Rotational Ligand Dynamics in $\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}$.pyrazine
 Craig Brown, Nick Butch, Wei Zhou

CHRNS Summer School 2022

Outline

- $\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}$.pyrazine
- Physical Properties
- Review data from other techniques
- Compare behaviour with related compounds
- Categories of experiments performed on DCS
- Extra slides
- Quasi-elastic scattering
- What is it?
- What it means

Pyrazine

Interactions

The neutron-nucleus interaction is described by a scattering length 1
Complex number real \rightarrow scattering imaginary \rightarrow absorbtion l scattering

Depends on the average scattering length

Incoherent scattering Depends on the mean square difference scattering length

STRUCTURE
DYNAMICS

Structure and dynamics

- Deuterated sample for coherent Bragg diffraction to obtain structure as a function of temperature
- Protonated to observe both single particle motion (quasielastic) and to weigh the inelastic scattering spectrum in favor of hydrogen (vibrations)
- Deuteration can help to assign particular vibrational modes and provide a 'correction' to the quasielastic data for the paramagnetic scattering of manganese and coherent quasielastic scattering.

Magnetic Structure

-One of the interpenetrating lattices shown.
$\cdot a$ is up, b across, c into page

- Magnetic cell is ($1 / 2,0,1 / 2$) superstructure
-Exchange along Mn-pyz-Mn chain 40x
J. L. Manson et. al
J. Am. Chem. Soc. 2000
J. Magn. Mag. Mats. 2003

$\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}$.pyrazine

$\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}$.pyrazine

1.3 K - 3-D antiferromagnetic order below $\sim 2.5 \mathrm{~K}$

- Magnetic moments aligned along $a\left(4.2 \mu_{\mathrm{B}}\right)$
- Monoclinic lattice ($a=7.3 \AA, b=16.7 \AA, c=8.8 \AA$)
- Phase transition to orthorhombic structure
- Large Debye-Waller factor on dicyanamide ligand
- Diffuse scattering

408 K . Phase transition

- Large Debye-Waller factors on pyrazine

$\sim 435 \mathrm{~K}^{\bullet} \quad$ Decomposes and loses pyrazine.

As a function of Temperature

The other compounds

AIMS

c

Experience Practical QENS

- sampleahoice
- geometry consideration

Learn something about the instrument

- Wavelength/Resclution/Intensity

Data Reduction

Data Analysis and Triterpretation

- instrument resolutionfunction and fitting
- extract EISF and linewidth
- spatial and temporal information

The Measured Scattering

$E I S F=\frac{\text { Ielastic }}{\text { Itotal }}$

Quasielastic Scattering

- The intensity of the scattered neutron is broadly distributed about zero energy transfer to the sample
- Lineshape is often Lorentzian-like
- Arises from atomic motion that is
- Diffusive
- Reorientational
- The instrumental resolution determines the timescales observable
- The Q-range determines the spatial properties that are observable
- (The complexity of the motion(s) can make interpretation difficult)

Types of Experiments

- Translational and rotational diffusion processes, where scattering experiments provide information about time scales, length scales and geometrical constraints; the ability to access a wide range of wave vector transfers, with good energy resolution, is key to the success of such investigations
- Low energy vibrational and magnetic excitations and densities of states
- Tunneling phenomena
- Chemistry --- e.g. clathrates, molecular crystals, fullerenes, MOFs
- Polymers --- bound polymers, glass phenomenon, confinement effects
- Biological systems --- protein folding, protein preservation, water dynamics in membranes
- Physics adsorbate dynamics in mesoporous systems (zeolites and clays) and in confined geometries, metal-hydrogen systems, glasses, magnetic systems
- Materials --- negative thermal expansion materials, low conductivity materials, hydration of cement, carbon nanotubes, proton conductors, metal hydrides, hydrogen diffusion, CH4 dynamics....

Data courtesy of M. Lumsden, ORNL

Magnetism

MnWO4 3.5\%Fe 4.4A T $\mathbf{= 1 . 5 \mathrm { K }}$

$x=0.100003$

hydrogen

Para has a nuclear spin I=0. This constrains J to be even.

Ortho has a nuclear spin $\mathrm{I}=1$. This constrains J to be odd.

Transition between ortho and para species can occur through flipping the nuclear spin.

hydrogen

(Neutron energy loss)

hydrogen

hydrogen

$$
I(Q) \propto e^{-Q^{2}<u^{2}>/ 3} j_{1}\left(d_{H H} Q / 2\right)^{2}
$$

hydrogen

Monitor hydrogen diffusion over isotherm

hydrogen

hydrogen

Faster
Brownian Diffusion
$\sim 5 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$
$\sim 0.2 \mathrm{ps}$
between
H_{2} hops

hydrogen

Surface ditfusion reduced and shorter hops with loading At 77 K hydrogen behaves like it is at 35 K on carbons

Some notes on data meaning

The Measured Scattering

$S(Q, \omega)=S(Q, \omega)^{\text {Reorient }} \otimes S(Q, \omega)^{\text {Lattice }} \otimes S(Q, \omega)^{\text {VIB }} \otimes R(Q, \omega)$

The reorientational and/or Lattice parts.

