

Understanding Behavior and Improving Reliability in Complex Information Systems

DARPA MRC Pl Meeting

Kevin Mills NIST May 9, 2013

Joint work with a long list of collaborators, including statistician *Jim Filliben*, computer scientist *Chris Dabrowski*, visualization expert *Sandy Ressler*, data mining expert *Dong-Yeon Cho*, simulation expert *Jim Henriksen*, electrical engineer *Jian Yuan* and mathematicians *Fern Hunt & Dan Genin*, as well as NSF SURF students *Edward Schwartz* (incipient PhD from CMU), *Andrea Haines* and *Brittany Devine*.

Background: Information Systems, increasingly central to the nation's economic well-being and security, are: large, distributed, continuously evolving, unpredictable, fragile and interdependent – in a word, Complex

Motivatio

Problem I: How can we predict the effects on macroscopic behavior and user experience when new or revised components are injected into complex information systems?

Problem II: How can we identify lowprobability combinations of conditions in complex information systems that will drive macroscopic behavior into extremely costly failure regimes?

"The number of websites that would now break if Amazon were to go down, and the growing pervasiveness of Amazon behind the scenes, is really quite impressive." Craig Labovitz, DeepField, quoted in *WIRED ENTERPRISE*. "It is now common knowledge that BGP routing policies can interact to produce unexpected routing anomalies such as protocol oscillation. We introduce a new class of anomalies, where routing is *wedged* into a local optimum that is very difficult to change." Tim Griffin, Cambridge University

Amazon EC2 Outage Explained and Lessons Learned

EC2 OUTAGE REACTIONS SHOWCASE WIDESPREAD IGNORANCE REGARDING THE CLOUD

Rackspace outage was third in two days

SalesForce outages show SaaS customers dependence on providers' DR plans

Google Talk, Twitter, Azure Outages: Bad Cloud Day

How did Amazon have a cloud service outage that was caused by generator failure?

Salesforce.com hit with second major outage in two weeks

Microsoft's Azure Cloud Suffers

Serious Outage

Storms, leap second trigger weekend of outages

AWS outages, bugs and bottlenecks explained by

Amazon

Never-before-seen software bug caused flood of requests creating a massive backlog in the system

What's happened to the

cloud? Are major cloud outages in recent times denting confidence?

(Real) Storm Crushes Amazon Cloud, Knocks out Netflix, Pinterest, Instagram

According to the International

Working Group on Cloud Computing Resiliency (IWGCR), the total downtime of 13 well-known cloud services since 2007 amounts to 568 hours, which has an economic impact of around \$71.7 million dollars.

Why is it difficult to understand & predict behavior in complex information systems?

Reason #2: Emergent behaviors are difficult to predict!!

For example, deploying new client software with a reasonable approach to mitigate domain-name spoofing attacks in a grid system resulted in worse performance than ignoring the attacks, because mitigating the attacks shifted the global schedule of job executions. Why is it difficult to understand & predict behavior in complex information systems?

Reason #1: System state space is immense!!

For example, the NIST *Koala* simulator of IaaS Clouds has about n = 130 parameters with average k = 6 values each, which leads to a model **parameter space** of ~**10¹⁰¹** (note that the visible universe has ~10⁸⁰ atoms) and the *Koala* response space ranges from m = 8 to m = 200, depending on the specific responses chosen for analysis (typically $m \approx 45$).

Why is it difficult to understand & predict behavior in complex information systems?

Reason #3: Highly improbable events are more probable than we expect!!

Gaussian and Poissonian assumptions do not hold in complex systems. Instead, the probability landscape is better represented by heavy-tailed distributions, which means that highly improbably events occur more frequently than we assume. Such improbable events often lead to very expensive system-wide performance degradation or collapse.

How can we understand the influence of distributed control algorithms on global system behavior and user experience?

Past Research 2006-2011

- Mills, Filliben, Cho, Schwartz and Genin, Study of Proposed Internet Congestion Control Mechanisms, NIST SP 500-282 (2010).
- Mills and Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", Journal of NIST Research 116-5, 771-783 (2011).
- NTERNET Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using only 20 Parameters", Proceedings of the Winter Simulation Conference (2010).
 - Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic **Dynamics in Large Distributed Systems**", Proceedings of ASME (2011).
 - Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", Proceedings of the 4th International Cloud Computing Conference, IEEE (2011).
 - Mills, Filliben and Dabrowski, "Comparing VM-Placement **Algorithms for On-Demand Clouds**", *Proceedings of IEEE* CloudCom, 91-98 (2011).

