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Motivation: Fast and Accurate Indoor Localization

= Applications for Indoor Localization
= Public safety

= Firefighter / first responder rescue operations
= Emergency evacuation path planning / guidance

= Medicine, equipment, patients, and staffs in
hospitals

= Customer Applications

= |ndoor navigation (airport, retail malls, museum,
conference center, etc.) N of

= |ndustrial Applications Image from http:)/scanonline.com/rtls/

* Intelligent logistics by tracking robots, packages,
and workers in warehouses




Indoor Localization Technologies

= Inertial measurement unit (IMU) based
— Accelerometer and gyroscope for 6 degree-of-freedom measurement
— Susceptible to error integration
= Computer vision based
— Simultaneous localization and mapping (SLAM)
— Sensitive to light conditions

— Computationally demanding
= Radio frequency (RF) based
— Non-line-of-sight operable
— Faster measurement time
— Challenges to obtain long range, decimeter accuracy indoors

= Sensor fusion
— IMU + CV + RF: fusion with adaptive filter
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Research Scope

= New Indoor RF Localization Solutions
— Year1: RF-Echo with custom ASIC tag
— Year2: iLPS for simultaneous communication and localization
— Year3: Sound-RF hybrid solution

= Application specific integrated circuit (ASIC) fabrication
— Year1: Low power active reflection tag ASIC

—Year2 and 3: Low power processor for software-defined radio ASIC
» Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
* RF localization
* Deep learning neural network processing for RF
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— Covered Area
— Accuracy
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Available RF Localization Solutions and Challenges

= Global Positioning System (GPS)
— Covered Area
— Accuracy
— Indoor Usage

= WiFI / Bluetooth (Received signal strength indicator (RSSI)-based)
— Covered Area
— Accuracy
— Indoor Usage

« Ultra-wide Band (UWB, IEEE802.15.4a, Decawave)

— Covered Area X
— Accuracy :
— Indoor Usage
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Requirements for Public Safety Apps

= Easily and quickly deployable infrastructure
— First responder rescue missions
— Portable and mobile infrastructure desirable
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Requirements for Public Safety Apps

= Easily and quickly deployable infrastructure

— First responder rescue missions

— Portable and mobile infrastructure desirable
= Decimeter-level accuracy in non-line-of-sight indoors

— Long range (~100m) operable

— Milli-second refresh rate, tens of centimeter accuracy
= Ultra-low cost tags

— To be ported on numerous loT devices

— Tracking of disposable tags




Requirements for Public Safety Apps

= Small form factor
— Unobtrusive integration into loT
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Requirements for Public Safety Apps

= Small form factor
— Unobtrusive integration into loT

= Low power consumption
— Sustainable with a small coin-cell battery
— No manual battery management

Small Low-power




General RF Localization System

» Find the distance between anchors and tags

«A)‘)\'/

Anchor

Anchor

«A)\)

Anchor
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General RF Localization System

» Find the distance between anchors and tags

» Distance - Lateration
— Time of Arrival (ToA), Time Difference of Arrival (TDoA)

Anchor 1

4 .0

—————— Anchor 3
Anchor 3

ToA (circle) TDoA (hyperbola)
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Why RF Indoor Localization is Difficult
= Multipath and Non-Line-of-Sight (NLOS)

Direct Path
NLOS
/
—_— Reflected Path
(much weaker) (( ))
time A
Channel Impulse LOS

Response (CIR) ((A)\)

Wall
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Why RF Indoor Localization is Difficult
= Multipath and Non-Line-of-Sight (NLOS)

Direct Path NLOS

4/
Reflected Path
" (much weaker) « ))
time 4,_——‘ e A

Channel Impulse LOS

Response (CIR) ((A)\)

Direct Path

Wall
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Time of Arrival (ToA) from Channel Impulse Response (CIR)

