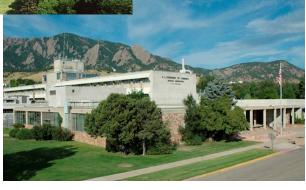
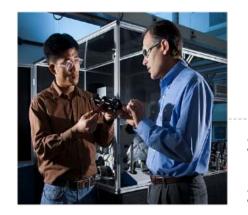
Consensus Safety Measurement Methodologies for ADS-Equipped Vehicles

June 25-26, 2019

Chris Greer chris.greer@nist.gov

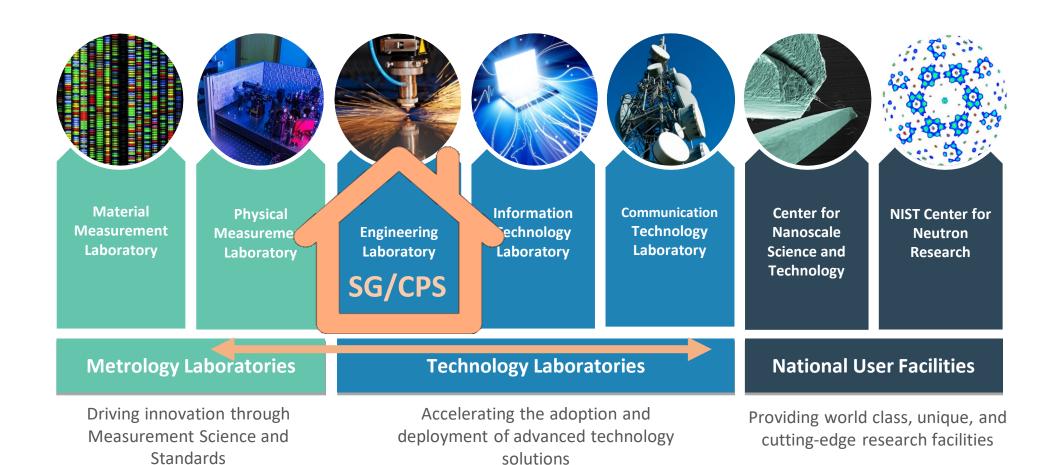



- Article I, Section 8: The Congress shall have the power to... fix the standard of weights and measures
- National Bureau of Standards established by Congress in 1901
- Renamed in the NIST Act of 1988

Gaithersburg, MD

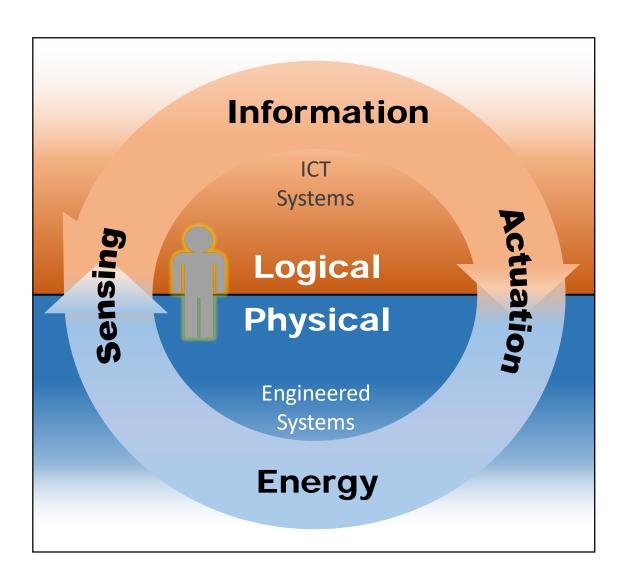
Boulder, CO

People Employees 4 & Associates


3400+ Federal Employees (1800+ technical staff, 1000+ PhDs) 3800+ NIST Associates and Facilities Users

