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Abstract

In this experiment, we will use inelastic neutron scattering to study the collective excitations of
superfluid 4He as a function of temperature and pressure. The scattering angle- and time- resolution
of the Disk Chopper Spectrometer will allow us to map the momentum-energy dependence of these
excitations.

1 Introduction

Neutron scattering techniques provide experimentalists with direct probes of the atomic-scale structure and
dynamics of materials[1]. An important application of inelastic neutron scattering is the study of the collec-
tive excitations in condensed matter systems, such as the lattice vibrations and spin waves of crystalline ma-
terials. Determining the dispersion relation of these excitations is an important task for an experimentalist,
as this information is a clue about the strength of intermolecular interactions as well as the thermodynamic
and transport properties of the material. In this experiment, we will explore the excitations of a quantum
fluid, namely liquid 4He.

Figure 1 illustrates the pressure-temperature phase diagram of 4He. Also shown is a generic phase
diagram of an ordinary classical fluid. A striking difference between these two phase diagrams is the fact
that 4He remains a liquid down to absolute zero temperature under its own vapor pressure. Solification only
occurs if an external pressure (>25 atm) is applied to it. If a substance is comprised of atoms/molecules
which obey classical mechanics, then that substance must crystallize or solidify if the temperature is reduced
sufficiently low. The gain in potential energy obtained by localizing the atoms at specific sites is large enough
to overcome the kinetic energy of thermal motion. Two different properties of helium atoms combine to
destabilize the solid phase: the light mass of helium atoms and the weakness of interatomic attraction.
Because helium atoms have a small mass, they have a relatively large amount of quantum-mechanical zero-
point energy. This energy is comparable to the depth of the attractive potential well, thereby preventing
crystallization unless external pressure is applied.

Another striking aspect of the phase diagram shown in Figure 1 is the fact that 4He has two different
liquid phases, referred to as He-I and He-II. When liquid helium is cooled below a critical temperature Tλ, it
undergoes a second-order phase transition from a normal fluid (He-I) to a superfluid (He-II). Normal fluids
possess a finite viscosity: they resist shearing and their currents steadily dissipate in the absence of driving
forces. In addition, a normal fluid has finite thermal conductivity, making diffusion a mechanism by which
heat is transported through the fluid. Lastly, there are no fundamental constraints on the amount of rotational
flow in normal liquids. The properties of superfluids are radically different in all three respects. Superfluid
helium is capable of flowing with exactly zero viscosity, and so under appropriate circumstances it exhibits
dissipationless flow! It has infinite thermal conductivity and so, unlike normal fluids, it cannot support static
temperature gradients. Instead, temperature and entropy propagate through superfluids in the form of waves
known as ‘second sound.’ Finally, circulation in superfluid helium occurs within quantized vorticies which
are analogous to the flux-vortex lines observed in superconductors. The properties of He-II, and their roots
in Bose-Einstein condensation, are discussed in the books by Annett[3] and Pitaevskii and Stringari[4].
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Figure 1: The pressure-temperature phase diagram of 4He compared with an ‘ordinary’ fluid[2].
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Figure 2: The elementary excitation spectrum of superfluid 4He at low temperatures and under saturated
vapor pressure[5]. The cartoon inset is a schematic picture of roton reproduced from Ref [6][p. 331].
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The elementary excitation spectrum of He-II is shown in Figure 2. At small wavevectors (Q ≤ 0.7 Å−1),
the elementary excitations are phonons, the quanta of pressure-density waves. The modes in the intermediate
range around Q ≈ 1.1 Å−1 are referred to as maxons. The excitations near the local minimum of the
spectrum are known as rotons. Close to this minimum, the excitation spectrum is approximately parabolic:
ER(Q) = ∆ + ~2(Q−QR)2/2µ, where ∆ is the roton energy gap, QR is the wavevector at the minimum,
and µ is the effective mass of the roton. The nature of the roton is not yet fully understood, despite intense
theoretical study over many years. According to Feynman and Cohen, rotons are the quantum-mechanical
analog of perfect smoke rings shrunk to atomic dimensions[6]. That is, rotons consist of an atomic-sized
core and slow, dipolar backflow around this core. The Feynman-Cohen picture is shown schematically in
the inset of Figure 2.