= Speed of light: ¢, Time of Arrival (ToA): t
= Distance: d = ct = 30cm with ToA of 1ns
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Time of Arrival (ToA) from Channel Impulse Response (CIR)

Distance: d = ct 2 30cm with ToA of 1ns| il N\
Indoor channel is multi-path rich o= S

ToA or distance is estimated from channel | <" .~ ar
impulse response (CIR)

Speed of light: ¢, Time of Arrival (ToA): t . N = o

@ transmitter Delay spread

' ‘ )
@ receiver
I x(t)=6(t) ' To ﬂ%

t=0 , Multipath =0 ter time
- time channel

Channel Impulse Response (CIR)



TDoA Localization Challenges

« CIR estimation in multi-path indoor channels
— Direct path can be much weaker than multipaths
= Time synchronization between transmitter and receiver
— 1ns mismatch - 30cm error
« Limited bandwidth (80MHz) for ISM band operation - 3.75m resolution

@ transmitter Delay spread
‘ .
@ receiver
‘ x(t)=6(t) I To "’W
i Multipath Y _
t=0 time t=0 t=t time

channel
Channel Impulse Response (CIR)
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Proposed System: RF-Echo and iLPS

Decimeter-level (tens of centimeter) ranging accuracy
Large covered area: >100m distance

GPS-like local positioning scheme

— Indefinite number of tags localize themselves simultaneously
Reliable wireless communications between anchors and tags

— Localization and communication at the same time
Deployable without heavy infrastructure investment
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Overview: RF-Echo (Year1)

= RF-Echo Operating Principle:
— Round-trip Time-of-Flight (RToF)
— Introduce active reflector tag with frequency conversion

* Full-duplex tag: simultaneous TX and RX

* Increase ranging distance by active signal amplification at tag
« Tag reflection has different frequency from passive reflection
 All analog tag design: deterministic echo processing delay

TAG

180nm ASIC

2.4GHz OFDM

NV
S S o W S S—— -

900MHz OFDM

)

Anchor
USRP x310

2.69 mm




RF-Echo ASIC Tag

= Tag ASIC in TSMC 180 nm

= Low-cost simple tag design
— Crystal-less, PLL-free

= Analog-only design
— No digital signal processing circuitry
— Deterministic delay

LNA

in F }:‘Broadband
input matching
A R O
“—rmy\—w%

To VGA

combining 1

[

Double-balanced
Mixer Switches

i

On-chip LC
Oscil lator

L=
_|

1.87 mm

VGA ___PA_ |

s
. Nl g
I
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RF-Echo System

* Round-trip ToF or distance measurement by analyzing channel impulse

response (CIR)

Anchor

@ transmitter Delay spread

@ receiver
x(t)=6(t) ' To

Multipath
channel

t=0 time t=0 t=t time

Channel Impulse Response (CIR)

NIQ40 zHINoE

Q40 zHop7

Anchor
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RF-Echo System Evaluation

System Technology NLOS Testing System Signal Tlme per Energy
Accuracy Accuracy Dimension Power Bandwidth Type per Fix

WiTrack FMCW ToF
Harmonium UWB TDoA
+ .
Ubicarse SAR + Motion
sensor
Tagoram RFID SAR
802.11 WiFi +
Chronos L.
Band-stiching
ASIC Active
RF-Echo reflection +
Neural

network

31cm
(90%)
31cm
(90%)

39 cm
(median)

12cm
(median)

14.1 cm
(median)

26 cm
(90%)

40 cm
(90%)

42 cm
(90%)

59 cm
(median)

N/A

20.7 cm
(median)

46 cm
(90%)

LOS: 3-11 m
NLOS: 6 x 5 m?

LOS/NLOS:
46x7.2x2.7m3

LOS/NLOS:
15 x 15 m?

LOS: 1 x 2 m?

LOS/NLOS:
20 x 20 m?

LOS: 7 x 90 m?
NLOS: 30 x 20 m?