NIST Mission

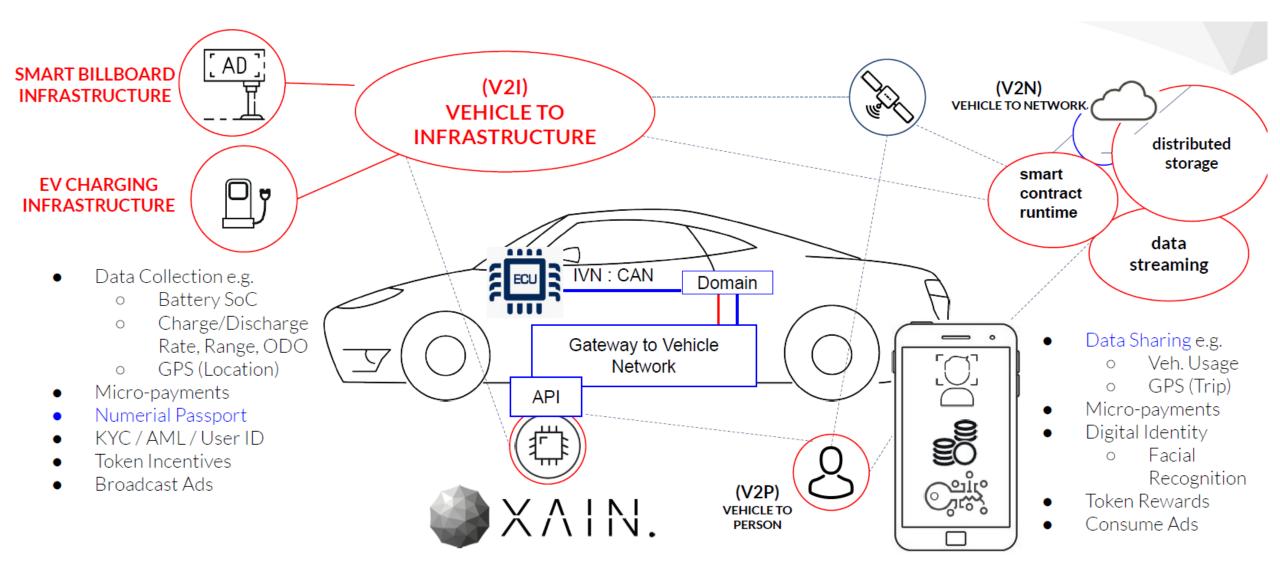
To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life

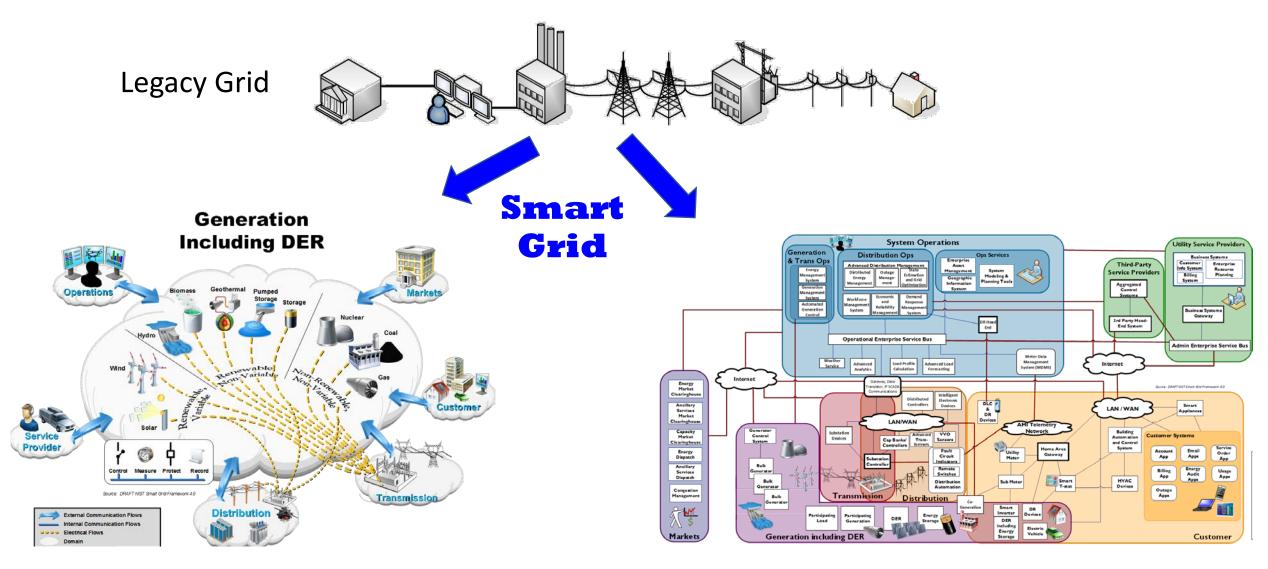

- Measurement Science Creating the experimental and theoretical tools methods, metrics, instruments, and data that enable innovation
- Standards Disseminating physical standards, providing technical expertise to documentary standards that enable interoperability and
- **Technology** Driving innovation through knowledge dissemination and public-private partnerships to bridge gap between discovery & marketplace

NIST Laboratory Programs

Cyber-Physical Systems and Internet of Things

Cyber-Physical Systems (CPS) and **Internet of Things** (IoT) comprise interacting digital, analog, physical, and human components engineered for function through integrated logic and physics.