The Lattice part has little effect in the QE region- a flat background (see Bée, pp. 66)

Debye-Waller Instrumental
factor resolution
Far away from the function QE region

Quasielastic Neutron Scattering
Principles and applications in Solid State Chemistry, Biology and Materials Science M. Bee (Adam Hilger 1988)

Quasielastic Scattering

$G_{s}(r, t)$ is the probability that a particle be at r at time t, given that it was at the origin at time $t=0$ (self-pair correlation function)
$I_{\text {inc }}(Q, t)$ is the space Fourier transform of $\boldsymbol{G}_{s}(r, t)$
(incoherent intermediate scattering function)

$$
I_{i n c}(Q, t)=\left\langle e^{i Q \cdot r(t)} e^{-i Q . r(0)}\right\rangle
$$

$S_{\text {inc }}(Q, \omega)$ is the time Fourier transform of $I_{s}(Q, t)$
(incoherent scattering law)

$$
S_{i n c}(\vec{Q}, \omega)=\frac{1}{2 \pi} \int I_{i n c}(Q, t) e^{-i \omega t} d t
$$

Quasielastic Scattering

$\stackrel{r 1}{\bullet} \quad \stackrel{r 2}{\longrightarrow}$ Jump model between two equivalent sites

$$
\begin{gathered}
\frac{\partial}{\partial t} p\left(r_{1}, t\right)=-\frac{1}{\tau} p\left(r_{1}, t\right)+\frac{1}{\tau} p\left(r_{2}, t\right) \\
\frac{\partial}{\partial t} p\left(r_{2}, t\right)=\frac{1}{\tau} p\left(r_{1}, t\right)-\frac{1}{\tau} p\left(r_{2}, t\right) \\
\frac{\partial}{\partial t}\left[p\left(r_{1}, t\right)+p\left(r_{2}, t\right)\right]=0 \quad p\left(r_{1}, t\right)+p\left(r_{2}, t\right)=1 \\
p\left(r_{1}, t, r_{1}, 0\right)=\frac{1}{2}\left[1+e^{-2 t / \tau}\right] \quad p\left(r_{2}, t, r_{1}, 0\right)=\frac{1}{2}\left[1-e^{-2 t / \tau}\right] \\
p\left(r_{2}, t ; r_{2}, 0\right)=\frac{1}{2}\left[1+e^{-2 t / \tau}\right] \quad p\left(r_{1}, t ; r_{2}, 0\right)=\frac{1}{2}\left[1-e^{-2 t / \tau}\right] \\
I(Q, t)=\left[p\left(r_{1}, t ; r_{1}, 0\right)+p\left(r_{2}, t ; r_{1}, 0\right) e^{i Q\left(r_{2}-r_{1}\right)}\right] p\left(r_{1}, 0\right) \\
\quad+\left[p\left(r_{1}, t ; r_{2}, 0\right) e^{i Q\left(r_{1}, r_{2}\right)}+p\left(r_{2}, t ; r_{2}, 0\right)\right] p\left(r_{2}, 0\right) \\
I(Q, t)=\frac{1}{2}\left[1+\cos Q \cdot\left(r_{2}-r_{1}\right)\right]+\frac{1}{2}\left[1-\cos Q \cdot\left(r_{2}-r_{1}\right)\right] e^{-2 t / \tau}
\end{gathered}
$$

Quasielastic Scattering

$\stackrel{r 1}{\bullet} \xrightarrow{r 2}$ Jump model between two equivalent sites

$$
\begin{array}{r}
S(Q, \omega)=\frac{1}{2}\left[1+\cos Q \cdot\left(r_{2}-r_{1}\right)\right] \delta(\omega)+\frac{1}{2}\left[1-\cos Q \cdot\left(r_{2}-r_{1}\right)\right] \frac{1}{\pi} \frac{2 \tau}{4+\omega^{2} \tau^{2}} \\
\mid \text { Powder (spherical) average }
\end{array}
$$

$S(Q, \omega)=\frac{1}{2}\left[1+\frac{\sin Q \cdot\left(r_{2}-r_{1}\right)}{Q \cdot\left(r_{2}-r_{1}\right)}\right] \delta(\omega)+\frac{1}{2}\left[1-\frac{\sin Q \cdot\left(r_{2}-r_{1}\right)}{Q \cdot\left(r_{2}-r_{1}\right)}\right] \frac{1}{\pi} \frac{2 \tau}{4+\omega^{2} \tau^{2}}$

$$
S(Q, \omega)=A_{0} \delta(\omega)+A_{1} \frac{1}{\pi} \frac{2 \tau}{4+\omega^{2} \tau^{2}}
$$

Quasielastic Scattering

$\stackrel{r 1}{\circ} \underset{0}{r 2}$ Jump model between two equivalent sites

Quasielastic Scattering

Jump model between two equivalent sites

Quasielastic Scattering

Jumps between three equivalent sites

$$
S(Q, \omega)=A_{0} \delta(\omega)+\left(1-A_{0}\right) \frac{1}{\pi} \frac{3 \tau}{9+\omega^{2} \tau^{2}} \quad A_{0}=\frac{1}{3}\left[1+2 j_{0}(Q r \sqrt{3})\right]
$$

Quasielastic Scattering

Translational Diffusion

$$
S(Q, \omega)=\frac{\hbar D Q^{2}}{\pi} \frac{1}{\left(\hbar D Q^{2}\right)^{2}+\omega^{2}}
$$

TOF spectroscopy, in practice

(1) The neutron guide

(4) The flight chamber and the detectors
(2) The choppers
(3) The
sample area