In this summer school experiment, we will examine the collective excitations of superfluid 4He. In
particular, we will examine the properties of the roton (the energy gap ∆, wavevector QR, and effective
mass µ) as a function of temperature T and pressure P . Our goal is to understand the connection between
the structure of the liquid, as described by the static structure factor S(Q), and the collective excitation
spectrum Eph−r(Q).

2 Inelastic Neutron Scattering

In this section, we will briefly review the theoretical background for inelastic neutron scattering studies of
liquid 4He. The kinematics of neutron scattering are illustrated in Figure 3. The scattering of a neutron from
a sample is governed strictly by the conservation of momentum and energy. Suppose that a scattered neutron
has initial momentum ~ki and energyEi = ~2k2i /2m and final momentum ~kf and energyEf = ~2k2f/2m.
The neutron transfers a momentum ~Q = ~ki − ~kf and energy E = Ei − Ef to the sample.

Solving the scattering triangle shown in Figure 3 yields the following relations:

Q2 = k2i + k2f − 2kikf cos 2θ (1)

~2Q2

2m
= Ei + Ef − 2

√
EiEf cos 2θ (2)

Given these kinematic relationships, what is the shape of a detector ‘trajectory’ in Q−E space?
That is, what is the locus of points in Q − E space which are ‘seen’ by an individual detector
which is fixed at a scattering angle of 2θ? Compare a direct geometry instrument (fixed Ei) with
an indirect geometry one (fixed Ef ). Hint: E = Ei − Ef .

In an inelastic neutron scattering experiment, one measures the double-differential scattering cross sec-
tion d2σ/dΩdEf . This is the probability that an incident neutron is scattered by the sample into solid angle
dΩ with a final energy between Ef and dEf . In the first Born approximation, d2σ/dΩdEf is proportional
to the (coherent) dynamic structure factor S(Q,E):

d2σ

dΩdEf
=
Nσcoh

4π

kf
ki
Scoh(Q,E) (3)

Bulk liquid helium is homogeneous and isotropic. Therefore, we do not need to consider the vector quantity
Q and may instead discuss only the scalar quantity Q.

Why is the incoherent scattering cross section σinc of our liquid helium sample equal to zero?
Hint: there are two reasons.
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Figure 3: The neutron scattering triangle as illustrated by Pynn[7].
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Figure 4: Processes contributing to the measured signal in liquid helium[8]: (a) an incident neutron with
wavevector k0 creates a single excitation of momentum ~Q; (b) an incident neutron creates two excitations
with combined momentum ~Q; (c) an incident neutron undergoes multiple scattering, first creating an exci-
tation with momentum ~Q1, then propagating to another point in the sample, and finally creating a second
excitation with momentum ~(Q−Q1).

The dynamic structure factor S(Q, E) is the Fourier transform of the time-dependent, pair-correlation
function G(r, t). In a classical liquid, G(r, t) is the relative probability that, given an atom located at (0, 0),
there is another atom at (r, t). In a quantum liquid, G(r, t) is the density-density correlation function.

Three different processes contribute to the observed scattering from He-II, and these are shown diagram-
matically in Figure 4. First, an incident neutron may create a single phonon/maxon/roton excitation which
carries away momentum ~Q and energy E. Second, a neutron may undergo multiphonon scattering (i.e.
create multiple excitations in a single scattering event). Finally, a neutron may undergo multiple scattering
and create one or more excitations in each scattering event. It is only the first process which permits us to
infer the dispersion relation from the observed scattering.

Can you explain why this is the case? What does single-phonon scattering contribute to S(Q,E)?
What do you expect multiphonon scattering to contribute?

An important relationship exists between neutron downscattering (E > 0) and neutron upscattering
(E < 0) known as the principle of detailed balance. Suppose that the sample is in thermal equilibrium at
temperature T . Then, S(Q,E) obeys the following condition:

S(Q,−E) = e−E/kBTS(Q,E) (4)

In general, the dynamic structure factor S(Q,E) is asymmetric with respect to energy transfer E. The prob-
ability that a neutron will upscatter with energy transfer E is smaller than the probability that a neutron will
downscatter with energy transfer E by a thermal factor e−E/kbT .