Smart Grid

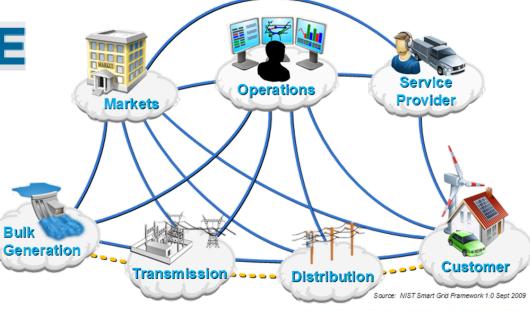


Smart Transportation

Enabling Innovation

Electric Grid Transformation

Smart Grid Coordination



State Regulators NARUC

NIST Special Publication 1108

NIST Framework and Roadmap for **Smart Grid Interoperability** Standards. Release 1.0

NIST Special Publication 1108R2

NIST Framework and Roadmap for **Smart Grid Interoperability** Standards, Release 2.0

NIST Special Publication 1108r3

NIST Framework and Roadmap for **Smart Grid Interoperability** Standards, Release 3.0

NISTIR 7628 Revision 1

Guidelines for Smart Grid Cybersecurity

Volume 1 - Smart Grid Cybersecurity Strategy, Architecture, and High-Level Requirements

> The Smart Grid Interoperability Panel -Smart Grid Cybersecurity Committee

5236

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 5, SEPTEMBER 2018

MMSE-Based Analytical Estimator for Uncertain Power System With Limited Number of Measurements

Hasnae Bilil[®], Member, IEEE and Hamid Gharavi[®], Life Fellow, IEEE

Abstract—The exp newable distributed

generation power sy huge impact on the i Therefore, the stoch

state estimation of p a major challenge f we propose a new s

squared estimator" power system paran imum mean-square

SPF, which involves t parameters. The ma

ability to instantane

system. Moreover, t mean value of the est

term that takes into a is shown that the pr

timation with a limi convergence. MSE h bus models for differ

have been compared scented Kalman filter The numerical resu

under a limited num

may lead to divergen

squared error, Gauss

Index Terms-Dy

IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 3, MAY 2019

A Fast Recursive Algorithm for Spectrum Tracking in Power Grid Systems

B. Hu¹⁰, Senior Member, IEEE, and H. Gharavi, Life Fellow, IEEE

NIST Special Publication 1900-750

The Transactive Energy Abstract **Component Model**

Martin Burns Eugene Song David Holmberg

NIST Special Publication 1900-801

NIST Smart Grid Interoperability Test Tools

Dhananjay Anand Kevin G. Brady Jr. Eugene Song Cuong Nguyen Kang Lee Gerald FitzPatrick Allen Goldstein Ya-Shian Li-Baboud

THE INCREASI and an extensive bution system can Such distortions car tion in power syste

