4GHz
– Estimate TDoA without strict time synchronization between anchors

5.8GHz

2.4GHz

2.4GHz
TDoAMain Anchor

Reflector

Tag



iLPS operation principle 

31

Reflectors can be 
realized with all-
analog processing



Inter-anchor Interference Avoidance
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▪ Orthogonal (OFDMA) subcarrier allocation for different reflectors

2.4GHz

5.8GHz

Main Anchor

Tag

freq

freq



Inter-anchor Interference Avoidance
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▪ Orthogonal (OFDMA) subcarrier allocation for different reflectors

2.4GHz

5.8GHz

Main Anchor

Idle subcarriers

Tag

freq

freq



Inter-anchor Interference Avoidance
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▪ Orthogonal (OFDMA) subcarrier allocation for different reflectors
▪ Frequency conversion with offset at reflector anchors

– Orthogonal subcarrier allocations
– Different subcarriers allocated to different reflector anchors

2.4GHz

5.8GHz

Main Anchor

Reflector #1

Tag

Shift by 1 subcarrier

2.4GHz

freq

freq



Inter-anchor Interference Avoidance
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▪ Orthogonal (OFDMA) subcarrier allocation for different reflectors
▪ Frequency conversion with offset at reflector anchors

– Orthogonal subcarrier allocations
– Different subcarriers allocated to different reflector anchors

2.4GHz

5.8GHz

Main Anchor

Reflector #1
Reflector #2

Tag

2.4GHz

2.4GHz
Shift by 2 subcarriers



Tag

Inter-anchor Interference Avoidance
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▪ Orthogonal (OFDMA) subcarrier allocation for different reflectors
▪ Frequency conversion with offset at reflector anchors

– Orthogonal subcarrier allocations
– Different subcarriers allocated to different reflector anchors

2.4GHz

5.8GHz

Main Anchor

Reflector #1
Reflector #2

Orthogonal to each other

2.4GHz

2.4GHz

freq

Shift by 2 subcarriers



iLPS Communication
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▪ Packet structure based on IEEE802.11a/g/n WiFi
– STF for packet detection, LTF for CIR estimation
– Data symbols contain anchor coordinate information and other general data



iLPS Communication
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▪ Packet structure based on IEEE802.11a/g/n WiFi
– STF for packet detection, LTF for CIR estimation
– Data symbols contain anchor coordinate information and other general data

▪ Distributed MISO system with frequency diversity
– Improves communication reliability

x 𝑡 ∗ ℎ/(𝑡)

x 𝑡 ∗ ℎ0(𝑡)

x 𝑡 ∗ ℎ1(𝑡)
Main Anchor

Reflector Anchor #1

Reflector Anchor #2

Tag

𝑌 = 𝐻𝑋



iLPS TDoA Estimation Accuracy
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▪ Ranging accuracy vs Signal bandwidth

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∝
1
𝐵𝑊 t=0 time t=0 timet=!
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@ transmitter
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ToA

Channel Impulse Response (CIR)



iLPS TDoA Estimation Accuracy
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▪ Ranging accuracy vs Signal bandwidth

▪ UWB uses large BW (typically GHz) to achieve high ToA resolution
– Transmit power is limited à localization range is limited 
– Wider bandwidth à more interference

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∝
1
𝐵𝑊 t=0 time t=0 timet=!

" # =$(#)
@ receiver

@ transmitter

Multipath 
channel

Delay spread

ToA

Channel Impulse Response (CIR)



iLPS TDoA Estimation Accuracy
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▪ Ranging accuracy vs Signal bandwidth

▪ UWB uses large BW (typically GHz) to achieve high ToA resolution
– Transmit power is limited à localization range is limited 
– Wider bandwidth à more interference

▪ Available sub-10GHz ISM bandwidth is <<1GHz 
– 80MHz à only 3.75m resolution

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∝
1
𝐵𝑊 t=0 time t=0 timet=!
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Multipath 
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iLPS TDoA Estimation Accuracy

42

▪ Ranging accuracy vs Signal bandwidth

▪ UWB uses large BW (typically GHz) to achieve high ToA resolution
– Transmit power is limited à localization range is limited 
– Wider bandwidth à more interference

▪ Available sub-10GHz ISM bandwidth is <<1GHz 
– 80MHz à only 3.75m resolution

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∝
1
𝐵𝑊

Machine learning based accuracy enhancement

t=0 time t=0 timet=!

" # =$(#)
@ receiver

@ transmitter

Multipath 
channel

Delay spread

ToA

Channel Impulse Response (CIR)



Neural Network Based ToA Estimation
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▪ How do we estimate ToA from coarsely measured (BW limited) CIR?