No Tag

75 mW

N/A

Passive

1.6 W

62.8 mW

1.69 GHz

3.5GHz

N/A

6 MHz
(UHF)

20 MHz x 35
ch.

80 MHz

FMCW

Impulse

WiFi

UHF RFID

OFDM

OFDM

>2.5ms

52 ms

100 ms

>33 ms

84 ms

20 ps per
sym.

3900 W

N/A

N/A

1.34x 10°
W

18
10 sym.



Research Scope

—Year2: iLPS for simultaneous communication and localization



Overview: iLPS (Year2)

= iLPS: Indoor Local Positioning System

= Two kinds of anchors: Main anchor & Reflector anchor
— Main anchor broadcasts OFDM signal at 2.4GHz and 5.8GHz

Main Anchor
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Overview: iLPS (Year2)

= iLPS: Indoor Local Positioning System
= Two kinds of anchors: Main anchor & Reflector anchor

— Main anchor broadcasts OFDM signal at 2.4GHz and 5.8GHz

— Reflector anchors reflects the signal at 5.8 GHz with signal amplification and frequency
conversion to 2.4GHz

— Estimate TDoA without striIt tirrIe synchronization between anchors

Reflector

L Y M
po—

TDoA
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iLPS operation principle

Frequency Converting Active Reflector

® mixer
f.clufr? amp
) Freq Gen
NA PA

Reflectors can be
realized with all-
analog processing

2.4GHz

[ R ————

Main
nchar L S Te—— -
A, >100m-range
2.4GHz
TAG
Activérlieflector Actlve Reflector
Anchor Anchor
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Inter-anchor Interference Avoidance

= Orthogonal (OFDMA) subcarrier allocation for different reflectors

Tag
[ I /

Main Anchor \
luLLI.A.lLL‘ freq

5.8GHz
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Inter-anchor Interference Avoidance

= Orthogonal (OFDMA) subcarrier allocation for different reflectors

Idle subcarriers
2.4GHz

i | /freq

Main Anchor \
ILLLL.LLA_‘freq

5.8GHz

R
. L3
. .
. L3
. L
. L3
. *
.
.
.
.
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Inter-anchor Interference Avoidance

= Orthogonal (OFDMA) subcarrier allocation for different reflectors

* Frequency conversion with offset at reflector anchors
— Orthogonal subcarrier allocations
— Different subcarriers allocated to different reflector anchors

L=/

M:in -r»]»c-r.lor \ Shift by 1 subcarrier
J“ % ,|, 2.4GHz

freq

5.8GHz Dh 0 )
Reflector #1
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Inter-anchor Interference Avoidance

= Orthogonal (OFDMA) subcarrier allocation for different reflectors

* Frequency conversion with offset at reflector anchors
— Orthogonal subcarrier allocations
— Different subcarriers allocated to different reflector anchors

LLLL
e /

5.8GHz

2.4GHz
Tag

2.4GHz
Shift by 2 subcarriers

,|, 2.4GHz Reflector#Z

Reﬂector #1



Inter-anchor Interference Avoidance

Orthogonal (OFDMA) subcarrier allocation for different reflectors

* Frequency conversion with offset at reflector anchors
— Orthogonal subcarrier allocations
— Different subcarriers allocated to different reflector anchors

LLLL
e /

5.8GHz

Orthogonal to each other

2.4GHz
Tag T
‘ I freq

2.4GHz
Shift by 2 subcarriers

,|, 2.4GHz Reflector#Z

Reﬂector #1
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iLPS Communication

« Packet structure based on IEEE802.11a/g/n WiFi

— STF for packet detection, LTF for CIR estimation
— Data symbols contain anchor coordinate information and other general data

= Preamble >| Data OFDM Symbols —

Short Training Field | Long Training Field | Datal Data2 DataN
(2 syms) (1 sym) (1 sym) | (1 sym) (1 sym)




iLPS Communication

« Packet structure based on IEEE802.11a/g/n WiFi
— STF for packet detection, LTF for CIR estimation
— Data symbols contain anchor coordinate information and other general data

