musitumanmeriliskir

Jack Weast

Sr. Principal Engineer, Intel VP Automated Vehicle Standards, Mobileye

FUUMAN DRIVING TODAY

The balance between safety \& efficiency

What do humans do?

Expletritaficirules

Establish priority of road agent interests to avoid collisions

- Come to complete stop at red lights
- Don't cross a double-yellow line
- Obey posted speed limits
- Yield to other road users when posted
Set limits on vehicle operation

IIPIILITRULESOF THE ROAD

A general set of principles applied by the driver

- Keep a safe distance from the car in front of you
- Drive cautiously under limited visibility
- Don't drive slow in the fast lane
- Don't cut off other drivers

Flexible, culturally dependent

ITPIIITI RULESOF THE ROAD

Essential for Navigating Complex Scenarios

 $\cdot a() ; c=p(b) ;+{ }^{1} \mid$ \{ Tatum fustic $a \equiv$ "I, $P(b) ;$ for $(b=a[b]$ e . b

How do we formalize these Cen concepts so AVs can safely and efficiently navigate? $(/+(?=) / g, " n), a=a \cdot \operatorname{split}(" \mathrm{n}), b$ b. push (a[c]); \} ~ r e t u r n ~ b ; ~ \ $~ f u n c t i o n ~ }$ $\mathrm{q}(\mathrm{a})$, $\mathrm{a}=\mathrm{a} \cdot \mathrm{replace}(/+(?=) / \mathrm{g}, \mathrm{u}), \mathrm{a}$
$0=r(a[c], b) \& b . \operatorname{push}(a[c]) ;\}$ 18 Burn $c ;\}$ function $k()\{$ var $a=0$,

RESPDIMBBIITYSEHISTIVESAFETY

An open, transparent, technology neutral safety model for autonomous driving

On a Formal Model of Safe and Scalable Self-driving Cars

Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua

Mobileye, 2017

Abstract

In recent years, car makers and tech companies have been racing towards self driving cars. It seems that the main parameter in this race is who will have the first car on the road. The goal of this paper is to add to the equation two additional crucial parameters. The first is standardization of safety assurance - what are the minimal requirements that every self-driving car must satisfy, and how can we verify these requirements. The second parameter is scalability - engineering solutions that lead to unleashed costs will not scale to millions of cars, which will push interest in this field into a niche academic corner, and drive the entire field into a "winter of autonomous driving". In the first part of the paper we propose a white-box, interpretable, mathematical model for safety assurance, which we call Responsibility-Sensitive Safety (RSS). In the second part we describe a design of a system that adheres to our safety assurance requirements and is scalable to millions of cars.

FOMMALIZE

Human notions of safe driving

IDENTIFY

A Dangerous Situation

EXECUTE

The Appropriate Response

Keep a safe distance longitudinally
\& laterally

Safe distance compromised in both directions

Brake to restore safe longitudinal distance

RULESOFRRS

Rules to verify AV safety \& performance

1) Do not hit someone from behind.
2. Do not cut-in recklessly

3 Right-of-Way is given, not taken
4 Be careful in areas with limited visibility
5. If you can avoid a crash without causing another, you must

WHAT:DEEERMINESSAEDISTANEE?

If theivsildeteranstarngererdttratocakes, how inastidsp acdaclfollwacingoparaiddtitting it?

WHAT:DEIERMINESSAFDISTANGE?

$$
\boldsymbol{d}_{\min }=\left[v_{r} \rho+\frac{1}{2} \alpha_{\max } \rho^{2}+\frac{\left(v_{r}+\rho \alpha_{\max }\right)^{2}}{2 \boldsymbol{\beta}_{\min }}-\frac{v_{f}^{2}}{2 \boldsymbol{\beta}_{\max }}\right]_{+}
$$

DEFINEDANGEROUSSSTUUTION

Time t is dangerous for cars c_{1}, c_{2} if both longitudinal and lateral distances between them are non safe

t istisissefeous

DERNEAPROPERRESPPOVISE

Though the silver car initiated the dangerous situation, the blue car still ought to brake to return to a safe distance

LIMIEDVIISBLITY ROOCCLUDEDAREAS

When sensing capabilities are physically limited, We must exhibit caution

Does it work?