True ToA



Neural Network Based ToA Estimation
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▪ CIR pattern recognition via neural networks
– Train neural network to learn the shape around the first path

fc1 fc2 fc3

On-time

(+)Delay
Early

(-)Delay
Late

Off-time

Combine (t=ToA) 
confidence

32
16

4

Center for ToA
pattern matching

Channel Response

𝑇CDEFG
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Neural Network Based ToA Estimation
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▪ CIR pattern recognition via neural networks
– Train neural network to learn the shape around the first path

▪ Training set generated in Matlab simulation
– No need of collecting real-world data before deploying tags

Synthesized CIR 
for NLOS (linear)

Many synthesized CIR w/ 
random delay spread

Training 
window



Baseband Signal Processing at Tags 
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▪ Tag implementation on USRP Software Defined Radio (SDR)
▪ Similar to WiFi 802.11 a/g/n
▪ Tag only requires a receiver for localization (similar to GPS receiver)



iLPS System Evaluation

47

▪ Experiment environment and testing setup
▪ Main anchor, reflector and tags all implemented using USRP X310 SDR

USRP + PC

Tag

Hallway

Main Anchor

Reflector



iLPS System Evaluation
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▪ 2D localization in University of Michigan EECS building



Comparison Table
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System Technology LOS
Accuracy

NLOS
Accuracy

Testing
Dimension

System 
Bandwidth

Latency for K 
tags Local.

Simultaneous 
Communication & 

Localization

WiTrack 2.0 FMCW+TDMA 
(ToA)

15.9 cm
(median

16.1 cm
(median)

LOS: 5 x 7 m2

NLOS: 6 x 5 m2 1.79GHz 10s (K < 5) No

Harmonium UWB+TDMA 
(TDOA)

31 cm
(90%)

42 cm
(90%)

LOS/NLOS: 
4.6 x 7.2 x 2.7 m3 3.5GHz K x 52ms No

WASP OFDM+TDMA
(ToA)

50 cm
(85%)

50 cm
(65%)

LOS: 10m
NLOS: 15 x 15 m2 125MHz K x 2.5ms Yes

No diversity gain

Chronos
OFDM+TDMA
(Band-stiching 

ToA)

14.7 cm
(median)

20.7 cm
(median)

LOS/NLOS: 
20x 20 m2

20MHz x 35
overlapped 3 x 84ms Possible,

Not demonstrated

RF-Echo OFDM+TDMA
(ToA)

26 cm
(90%)

46 cm
(90%)

LOS: 7 x 90 m2

NLOS: 30 x 20 m2 80MHz x 2 K x 200µs No

iLPS OFDMA
(TDoA)

20 cm
(90%)

50 cm
(90%)

LOS: 15-105m
NLOS: 20 x 12 m2 80MHz x 2 84µs Yes

MISO diversity gain
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Summary of iLPS

▪ Decimeter ranging accuracy
▪ Large covered area: 105m LOS 

distance
▪ GPS-like local positioning

scheme
– Able to localize infinite number of 

tags simultaneously 
▪ Reliable wireless 

communications between anchors 
and tags

▪ Deployable without heavy 
infrastructure investment

55



Research Scope
▪ New Indoor RF Localization Solutions

– Year1: RF-Echo with custom ASIC tag
– Year2: iLPS for simultaneous communication and localization
– Year3: Sound-RF hybrid solution

▪ Application specific integrated circuit (ASIC) fabrication
– Year1: Low power active reflection tag ASIC
– Year2 and 3: Low power processor for software-defined radio ASIC

• Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
• RF localization
• Deep learning neural network processing for RF



SDR Processor Architecture
▪ Systolic array of ASIP cores + Arm cores

– Systolic array of application specific instruction set processor (ASIP)
– Custom instruction set architecture designed for RF localization and communication

• Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
• RF localization
• Deep learning neural network processing for RF applications
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SDR Processor Core Functional Unites

SPSRAM1 
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Logic
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• 8-entry register file, 2r1w
• 2x 32-bit adders, can be configured as 4x 16-bit adders (2 complex adders)
• 2x 16-bit multipliers
• 1x 16-bit divider
• Logic module for AND/OR/XOR/CMP operations
• 1x 16-bit CORDIC
• 1x 16-bit Complex Multiplier
• 1 splitter and 1 concatenator for converting between complex and real values
• All computational FUs are followed by a shifter for pseudo-floating point



Algorithm Mapping on SDR Processor

1RX 2 2 4 5 6 6 6

66632222

2

2

2 8 7 6 6 6

11111111109

11 11 11 11

1. Auto-correlation packet detection
2. FFT (1024 point)
3 & 4.  Channel estimation and equalization (complex multiplication)
5. QAM demapping LLR
6. Soft-input Viterbi
… 11. Neural network

Systolic Array of ASIP Cores
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• iLPS localization processing 
mapping onto SDR
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Target Performance

Processor Area 
(mm2)

Clock Freq. 
(GHz)

Performance
(GOPs)

Power 
(W)

Arm Quad-core A72 cluster 3.72 1.6 51.2 1.268

Proposed 256-core SDR Processor 4.12 3.2 3277 ~ 2.0

Proposed SDR processor achieves ~30x higher efficiency compared to 
commercial low power mobile processor for wireless applications



Conclusion
▪ New Indoor RF Localization Solutions

– Year1: RF-Echo with custom ASIC tag
– Year2: iLPS for simultaneous communication and localization
– Year3: Sound-RF hybrid solution

▪ Application specific integrated circuit (ASIC) fabrication
– Year1: Low power active reflection tag ASIC
– Year2 and 3: Low power processor for software-defined radio ASIC

• Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
• RF localization
• Deep learning neural network processing for RF
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Thank you !



Get your hands on the tech!

Demos Open
BACK TOMORROW

8:00 AM

6
3

#PSCR2019


