NR Data Analysis

Frank Heinrich

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Data Analysis

Goal

- 1. Retrieve Structural Information from collected <u>specular</u> reflectivity curves (simultaneously).
- 2. Off-specular data requires separate analysis.
- 3. Not unique due to loss of phase information during measurement process.
- 4. Inversion of Reflectivity possible only in special cases.
- 5. Artificial Intelligence Methods are relatively new.
- 6. Modeling is most common.

Result

- 1. 1D nSLD or structural profiles.
- 2. Uncertainties
- 3. 3D structures require complimentary information

Modeling of Specular NR

Experimental data

- 1. Sets of related data that will be simultaneously analyzed (contrasts, conditions, polarizations).
- 2. Experimental Design based on experience or computation.

Models

- 1. Model: Parameterized representation of real space.
- 2. Choice of model: Slab model, functional layer model, compositionspace model, integrative models.
- 3. Model parameter boundaries (fit limits, prior information)

Rodriguez-Loureiro, I. et al. Soft Matter 13, 5767-5777 (2017).

Optimizer

- 1. Yields best-fit or distributions of model parameters with uncertainties.
- 2. Global or local optimizers.
- 3. Software: Webfit (B. Maranville), Refl1D (NCNR Paul Kienzle), Motofit, GenX.

Slab Model Web Fitting

- Simple slab model and local optimizer allow for quick assessment of the data during the experiment.
- 3. Allows to export fitting script for Refl1D software.

ncnr.nist.gov/ instruments/magik/ calculators/reflectivitycalculator.html (Dr. Brian Maranville)

Models

Slab Models

- Slabs (layers, boxes) of thickness d and constant SLD, ρ.
- 2. Input for matrix or Parratt's formalism to calculate reflectivity.
- 3. Constraints between slabs possible
- 4. Basis for more complex models micro-slicing.

Ankner, J. F. & Majkrzak, C. F. Subsurface profile refinement for neutron specular reflectivity. SPIE Proceedings **1738**, 260–269 (1992).

Functional Layer Models

- A canvas of micro-slices to draw models in containing any functional form, including free-form.
- 2. Modeling of SLD or volume profiles.
- 3. Constraints on components. Overlapping components.

Rodriguez-Loureiro, I. et al. Soft Matter 13, 5767-5777 (2017).

Composition-space models 1. Describe the spatial distribution of molecular groups rather than profiles of scattering length

densities.

Parameter Optimizers

Optimizer

- 1. Local optimizers (e.g., steepest descent) find local minima close to starting parameter values. Uncertainties are also from this local environment.
- 2. Global optimizers are able to find global fit minima in many cases.
- 3. Often yield a probability distribution (posterior PDF) for confidence limits, parameter correlations, and model optimization.

Refl1D optimizers via Bumps

- 1. Levenberg-Marquardt
- 2. Nelder-Mead Simplex
- 3. DREAM
- 4. Differential Evolution
- 5. Quasi-Newton BFGS
- 6. Random Lines (experimental)
- 7. Particle Swarm (experimental)
- 8. Parallel Tempering (experimental)

Parameter distributions and correlations obtained with a MC simulation technique.

Problems

Problems

- 1. Non-unique solutions (contrasts, complimentary data, constraints).
- 2. In-plane inhomogeneities on a length scale at or larger than the coherence length of the neutron (avoid, no cure).
- 3. Unsuccessful optimizer.
- 4. Over or under-parameterization

in-plane inhomogeneities

non-unique solutions / overparameterization

Model Selection

Model selection

- 1. Empirical Model optimization from inspecting parameter uncertainties and correlations.
- 2. Model type and detail optimized using the BIC.
- 3. Optimizing models within a broader experimental optimization using information theory.

DeCaluwe, S. C., Kienzle, P. A., Bhargava, P., Baker, A. M. & Dura, J. A. Soft Matter 10, 5763-5776 (2014).

Refl1D

0.0

★ ★ → x:21.4 y:0.12 **+**Q ≒ ₿

Refl1D

- 1. Python, script-based.
- 2. Flexible model builder
- 3. Uses bumps as optimizer (library of local and global optimizers).
- 4. Parallelized (HPC deployment, GPU support)

- mono Freeform Monotonic Spline
- names Public API

magneusm example

Sample Representation

o dist - Non-uniform samples

flayer - Functional layers

abeles - Pure python reflectivity calculator

anstodata - Reader for ANSTO data format
 cheby - Freeform - Chebyshev model

errors - Plot sample profile uncertainty

experiment - Reflectivity fitness function

freeform - Freeform - Parametric B-Spline
 fresnel - Pure python Fresnel reflectivity calculator

• fitplugin - Bumps plugin definition for reflectivity models

Using Refl1D
Parameters
Data Representation

Materials

Fitting
 Reference

Experiment

User's Guide

- ncnrdata NCNR Data
- polymer Polymer models
- probe Instrument probe
- o profile Model profile
- reflectivity Reflectivity
- refimodule Low level reflectivity calculations
- resolution Resolution
- snsdata SNS Data
- staj Staj File
- stajconvert Staj File Converter
- stitch Overlapping reflectivity curve stitching
- support Environment support
- util Miscellaneous functions

https://refl1d.readthedocs.io/en/latest/ (Dr. Paul Kienzle)

Tools

- Refl1D (installation and manual)
- 2. Online SLD calculator
- 3. Web Reflectivity Calculators.