= Distributed MISO system with frequency diversity

— Improves communication reliability
Reflector Anchor #1

/ — X(6) * by (0) Y = HX
I I x(t) * hy(t) - ﬁ
Main—Anchor e

I l X(t) * h3 (t)

3

?eﬁor Anchor #2
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iLPS TDoA Estimation Accuracy

« Ranging accuracy vs Signal bandwidth

@ transmitter Delay spread

@ receiver

. ] ‘x(t)q?(t) — To
Distance resolution « B . Multipath
t=0 time channel

t=0 t=t time
Channel Impulse Response (CIR)
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iLPS TDoA Estimation Accuracy

« Ranging accuracy vs Signal bandwidth

@ transmitter Delay spread

@ receiver

. ] ‘x(t)q?(t) — To
Distance resolution « B . Multipath
t=0 time channel

t=0 t=t time
Channel Impulse Response (CIR)

« UWB uses large BW (typically GHz) to achieve high ToA resolution
— Transmit power is limited - localization range is limited
— Wider bandwidth - more interference
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iLPS TDoA Estimation Accuracy

« Ranging accuracy vs Signal bandwidth

@ transmitter Delay spread

@ receiver

' - ‘x(t)q?(t) — To
Distance resolution < —

BW ' e Mudemh ST
t=0 time channel = = ime

Channel Impulse Response (CIR)

= UWB uses large BW (typically GHz) to achieve high ToA resolution
— Transmit power is limited - localization range is limited
— Wider bandwidth - more interference

= Available sub-10GHz ISM bandwidth is <<1GHz
— 80MHz - only 3.75m resolution
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iLPS TDoA Estimation Accuracy

« Ranging accuracy vs Signal bandwidth

@ transmitter Delay spread

@ receiver

. ] ‘x(t)q?(t) — To
Distance resolution « B T Multipath
t=0 time channel

t=0 t=t time
Channel Impulse Response (CIR)

= UWB uses large BW (typically GHz) to achieve high ToA resolution
— Transmit power is limited - localization range is limited
— Wider bandwidth - more interference

= Available sub-10GHz ISM bandwidth is <<1GHz
— 80MHz - only 3.75m resolution

Machine learning based accuracy enhancement

42



Neural Network Based ToA Estimation

 How do we estimate ToA from coarsely measured (BW limited) CIR?

T

08| True ToA

06

—uw— Linear domain CIR
Ground truth distance (62m) ||

v

04

02

| | 3
0 20 40 60 80 100 120



Neural Network Based ToA Estimation

= CIR pattern recognition via neural networks
— Train neural network to learn the shape around the first path

Center for ToA

pattern matching

1
: Tf ram

Channel Response

>

e

fcl

||:> fc2

fc3

On-time

Early

(+)Delay

Late

(-)Delay

(t=ToA)
confidence

Combine —

Off-time

32

16

) A
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Neural Network Based ToA Estimation

= CIR pattern recognition via neural networks

— Train neural network to learn the shape around the first path
= Training set generated in Matlab simulation

— No need of collecting real-world data before deploying tags

0.15[_ [ [ [ [ [ j -.| T T
Synthesized CIR Many synthesized CIR w/
for NLOS (linear) random delay spread

0.1~

(L[] Training [ “,
i {window \' \

60 80
Distance (m)




Baseband Signal Processing at Tags

» Tag implementation on USRP Software Defined Radio (SDR)
= Similar to WiFi 802.11 a/g/n

= Tag only requires a receiver for localization (similar to GPS receiver)

Information
Information Demodulation 4}
Packgt . CcP o FFT o LR Viterbi : CRC . Recover
Detection Removal < Decoder Check X
- v
Hyre
ﬁ(, = Yo/X
- i- TDoA| N | .
Pos:tlon¢] Kailman 2 Multf = eural | : IFFT |o— :
Filter lateration Network | |CIR, CIR,
RM—] = Yu-1/X