http://www.nist.gov/itl/antd/Congestion Control Study.cfm

At an affordable cost

aaS CLOUDS

-

Response Reduction Techniques

6

We identified an 8-dimensional response space within the 40 responses

Compute correlation coefficient (r) for all response pairs(9 dimensions)(9		Response	SA1-small	SA1-large	SA2-small	SA2-large
Cloud-wide (r) for all response pairs(r) for all response pairsExamine frequency distribution for all r to determine threshold for correlation pairs to retain; r > 0.65, hereCloud-wide usageV1, v2, v3, v5, v2, v2, v2, v2, v3, v5, v2, v2, v2, v3, v5, v2, v4, v4, v4, v4, v4, v4, v4, v4, v4, v4	Compute correlation coefficient	Dimension	(9 dimensions)	(8 dimensions)	(10 dimensions)	(9 dimensions)
Cloud-wide threshold for correlation pairs to retair; $ r > 0.65$, herey10, y11, y12, y10, y11, y12, y13, y14, y15y10, y11, y12, y12, y13, y14, y15y10, y11, y12, y12, y12, y13, y14, y15y11, y12, y12, y12, y13, y14, y15y11, y12, y12, y12, y12, y13, y14, y15y11, y12, y12, y12, y13, y14, y15y12, y12, y14, y15, y20, y21, y24, y15y20, y21, y24, y15y20, y21, y24, y14, y15y20, y21, y24, y15y20, y21, y24, y15y20, y21, y24, y14, y15y20, y21, y24, y24y24, y24y24, y24y24, y24y24y24y24y24y24y24 <td>(r) for all response pairs Examine frequency distribution</td> <td>Cloud-wide Demand/Supply Ratio</td> <td>y1, y2, y3, y5, y6, y8, y9, y10, y13, y23, y24, y25, y29, y30, y32, y34, y36, y38</td> <td>y1, y2, y3, y5, y6, y7, y8, y9, y10, y13, y23, y34, y25, y29, y30, y32, y33, y34, y36, y38</td> <td>y1, <mark>y2</mark>, y3, y5, y6, y8, y9, y10, y11, y13, y14, y15, y23, y24, y25, y38</td> <td>y1, y2, y3, y5, y6, y8, y9, y23, y24, y25, y38</td>	(r) for all response pairs Examine frequency distribution	Cloud-wide Demand/Supply Ratio	y1, y2, y3 , y5, y6, y8, y9, y10, y13, y23, y24, y25, y29, y30, y32, y34, y36, y38	y1, y2, y3 , y5, y6, y7, y8, y9, y10, y13, y23, y34, y25, y29, y30, y32, y33, y34, y36, y38	y1, <mark>y2</mark> , y3, y5, y6, y8, y9, y10, y11, y13, y14, y15, y23, y24, y25, y38	y1, y2, y3, y5, y6, y8, y9, y23 , y24, y25, y38
to retain; $ r > 0.65$, hereVariance in Create clusters of mutually correlated pairs; each cluster represents one dimension<	for all $ r $ to determine threshold for correlation pairs	Cloud-wide Resource Usage	y10, y11, y12, y13, y14, <mark>y15</mark>	y10, y11, y12, y13, y14, <mark>y15</mark>	y10 , y11, y12, y13, y14, y15	y10 , y11, y12, y13, y14, y15
$\begin{array}{c c} \hline Create clusters of mutually correlated pairs; each cluster represents one dimension \\ \hline Select one response from each cluster to represent the dimension; we selected response with largest mean correlation that was not in another cluster* \\ \hline Cluster to cluster to cluster to represent the dimension; we selected response with largest mean correlation that was not in another cluster* \\ \hline Cluster to cluster to cluster to cluster to cluster to correlation that was not in another cluster to cluster to cluster to cluster to cluster to cluster to correlation that was not in another cluster to c$	to retain; $ r > 0.65$, here	Variance in	y16, y17, y18, y19,y20, y21,	y16, y17, y18, y19,y20, y21,	y16, y18, y19, y20, y21, y26,	y16, y17, y18,
represents one dimensionSelect one response from each cluster to represent the dimension; we selected response with largest mean correlation that was not in another cluster*Mix of VM y34, y35 (WS) y31 (MS)y31 (MS)y12, y14, y15, y30, y31 (MS)y14, y15, y30, y34, y35, y36y14, y15, y30, y34, y35, y36y34, y35, y36y44, y44, y35, y36y44, y44y44, y44y44, y44y44, y44y44, y37y29y46, y37y29y47, y37y22y76, y22y7, y23y7, y23y7, y24y7, y24y7, y24y7, y24y7, y24y7, y22y7, y22y7, y22y7, y23y7, y24y7, y24<	Create clusters of mutually correlated pairs: each cluster	Cluster Load	y26 , y27	y26 , y27	y17 (Mem. Util)	y 19 ,y20, y21, y26, y27
Select one response from each cluster to represent the dimension; we selected response with largest mean correlation that was not in another cluster*y31 (Ms)y34, y35, y36 y29, y37y34, y35, y36 y15, y36 (os) y29User Arrival Ratey4y4y4y4y4y29, y37y29, y37y29, y37y29User Arrival Ratey4y4y4y4y29, y37y29, y37y29User Arrival Ratey4y4y4y4y4y4y4y7, y22y7, y22y7, y22y22(node)y7, y22y28y28y28y28	represents one dimension	Mix of VM	y34, <mark>Y35</mark> (ws)	v31(ms)	y12, y14, y15, y30, y31, y33,	y14, y15, y30, y31, y33, y24, y25
cluster to represent the dimension; we selected response with largest mean correlation that was not in another cluster*Number of VMs y29, y37y37 y29, y37y29 y24y29 y24y29 y24y29 y24y29 y29Visrate WisrateV4y4y4y4y4y4y4y4Reallocation Ratey7, y22y7, y22y7, y22y7, y22y7, y22Variance in Choice of Clustery28y28y28y28	Select one response from each	Types	у31 (мs)		y34, y35, <mark>Y36</mark>	y15, y36 (DS)
dimension; we selected response with largest mean correlation that was not in another cluster*User Arrival Ratey4y4y4y4y4, y37Variance in Choice of ClusterV7, y22y7, y22y7 (cluster) y22 (node)y7, y22	cluster to represent the	Number of VMs	y29, y37	y37	y29, y37	y29
Reallocation correlation that was not in another cluster* Reallocation Rate y7, y22 y7, y22 y7(cluster) Variance in Choice of Choice of y28 y28 y28 y28	dimension; we selected	User Arrival Rate	y4	y4	y4	y4 , y37
another cluster* Variance in Choice of y28 y28 y28 y28 y28	response with largest mean correlation that was not in	Reallocation Rate	y7 , y22	ут, у22	y7 (cluster) y22 (node)	у7, <mark>У22</mark>
	another cluster*	Variance in Choice of Cluster	y28	y28	y28	y28