Suppose that your sample has an excitation with an energy of 1 meV. How large is the detailed
balance effect at 2 K? 20 K? 200 K? How does this compare to a 1 µeV excitation? Hint: 1 meV
= 11.6 K.
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Figure 5: Left:An orange cryostat with a 70 mm bore. Technical details about orange cryostats and other
sample environment setups are available on the NCNR Sample Environment website. Right: The pressure
cell we will be using in this experiment.
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3 Our Experiment

Here we briefly discuss our sample environment apparatus. Figure 5 displays a photograph of an orange
cryostat, a type of continuous flow liquid helium cyrostat. These cryostats are used throughout the world
at neutron sources, and they are sometimes referred to as “ILL cryostats” after the Institut Laue-Langevin.
Orange cryostats are “top-loading” setups: the sample cell is connected to a stick, and this stick is inserted
into the cryostat well from above. The well is filled with exchange gas that provides a thermal link between
the sample cell and the cooling annulus of the cyrostat. The base temperature of an orange cryostat is
typically around 1.5 K.

Helium gas is loaded to the sample cell in situ from an external gas handling system. We will use the
cryostat to control the temperature of our sample and the gas handling system to control its pressure. The
sample cell is shown on the right hand side of Figure 5. This particular pressure cell includes a cryogenic
valve: no rubber o-rings, which are sure to fail at low temperature, are used. This setup is particularly useful
whenever one wishes to dose gases to an (air-sensitive) sample, as is often done in experiments at NCNR.
Load the sample material into the cell inside of a glove box; transport the cell to the stick while the cryogenic
value is sealed; and finally open the cryogenic valve after the cell is attached to the gas fill line on the stick.

The dimensions of the sample are an important consideration in any neutron scattering experiment.
The neutron scattering formalism turns on the assumption that a neutron interacts once with the sample.
However, as illustrated in Figure 4, it is possible for a neutron to scatter multiple times before exiting the
sample. There is no known easy way to correct the double-differential scattering cross section d2σ/dΩdEf
for the effects of multiple scattering. It is sometimes possible to approach multiple scattering corrections by
using analytic models or by ray-tracing Monte Carlo simulations. Therefore, it is prudent to select a sample
geometry so that the amount of multiple scattering is (hopefully!) negligible.

The effects of multiple scattering from liquid helium are discussed in detail in Ref [8]. These effects
are expected to be small when the dimensions of the sample are much less than the mean-free path of the
neutrons (l = 1/Σ). Liquid 4He at a density of 0.145 g/cc possesses a macroscopic scattering cross section
Σ = 0.0293 cm−1. Our sample cell has a radius of r = 0.5 cm and a set of absorbing cadmium disks spaced
every d = 1 cm. Thus, Σr = 0.0147 and Σd = 0.0293, which are both much less than one.

3.1 Sample Environment

3.2 How the Disk Chopper Spectrometer Works

We shall be performing this experiment using the Disk Chopper Spectrometer (DCS), a direct geometry
(fixed incident energy Ei) time-of-flight spectrometer. In this type of instrument, pulses of monochromatic
neutrons strike the sample at equally spaced times. The distance between the pulsing device to the sample
DPS and the distance from the sample to the detectors DSD is known. Thus, the incident and final neutron
energies, Ei and Ef , respectively, can be inferred from the time at which the pulse was created and the time
at which the neutron was detected.

There are two methods of producing monochromatic pulses at a steady state neutron source, such as the
cold source at NCNR. One method is to use a single crystal to monochromate the white beam and a mechani-
cal chopper to pulse it; another technique is to use multiple choppers, such as the seven (!) choppers of DCS.

A monochromatic, pulsed beam of neutrons can be created using only two choppers. How does
that work? Can you think of a reason why more than two choppers might be needed to make this
a practicable method?

The data acquisition system accumulates neutron counts (detection events) for each of the 913 DCS
detectors. The time T between pulses is normally divided into 1000 channels of equal width, ∆t = 1000/T .