Abstract-A maj

measurement system

tracking of the ph

identify all harmoni

fast tracking algorit

voltage and current simulation results sh highly reliable estir

Index Terms-Pov

harmonic, sub-harm

PA	P	PAP Project	Standards Products
	0	Meter Upgradeability Standard	NEMA SG-AMI 1-2009: Requirements for Smart Meter Upgradeability
	1	Role of IP in Smart Grid	•IETF RFC6272: Internet Protocols for the Smart Grid
	3	Common Specification for Price and Product Definition	OASIS EMIX: Energy Market Information eXchange
-L	4	Common Schedule Communication Mechanism for Energy Transactions	OASIS WS-Calendar: Web Services Calendar
	5	Standard Meter Data Profiles	AEIC Metering Guidelines V2.1
	6	Translate ANSI C12.19 to and from a Common Semantic Model	White Paper: Mapping of ANSI C12.19 End Device Tables to UML model
	9	Standard DR and DER Signals	OpenADR 2.0 Profile A SEP 2.0
	10	Standard Energy Usage Information	◆NAESB REQ 18/WEQ 19: PAP10 Energy Usage Information
	11	Common Object Models for Electric	•SAE J1772: Electrical Connector between PEV and EVSE
		Transportation	◆SAE J2836/1-3: Use Cases for PEV Interactions
			•SAE J2847/1-3: Communications for PEV Interactions
	13	Harmonization of IEEE C37.118 with IEC 61850	•IEEE C37.238-2011: IEEE Standard Profile for Use of IEEE 1588 Precision Time
		and Precision Time Synchronization	Protocol
			•IEC 61850-90-5: Use of IEC 61850 to transmit synchrophasor information per IEEE
			C37.118
	14	Transmission & Distribution Power Systems	• IEEE C37.239 COMFEDE
		Model Mapping	Relay Settings Guideline
	15	Harmonize Power Line Carrier Standards for	• NISTIR 7862
_		Appliance Communications in the Home	●IEEE 1901-2010 ●ITU-T G.9960
			●ITU-T G.9960 ●ITU-T G.9972
			●ITU-T G.9961
			●ITU-T G.9955
			●ITU-T G.9956
	18	SEP 1.x to SEP 2 Transition and Coexistence	•SGIP 2011-0008_1: SEP 1.x to SEP 2.0 Transition and Coexistence White Paper
	19	Wholesale Demand Response Communication	•OpenADR 2.0 Profile B
		Protocol	Proposed Wholesale Demand Response Communication Protocol (WDRCP)
			extensions for the IEC Common Information Model

Framework Process

- Follow the community lead
- Leverage existing standards, guidelines, and best practices
- Convene in open, transparent processes
- Support technology-neutral, business model-neutral approaches
- Ensure the application of sound technical foundations
- Contribute to voluntary, open, consensus-based standards

Next Steps

NIST Special Publication 1500-201

Framework for Cyber-Physical
Systems:
Volume 1, Overview

Version 1.0

Cyber-Physical Systems Public Working Group Smart Grid and Cyber-Physical Systems Program Office Engineering Laboratory

> This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-201

> > National Institute of Standards and Technology U.S. Department of Commerce

NIST Special Publication 1108r3

NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0

Smart Grid and Cyber-Physical Systems Program Office and Energy and Environment Division, Engineering Laboratory

in collaboration with
Quantum Measurement Division,
Semiconductor and Dimensional Metrology Division,
and Electromagnetics Division,
Physical Measurement Laboratory

Advanced Network Technologies Division and Computer Security Division, Information Technology Laboratory

http://dx.doi.org/10.6028/NIST.SP.1108r3

A Consensus Framework for Smart City Architectures

IES-City Framework

(Internet-of-Things-Enabled Smart City Framework)

Release v1.0 20180930

This IES-City Framework is the product of an open, international public working group seeking to reduce the high cost of application integration through technical analyses of existing smart city applications and arrihtectures. This Framework documents the findings of the authors and provides valuable tools that are based on the findings and that can lower barriers to an expanded smart city marketplace.

Currently, three primary barriers exist that inhibit widespread deployment of effective, powerful smart city solutions:

- Inadequate information and knowledge transfer: Most smart city deployments are based on custom systems that cannot exchange information with other cities, and therefore, are neither extensible nor cost-effective.
- Diverse standards: Current architectural standardization efforts have not yet converged. This creates
 uncertainty among stakeholders [1]. There is a lack of consensus on both a common language/taxonomy and smart city architectural principles [2]. The result is that the many groups with
 smart city interests are likely to generate standards and practices that are divergent, perhaps even
 contradictory, which would not optimally serve the global smart city community.
- Poor scalability. A third barrier is the insufficient interoperability and scalability of underlying Internet of Things (IoT), and Cyber-Physical Systems (CPS) technologies that provide the foundation for many smart cities applications [3].

Additional barriers include lack of resources, lack of clear principles for prioritization, and limited access to the necessary technical expertise and experience.

To lower these barriers, NIST and its partners, below, convened this international public working group to compare and distill a consensus language, taxonomy, and framework of common architectural features to enable smart city solutions that meet the needs of modern communities.