*Not possible for cloud-wide resource usage in SA2-small, so we selected response with highest mean correlation.

Sorted Residual Analyses to Reveal Causality

ample Results

May 9, 2013 DARPA MRC PI Meeting

6

How can we increase the reliability of complex information systems?

Ongoing Research 2011-

- Research Goals: (1) develop and evaluate design-time methods that system engineers can use to detect existence and causes of costly failure regimes prior to system deployment and (2) develop and evaluate runtime methods that system managers can use to detect onset of costly failure regimes in deployed systems, prior to collapse.
- Ongoing: investigating design-time methods
 - a. Markov Chain Modeling + Cut-Set Analysis + Perturbation Analysis (e.g., Dabrowski, Hunt and Morrison, "Improving the Efficiency of Markov Chain Analysis of Complex Distributed Systems", NIST IR 7744, 2010).
 - b. Anti-Optimization (AO) + Genetic Algorithm (GA) example to be presented in some depth

Planned: investigate run-time methods based on approaches that may provide early warning signals for critical transitions in large systems (e.g., Scheffer et al., "Early-warning signals for critical transitions", NATURE, 461, 53-59, 2009). National Institute of Standards and Technology Design-Time Example One National Institute Standards and Technology Design-Time Example One National Institute

Example Markov Chains + Cut-set Analysis + Perturbation Analysis

EXTRACT FINITE-STATE MACHINE (FSM) FROM SIMULATION MODEL OR SYSTEM

TREAT FSM AS GRAPH AND CONDUCT CUT-SET ANALYSIS

Standards and Technology Design

National Institute of

Example: Anti-Optimization + Genetic Algorithm MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Example Two NST

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Design

S

Schematic of Koala IaaS Cloud Computing Model

(2) SUPPLY LAYER

Virtual Machine (VM) Types Simulated in Koala

		Virtual Cores	Vir	tual Block Devices	# Virtual		
VM Туре	#	Speed (GHz)	#	Size (GB) of Each	Network Interfaces	Memory (GB)	Instruct. Arch.
M1 small	1	1.7	1	160	1	2	32-bit
M1 large	2	2	2	420	2	8	64-bit
M1 xlarge	4	2	4	420	2	16	64-bit
C1 medium	2	2.4	1	340	1	2	32-bit
C1 xlarge	8	2.4	4	420	2	8	64-bit
M2 xlarge	8	3	1	840	2	32	64-bit
M4 xlarge	8	3	2	850	2	64	64-bit