7



Figure 6: A schematic illustration of the scattering geometry of a direct geometry, time-of-flight spectrom-
eter such as DCS.

Each detection event is registered in one of these channels. The data acquisition system generates a two-
dimensional array of counts N(i, j) as a function of detector index i and time channel j. This array is
accumulated in a “histogramming memory” which is resident in the data acquisition computer. At the end
of each run cycle, the array N(i, j) is saved, along with other pertinent metadata, to the hard disk of the
instrument computer.

In order to interpret the outcome of our experiment, we must transform the raw data N(i, j) to the
dynamic structure factor S(Q,E). If we neglect self-shielding and multiple scattering effects, then the array
N(i, j) can be related to the double-differential scattering cross section:

N(i, j) =
NBM

ηBM

d2σ

dΩdtf
∆Ωi∆tNmηij (5)

Here ∆Ω is the solid angle subtended by detector i; ∆t is the width of the time channel; Nm is the
number of sample molecules in the beam; ηij is the efficiency of detector i for neutron detected in time
channel j;NBM and ηBM are the measured counts and efficiency, respectively, of the incident beam monitor.

We will not attempt to determine the dynamic structure factor S(Q,E) in absolute units (1/meV) and
will instead express it in terms of arbitrary units. This permits us to ignore all of the multiplicative factors
in Equation 5 except for the detector efficiency function ηij . To good approximation, the detectors of DCS
are identical to one another. Thus, we can write ηij = ηi0fj , where ηi0 is the efficiency of detector i for
elastically scattered neutrons and a detector-independent function fj that describes the energy-dependence
of the detector efficiency. The correction for differences in detector response, i.e. the determination of ηi0,
is performed using the results of a measurement with a vanadium sample.

The correction of the data for the energy dependence of the efficiency is achieved by calculation, know-
ing the various factors that affect the probability that a neutron is absorbed within a detector.
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What are these factors?

In order to obtain d2σ/dΩdEf from d2σ/dΩdtf , we must change variables from time-of-flight to en-
ergy, including the Jacobian of the transformation. The energy of a neutron is related to its time-of-flight t
over a fixed distance as E ∝ 1/t2. It follows that dE ∝ dt/t3. Hence, we may write:

d2σ

dΩdEf
∝ d2σ

dΩdtf

(
dt

dEf

)
∝ d2σ

dΩdtf
t3 (6)

To obtain S(Q,E), we either divide by kf or, equivalently, multiply by another factor of t.

There is a time-independent background signal on DCS. Where does this come from? Suppose
that we neglected to subtract this time-independent background from our raw data. How would
our final determination of S(Q,E) data be effected?

4 Analysis and Interpretation of the Scattering Data

4.1 Dispersion

We will begin our analysis by considering the P = 0 atm, T = 1.5 K data set. The dynamic structure factor
S(Q,E) of He-II at low temperatures can be expressed as sum of one-phonon scattering and multi-phonon
scattering:

S(Q,E) = Z(Q)δ(E − Eph−r(Q))︸ ︷︷ ︸
one-phonon

+ Sm(Q,E)︸ ︷︷ ︸
multi-phonon

(7)

Here Eph−r(Q) is the dispersion of the phonon-roton spectrum; Z(Q) is the integrated intensity of the one-
phonon scattering; and Sm(Q,E) is the multiphonon contribution.

Extract the dispersion relation Eph−r(Q) and integrated intensities Z(Q) from the scattering
data. Obtain empirical estimates of the roton energy gap ∆, wavevector QR, and effective mass
µ as a function of temperature and pressure.

4.2 Single Mode Approximation

The simplest theory that one can write down for the dynamic structure factor of He-II is the single mode
approximation. According to this theory, only one-phonon processes significantly contribute to S(Q,E). In
other words, the contribution of multiphonon processes is negligible: Sm(Q,E) ≈ 0.