Position Estimation

CIR Estimation

4¢



iLPS System Evaluation

= Experiment environment and testing setup
= Main anchor, reflector and tags all implemented using USRP X310 SDR

USRP + PC




iLPS System Evaluation
= 2D localization in University of Michigan EECS building

\
10 i !
8 B 5 " ‘ o9 /
E 6 - b ¢ io o 6 Y ‘ 08 ! ./
= d o P | ' ——NLOS 1d 1 symbol
S * % * | 07 - - LOS 1d 10 symbols
] Les | " NLOS 1d 10 symbols
> 4 6 8 10 12 14 16 18 20 22 24 26 28 @0'6 LOS 2d 20 symbols
x(m) § 05 ——NLOS 2d 20 symbols
£
iz Eoa
Y Main Anchor 10+ ¥ % 03
Y Reflector __ 8
O Test Positions % 6 P & ” 0.2
A Measurements 41
o 0.1
2] NLOS Ry ;
0 : I 05

1 1.5
2 4 6 8 10 12 14 16 18 20 Error(m)
x(m)



Comparison Table

Simultaneous

System e LOS NLOS Testing System Latency for K Communication &
Accuracy Accuracy Dimension Bandwidth tags Local. .
Localization
. FMCW+TDMA 15.9 cm 16.1 cm LOS: 5 x 7 m?
WiTrack 2.0 (ToA) (et T NLOS: 6 x 5 m? 1.79GHz 10s (K < 5) No
. UWB+TDMA 31cm 42 cm LOS/NLOS:
Harmonium (TDOA) (90%) (90%) 4.6x7.2x2.7m? 3.5GHz K'x52ms No
OFDM+TDMA 50 cm 50 cm LOS: 10m Yes
WASP .
S (ToA) (85%) (65%) NLOS:15x15m2  12°MHz Kx2.5ms No diversity gain
Chronos (CIJSI;ﬁcI\iA-:;-Ic)hI\ﬂ\A 14.7 cm 20.7 cm LOS/NLOS: 20MHz x 35 3 % 84ms Possible,
ToA) g (median) (median) 20x 20 m? overlapped Not demonstrated
OFDM+TDMA 26 cm 46 cm LOS: 7 x 90 m?
RF-Echo (ToA) (90%) (90%) NLOS: 30 x 20 m?2 80MHz x 2 K x 200us No

LOS: 15-105m Yes

NLOS: 20 x 12 m2  SOMHzx2 MISO diversity gain
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Comparison Table

Simultaneous

System el LOS NLOS Testing System Latency for K Communication &
Accuracy Accuracy Dimension Bandwidth tags Local. ..
Localization
. FMCW+TDMA 15.9cm 16.1 cm LOS: 5 x 7 m?
WiTrack 2.0 (ToA) (et T NLOS: 6 x 5 m? 1.79GHz 10s (K < 5) No
. UWB+TDMA 31cm 42 cm LOS/NLOS:
(0] (0] OX/7.2X2Z./m
Harmonium (TDOA) (90%) (90%) 4.6x7.2%2.7m? 3.5GHz K'x52ms No
OFDM+TDMA 50 cm 50 cm LOS: 10m Yes
WASP (ToA) (85%) (65%) NLOS:15x15m2  12°MHz Kx2.5ms No diversity gain
Chronos g;ﬁzﬂ;?h“ﬂf 14.7 cm 20.7 cm LOS/NLOS: 20MHz x 35 3 % 84ms Possible,
ToA) g (median) (median) 20x 20 m? overlapped Not demonstrated
OFDM+TDMA 26 cm 46 cm LOS: 7 x 90 m?2
RF-Echo (ToA) (90%) (90%) NLOS: 30 x 20 m2 80MHz x 2 K x 200us No