What's the catch?

What's the catch?

$$
\boldsymbol{d}_{\min }=\left[v_{r} \rho+\frac{1}{2} \alpha_{\max } \rho^{2}+\frac{\left(v_{r}+\rho \alpha_{\max }\right)^{2}}{2 \beta_{\min }}-\frac{v_{f}^{2}}{2 \beta_{\max }}\right]_{+}
$$

wintrswe

Values for braking, acceleration, reaction time are not static, but dynamic based on the situation.
How do we determine the reasonable expectations
of other agents?

EXPECTATIONW:BR:BRNIIGCPABBLITY

Different cars have different braking.
Different braking means different stopping distances

NOTALL CARFAREE CREATED EQUAL

What should we assume for $\beta_{\max }$ as a result?

2018 Porsche 911 GT3¹
2018 Corvette C6 Z06¹

- max braking force ($\mathrm{m} / \mathrm{s}^{2}$)

NOML BARAREREAEDEOUL

A Porsche stops 13 m sooner than a Civic

2018 Porsche 911 GT3¹
2018 Corvette C6 Z06¹
2016 Mazda CX5²
2016 Jeep Cherokee²
2015 Ford F150 ${ }^{3}$
1996 Honda Civic ${ }^{4}$

- stopping distance (m)

Sometimes breaking a traffic rule is socially acceptable, and can be the safer choice

SHRETH: WN

We typically forgive drivers that violate the rules in this context Will we grant autonomous vehicles the same forgiveness?

《

8*)

ExPECTATIOX \#: OMUEETSITNHEROAD

When tire treads, debris, and other things can * appear in the blink of an eye, what do we do?

WHEN WEHAVETHESPAEE

Our proper response can be an evasive maneuver What if we do not have the space?

IFWEDOWT, WE MAY HANVE NOCHOCEE

So the question remains:
How should AVs respond to these scenarios?

ExPECGATIONH:P:PESSTRIANIS

How the traits of the road dictate our assumptions about pedestrian behavior

LIAHBORHOODS WITH SIDEWALKS

RSS:A FONYAL MODEL FORAVSAFEET

A mathematical model that formalizes common notions of safe driving
RSS can help answer important questions for AVs:
What does it mean to drive safely?
What constitutes a dangerous situation?
What is the proper response to a dangerous situation?
What does it mean to be reasonably cautious?
What assumptions can the AV make about the behavior of others?

Announcing...

C-minsilimivi

Standalone Open Source Library currently covering a subset of RSS rules

1 Longitudinal scenarios

g

- Same and opposite direction

2) Lateral scenarios \& Multilane roads
3) Intersection handling

https://intel.github.io/ad-rss-lib/

C+ R RSSIBRARYOVIENIEW

AV SAFETY:AN ISSUELARGERTHAN ONECOMPANY

What are we doing

INDUSTRT

Engaging with customers, competitors and consortia to have an open dialogue on AV safety

ACADENIA

RSS Research Centers at Universities in USA, PRC and EU

GOVERNMENT/NGO'S

Understanding government
expectations on transparency and verification of AV safety

RELLWORLD

Deploying RSS in our on AV Fleet in very challenging environments

2018 Rand Report:
 Measuring Automated Vehicle Safety

Contacts:
Marjory Blumenthal: marjory@rand.org

Laura Fraade-Blanar:
lblanar@rand.org
James Anderson: janderso@rand.org

https://www.rand.org/pubs/research_reports/RR2662.html

A Safety Framework

[^0]${ }^{+}$This column assumed that, in the closed course and public road settings, a safety driver is available (either in the vehicle or remotely). If a safety driver is not present, this entire column would be N/A.

DRIVESAFELY

Jack Weast

Sr. Principal Engineer, Intel
VP Automated Vehicle Standards, Mobileye jack.weast@intel.com

[^0]: - Public not at risk
 - Public at risk
 - Measure of public safety
 (*) Events that generate measures are likely informative as case-studies rather than feeding into exposure-based rates (e.g., infraction rate per 100,000 vehicle miles traveled).Measure does not reflect public safety
 N/A Not available