S(Q,E) = Z(Q)δ(E − ES(Q)) (8)

Starting from this assumption, we can predict both the dispersion relation ES(Q) and the integrated inten-
sities Z(Q). We appeal to the sum rules of coherent neutron scattering:

zeroth moment sum rule:
∫ +∞

−∞
S(Q,E)dE = S(Q) (9)

f -sum rule:
∫ +∞

−∞
ES(Q,E)dE =

~2Q2

2M
(10)
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These sum rules are theorems of the neutron scattering formalism. The zeroth moment sum rule states that
the integral of S(Q,E) over all energies is equal to the static structure factor S(Q). This function is the
Fourier transform of the pair correlation function g(r), which yields the relative probability of finding an
atom a distance r from another one located at the origin. The f -sum rule states, in this case, that the first
moment of the scattering is equal to the recoil energy of a helium atom, namely ~2Q2/2M .

Use the sum rules to show that, in the single-mode approximation, Z(Q) = S(Q) and ES(Q) =
~2Q2/2MS(Q).

Compare the predictions of the single mode approximation to your scattering data. Where does
the theory work? And where does it break down? (For reference, ~2 = 4.18016 meV amu Å2 and
M = 4.00260 amu.)

4.3 Structure and Dynamics

Now that we have considered the P = 0 and T = 1.5 K data set, we turn to examining the phonon-roton
spectrum at other thermodynamic conditions.

Use the zeroth moment sum rule to calculate the static structure factor S(Q) of He-II at each
pressure. What is the relationship between QR and the first peak in S(Q)?

Dietrich et al argued that the number of atomic nearest neighbors is unchanged with temperature and
pressure[10]. They obtained QR from inelastic neutron scattering measurements and found that it varies
with the cube root of the liquid density, QR = Aρ1/3. Different values ofA correspond to different numbers
of nearest neighbors: for simple cubic packing with six nearest neighbors, A = 3.34 cm g−1/3 Å−1; for bcc
packing with eight nearest neighbors, A = 3.65 cm g−1/3 Å−1; and for hcp packing with twelve nearest
neighbors, A = 3.75 cm g−1/3 Å−1.

Do your results agree with Dietrich et al? Do you find that the roton wavevector obeys QR =
Aρ1/3? If so, what value of A do you obtain?

What quantity does a neutron diffractometer measure? Is it only elastic scattering? Hint: explain
the relationship between S(Q) and S(Q,E = 0).
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Figure 7: Incident flux as a function of neutorn wavelength λ. Red and blue points correspond to measure-
ments using different chopper slot widths.

A Instrument Characteristics

The white beam from the cold neutron source is cleaned of high energy neutron and gamma ray contamina-
tion using an “optical filter”. This is basically a bent guide which ensures that there is no line of sight from
the source to points beyond the local shutter. A cooled graphite filter removes short wavelength (≈ 0.5 Å)
neutrons that remain in the beam, permitting measurements at wavelengths down to roughly 1.5 Å.

A clean, pulsed, monochromatic neutron beam is produced using seven disk choppers. Chopper speeds
may be varied from 1200 to 20000 rpm. The pulsing and monochromating choppers have three slots of
different widths. In principle this permits three choices of intensity and resolution at a given wavelength and
master chopper speed. The measured intensity at the sample is reproduced in Figure 7.

Why are there dips in the measured flux at wavelengths near 3.335 Å and 6.67 Å?

The resolution of the instrument is approximately triangular and essentially independent of beam height
(up to 10 cm) but depends slightly on the width of the beam. Hence samples should ideally be tall and
thin rather than short and fat. The measured elastic energy resolution, for the same choices of chopper slot
widths as in the intensity plot above, is shown in the Figure 8. Lines represent fits to the measurements.

An oscillating radial collimator, inside radius 200 mm, outside radius 300 mm, blade separation 2◦, is
used to reduce the scattering from sample environment structures.

Can you explain how the radial collimator works, and why it is oscillated?

There are 913 six-atmosphere 3He detectors covering an essentially continuous solid angle of ≈ 0.65
steradians and arranged in three banks:
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Figure 8: Elastic energy resolution of DCS as a function of incident wavelength λ.

• Middle bank detector scattering angles range from −30◦ to −5◦ and from +5◦ to +140◦

• Upper and lower bank angles range from −30◦ to −10◦ and from +10◦ to +140◦.

The flight distance from sample to detectors is 4010 mm. The flight chamber is purged with argon.

Why is the flight chamber purged with argon?
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