LOS: 15-105m Yes

NLOS: 20 x 12 m? 80MHz x 2 MISO diversity gain




Summary of iLPS

Decimeter ranging accuracy

Large covered area: 105m LOS

Active Reflector "_’,..o' )
distance [ f :
GPS-like local positioning Ml P
scheme T ‘I |

— Able to localize infinite number of .., 58GHz  >joomrange—]—b
tags simultaneously 24GH;
Reliable wireless I I ‘
communications between anchors =Ry & =AF
and tagS Anchor Anchor

Deployable without heavy
infrastructure investment

Frequency Converting Active Reflector
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Research Scope

= Application specific integrated circuit (ASIC) fabrication

—Year2 and 3: Low power processor for software-defined radio ASIC
« Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
* RF localization
» Deep learning neural network processing for RF



SDR Processor Architecture

= Systolic array of ASIP cores + Arm cores
— Systolic array of application specific instruction set processor (ASIP)
— Custom instruction set architecture designed for RF localization and communication
» Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
* RF localization

» Deep learning neural network processing for RF applications '
* | I
‘Q‘ port alternate cycle access port reg port
o* reg reg
.
o* ) redfile
| || || || ‘Q input SP?EQMO || SP?EQM1 ) men(ﬁJ outpgt
ARM ARM “‘ reg 0 (1KB) (1KB) reg reg
T I e I N A N I N [ I e [ N N N I iy
MaF M4F | | | 7] t 1 ! l
SPSRAM2 SPSRAM3 1 1
— — — — (k) [ «ke) [ 1 | t
I I 0 port men? 1 FUs | I:gg
— . re i reg tout
o fRI— < [Pl L L XL | = | e
- || || | ['e ided A / !
Crossbar l | | *e Strggﬁerggf > I o e e e e e = 1
OMEM I I I [ *, f
* figuration & R t T
—| — — — ‘0‘ Con Igué%I?(?oller SUUCS Configuration Memory
.
*e | port 1 port
*,| reg | external data reg | | port reg | reg

Systolic Array of ASIP Cores



SDR Processor Core Functional Unites

Py
egg alternate cycle access | [ I l:gg ann® gun® sen®
regfile ‘l“““
s || SR (1 R [ s A ETL e
I I TR b e
SPSRAM2 || SPSRAM3 N 1 :
(1KB) (1KB) 1 1 o
=) | 1 FUs | g || o8
ms| =— - Ak
RS I :
— KR
Conﬁgu&a()t;c;poﬁ(elr?equest ] Configuration Memory .I.Q e
port 1 p’o!‘
reg I external data reg I I port reg I reg Q.
0’.
8-entry regqister file, 2riw e,
2x 32-bit adders, can be configured as 4x 16-bit adders (2 complex adders)
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Algorithm Mapping on SDR Processor
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« iLPS localization processing
mapping onto SDR
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1. Auto-correlation packet detection

2. FFT (1024 point)

3 & 4. Channel estimation and equalization (complex multiplication)
5. QAM demapping LLR

6. Soft-input Viterbi

11 Neural network



Target Performance

Processor Clock Freq. Performance
(GHz) (GOPs)
Arm Quad-core A72 cluster 3.72 1.6 51.2
Proposed 256-core SDR Processor 4.12 3.2 3277

Proposed SDR processor achieves ~30x higher efficiency compared to
commercial low power mobile processor for wireless applications

Power

(W)
1.268

~ 2.0



Conclusion

= New Indoor RF Localization Solutions
— Year1: RF-Echo with custom ASIC tag
— Year2: iLPS for simultaneous communication and localization
— Year3: Sound-RF hybrid solution

= Application specific integrated circuit (ASIC) fabrication
— Year1: Low power active reflection tag ASIC

—Year2 and 3: Low power processor for software-defined radio ASIC
« Wireless communication (WiFi, Bluetooth, Zigbee, proprietary)
* RF localization
» Deep learning neural network processing for RF
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