An official website of the United States government Here's how you know 🗸			
			Search NIST Q
	NIST CENTER FOR	TNEU	
	Logon to your NCNR-IMS account		Reflectometry Software
	Obtaining Beam Time		
	Arrange a visit to NCNR	+	f in 🛩 🖾
	Planning Your Experiment	+	
	Live Data		Refl1D
	About NCNR	+	
	Neutron Instruments	+	for fitting and uncertainty analysis of neutron and X-ray reflectivity data
	Schedules		Installation from the Python Package Index
	Spin Filters		 Install Python 3 (version 3.5 or greater, such as from Python.orgd or Anacondad)
	Sample Environment		 open a terminal window (plain terminal on mac, Anaconda Prompt on Windows) and issue these commands:
	Sample Prep Labs		 pip install numpy scipy matplotlib wxpython periodictable
	Data Reduction &	-	 pip install refl1d
	Analysis		Then issuing the command "refl1d" from the command line will start the command-line client, and "refl1dedit" will start an
	Reflectometry Software		interactive fitting session. "pip installupgrade refl1d" will update to the latest version, any time.
	SANS Software		Mac OS X notes
	Publishing Your Results	+	If you install Python 3 from Python.org you can simply replace "pip" with "pip3" in the install instructions above, and it will just

https://www.nist.gov/ncnr/data-reduction-analysis/reflectometry-software (Paul Kienzle, Brian Maranville)

Integrative Modeling

Integrative Modeling

- Integrative modeling in biological NR retrieves the missing 2 dimensions and allow for structural insights beyond the resolution limit of the technique.
- 2. This is achieved by integrating external, complimentary information such as high-resolution structures of molecules in the NR data modeling.

Heinrich, F. & Lösche, M. Zooming in on disordered systems: Neutron reflection studies of proteins associated with fluid membranes. Biochimica et Biophysica Acta (BBA)– Biomembranes **1838**, 2341–2349 (2014).

Composition-space model using an NMR structure

Most likely orientation of the HIV I - matrix protein determined from this analysis

Orientation probability of the NMR structure at the membrane restraint by the NR data

Restrained MD Simulations

Restrained MD simulations

- 1. Free MD simulations and NR data only occasionally agree with each other.
- 2. Experimental data can put restraints on MD simulation using a biasing potential, leading to a reduction in conformational space sampled by the simulation and typically faster equilibration.
- 3. Often, the restraint MD simulation poses a compromise between independent predictions of the two techniques.

Treece, B. W., Heinrich, F., Ramanathan, A. & Lösche, M. Steering Molecular Dynamics Simulations of Membrane-Associated Proteins with Neutron Reflection Results. J Chem Theory Comput **16**, 3408-3419 (2020).

obtaining a potential from a free-form spline fit to a protein (in this Figure: HIV I - matrix)

restrained (left) vs. free (right) MD simulation of HIV I - Nef

Deep Learning

Towards Reflectivity profile inversion

through Artificial Neural Networks.

Arxiv (2020).

Greco, A. et al. Fast fitting of reflectivity data of growing thin films using neural networks. J Appl Crystallogr **52**, 1342-1347 (2019).

Phase-sensitive NR

1. Inversion of Reflectivity possible under certain circumstances.

- 2. Requires multiple measurements of the same sample with different reference structures.
- 3. Model fitting has been shown to be equivalent. (Majkrzak / Berk)

Inhomogeneous distribution of acceptors and donors in organic photovoltaics.

Kirby, B.J. et al. Current Opinion in Colloid & Interface Science, 17:.44 (2012)

Off-specular NR

 $\begin{array}{c} 0.023 \\ 0.020 \\ 0.015 \\ 0.010 \\ 0.005 \\ 0.005 \\ 0.010 \\ 0.005 \\ 0.010 \\ 0.015 \\ 0.015 \\ 0.020 \\ 0.025 \\$

Jablin, M. S. et al. In-plane correlations in a polymer-supported lipid membrane measured by off-specular neutron scattering. Physical Review Letters 106, 138101 (2011).

https:// www.ncnr.nist.go v/instruments/ magik/ calculators/ offspec_planner. html

- (Periodic) in-plane structures cause off-specular scattering.
 Analysis requires a
- different theory than for specular reflectivity
- 3. Brian Maranville.

Experimental Design

Experimental Design in Neutron Reflectometry

- 1. Optimal measurement and data modeling strategies can be found.
- 2. Example variables: Counting time, Q-range, SLD engineering, number and type of subsequent measurements in a series (i.e., of bulk solvent contrasts), type of substrate ...

Information gain as a function of counting time and maximum momentum

Treece, B. W. et al. Optimization of reflectometry experiments using information theory. Journal of Applied Crystallography 52, 47-59 (2019).

Experimental Design

Experimental Design in Neutron Reflectometry

- 1. Optimizing the experimental design is equivalent to maximizing the information content of the measurement.
- 2. Calculating the information content of NR requires to think about the entire measurement process in terms of information processing and transmission, while relying on Bayesian statistics.

The information gain from a measurement can be quantified as the mutual information between the prior and posterior parameter distributions, which equals their difference in entropy:

I(heta;Y)=H(heta)-H(heta|Y)

The entropy is being calculated as a Shannon Entropy:

$$H(X) = -\sum_{x\in X} p(x)\log p(x)$$

Automated Measurements

The future of NR

 A combination of information theory, Bayesian statistics, and machine learning can be used to implement an autonomous measurement system that self-optimizes for maximum information gain.