Four of 22 Physical Platform Types Simulated in Koala

Blatform	Physical	Cores	Momony	# Physical Disks by Size				# Notwork	Instruct
Туре	#	Speed (GHz)	(GB)	250 GB	500 GB	750 GB	1000 GB	Interfaces	Arch.
C8	2	2.4	32	0	3	0	0	1	64-bit
C14	4	3	64	0	4	0	3	2	64-bit
C18	8	3	128	0	0	4	3	4	64-bit
C22	16	3	256	0	0	0	7	4	64-bit

(1) DEMAND LAYER

Description of User Types Simulated in Koala

We created different classes of demand, such as processing users (PU), distributed simulation users (MS), peer-to-peer users (PS), Web service users (WS) and data search users (DS)

User		Max-Min	Max-Max	User		Max-Min	Max-Max
Туре	VM Type(s)	VMs	VMs	Туре	VM Type(s)	VMs	VMs
DI 14		10	100	PS1		3	10
FUI		10	100	PS2	C1 medium	10	50
PU3	M1 small	100	500	PS3		50	100
	WIT SINAN				M1 large		
PU5		500	1000	WS1	M2 xlarge	1	3
					C1 xlarge		
					M1 large		
PU2		10	100	WS2	M2 xlarge	3	9
					C1 xlarge		
	M1 large				M1 large		
PU4		100	500	WS3	M2 xlarge	9	12
					C1 xlarge		
PU6		500	1000	DS1		10	100
MS1	M1 vlarga	10	100	DS2	M4 xlarge	100	500
MS3	wit klarge	100	500	DS3		500	1000

(1) DEMAND LAYER - USER BEHAVIOR

Finite-State Machine of Simulated User Behavior in Koala

SYSTEM BEHAVIOR – ENCOMPASSING LAYERS (1) – (4) Snapshot of Simulated Cloud State from a *10-D Koala Animation*

(Heat Value for 6 Metrics for each of 10 Clusters x 100 Nodes/Cluster after 90 Hours) *Utilizations Loads*

15

e Example Two NIST

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Design

Summary of Koala Parameters to Search Over

Test Case – Can GA find VM Leakage due to message loss and lack of orphan control?

Failure scenario found manually by accident and described in C. Dabrowski and K. Mills, "<u>VM Leakage and Orphan Control in</u> <u>Open-Source Clouds</u>", *Proceedings of IEEE CloudCom 2011*, Nov. 29-Dec. 1, Athens, Greece, pp. 554-559.

INIOUCI		I			
Element	Behavior	Structure	Failure	Asymmetry	Total
User	28	2	0	4	34
Cloud Controller	21	4	0	5	30
Cluster Controllers	11	5	0	3	19
Nodes	6	0	14	0	20
Intra-Net/Inter-Net	4	11	9	2	26
Totals	70	22	23	14	129

Parameter Category

Average # values per parameter is about 6, so search space is $\approx 6^{129}$ i.e., $\approx 10^{100}$ scenarios are possible

- adapted 125-parameter Koala laaS simulator to be GA controllable
- added 4 Koala parameters to turn on/off logic to control (a) creation orphans,
 (b) termination orphans, (c) relocation orphans and (d) administrator actions

May 9, 2013 DARPA MRC PI Meeting

Model

Sample Chromosome Specification

	Koala Parameter			Genetic Algorithm Computed			
	Space	(Size = :	10 ¹⁰⁰)	Chrom	osome I	Map (Siz	e = 2 ³³⁴
PARAMETER	MIN	MAX	PRECISION	#VALUES	LOW_BIT	HIGH_BIT	#BITS
P_CreateOrphanControlOn	0	1	1	2	36	36	1
P_TerminationOrphanControlOn	0	1	1	2	58	58	1
P_RelocationOrphanControlOn	0	1	1	2	11	11	1
P_AdministratorActive	0	1	1	2	330	330	1
P_clusterAllocationAlgorithm	0	5	1	6	31	33	3
P_describeResourcesInterval	600	3600	600	6	81	83	3
P_nodeResponseTimeout	30	90	30	3	210	211	2
P_TerminatedInstancesBackOffThreshold	3	6	1	4	56	57	2
P_TerminationBackOffInterval	180	360	60	4	88	89	2
P_TerminationRetryPeriod	600	1200	300	3	316	317	2
P_StaleShadowAllocationPurgeInterval	600	3600	600	6	242	244	3
P_cloudAllocationCriteria	0	3	1	4	321	322	2
P_clusterShadowPurgeLimit	1	21	5	5	290	292	3
P_instancePurgeDelay	180	600	60	8	98	100	3
P_clusterEvaluationResponseTimeout	60	120	30	3	14	15	2
P_MaxPendingRequests	1	10	1	10	72	75	4
P_CloudTerminatedInstancesBackOffThreshold	3	6	1	4	169	170	2
P_CloudTerminationBackOffInterval	180	360	60	4	40	41	2
P_CloudTerminationRetryPeriod	3600	10800	1800	5	297	299	3
P_ClusterShutdownGracePeriod	86400	2.59E+05	43200	5	147	149	3
			\bullet				\bullet
P_RequestEvaluatorTimeoutWaitProportion	0.1	0.4	0.1	4	145	146	2
P_RequestEvaluatorClusterMinimumResponse	0.6	0.9	0.1	3	269	270	2
P_MaxRelocationDuratonProportion	0.65	0.95	0.1	4	90	91	2
P_MaximumRelocateDescribeRetries	4	16	2	7	254	256	3
P_AverageCloudAdministratorAttentionLatency	28800	86400	14400	5	308	310	3
P_AverageCloudAdministratorShutdownDelay	300	900	300	3	45	46	2
P_avgTimeToClusterCommunicationCut	2.88E+06	2.88E+07	2.88E+06	10	217	220	4

ne Example Two NIST

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Design

Genetic Algorithm Flow Chart

Dynamics of GA's Search

Generation

Maximum Anti-Fitness Discovered

Standard Deviation in Anti-Fitness

Assessment of Search Conducted by GA

(based on 10⁵ scenarios, i.e., 200 individuals x 500 generations)

Frequency Distribution of Anti-Fitness

- 84% of scenarios exhibit anti-fitness ≥ 0.50
- Only 8% of scenarios are duplicate (equals elite-selection percentage)

Conclusion: GA is searching scenarios with high anti-fitness and the scenarios searched are overwhelmingly unique

Failure Scenarios Discovered by GA

GA also found that an overload problem arises when clusters are too small

which causes virtual message losses

Costs of Search

- Pre-search work required **significant programming effort** to
 - Increase cloud simulator robustness
 - Create robust distributed management system for GA and simulations running a cluster
- Computing resources used
 - Generation one: 200 cores on a local cluster
 - Subsequent generations: 184 cores on a local cluster (16 cores acting as warm standbys to take over for failed simulations)
- Search latency about 30 days (as designed) for 500 Generations
- Failure scenarios are evident within 100 Generations, which requires about 6 days

Problem: Catastrophic events manifest over extended space & time, e.g., congestion, attacks, cascading failures, disconnections

State-of-the-Art:		Academia	Industry
	Pro	Models + Theory	Monitoring for Real Networks
	Con	Abstract Models	Reactive, No Models/No Theory

New Ideas: (1) Identify precursor S/T patterns in our realistic net models

- (2) Assess detection techniques for applicability to real nets
- (3) Apply thermodynamic models & theory to explain catastrophic events

Impact, If Successful:

Iraj Saniee, Bell Labs: "...the proposed research would help fill a vacuum in commercial network control and management systems..."

Craig Lee, Aerospace: "This line of work must be pursued, and its results used to shape satellite ground systems of the future."

David Lambert, Internet 2:	"will create a strong foundation of system measurement
	that has not existed before that is likely to help avoid
	potentially debilitating real-life network failures and
NRDA MRC DI Maating	their scientific and economic consequences."

If you want to investigate the robustness of your innovative MRC algorithms, NIST would be interested in collaborating to apply and evaluate techniques to identify design-time failure scenarios.

Take Home Messages

If you are interested in exploring run-time methods to predict incipient systemic failures, NIST has interest in collaborating on that topic.

If you want to evaluate your MRC algorithms in large simulated deployment scenarios, NIST has expertise in relevant techniques – and would be willing to help apply them.

Additional Questions?

Contact Information

Kevin Mills, NIST Principal Investigator Measurement Science for Complex Information Systems

Email: <u>kmills@nist.gov</u> Web: <u>http://www.nist.gov/itl/antd/emergent_behavior.cfm</u>