
USING MARKOV CHAIN AND GRAPH THEORY CONCEPTS TO ANALYZE

BEHAVIOR IN COMPLEX DISTRIBUTED SYSTEMS

Christopher Dabrowski
(a)

 and Fern Hunt
(b)

U.S. National Institute of Standards and Technology

(a)

cdabrowski@nist.gov,
(b)

fhunt@nist.gov

ABSTRACT

We describe how a Discrete Time Markov chain

simulation and graph theory concepts can be used

together to efficiently analyze behavior of complex

distributed systems. Specifically, the paper shows how

minimal s-t cut set analysis can be used to identify state

transitions in a directed graph of a time-inhomogeneous

Markov chain, which when suitably perturbed, lead to

performance degradations in the system being modeled.

These state transitions can be then be related to failure

scenarios in which system performance declines

catastrophically in the target system being modeled.

Using a large-scale simulation of the grid system, we

provide examples of the use of this approach to identify

failure scenarios. Preliminary experiments are reported

that show this approach can be applied to problems of

significant size. The approach described here combines

techniques whose use together to analyze dynamic

system behavior has not previously been reported.

Keywords: time-inhomogeneous Discrete Time Markov

chain; distributed system; minimal s-t cut set.

1. INTRODUCTION

In large-scale, dynamic distributed systems, such as

computing grids, the interactions of many independent

components can lead to emergent system-wide

behaviors with unforeseen, often detrimental, outcomes

(Mills and Dabrowski 2008). To ensure availability and

reliability of computing services in such environments,

new techniques will be needed to rapidly assess trends

and predict changes in system behavior caused by such

factors as shifts in workload, modifications to system

configurations, policy changes, or failures.

 In earlier work (Dabrowski and Hunt 2009), we

described a succinct Discrete Time Markov chain

(DTMC) representation for analyzing the behavior of a

grid computing system in order to identify potential

failure scenarios in which system-wide performance

collapses. In this representation, the stochastic

characteristics of Markov chains were used to

summarize the evolving state of a system, in which

dozens of users and grid service providers interacted to

process over 1000 grid computing tasks over simulated

time durations (Mills and Dabrowski 2008). To capture

change in system behavior over time, the DTMC

representation was made time inhomogeneous–also

referred to as piecewise homogeneous (Rosenberg,

Solan, and Vielle 2004)–in which a set of transition

probability matrices (TPMs) was used to model

successive time periods. The time-inhomogeneous TPM

set could be perturbed by systematically changing the

values of related state transition probabilities to

examine alternative system execution paths. State

transitions were deemed critical state transitions if they

could be perturbed to cause system performance to

decline drastically. Once identified, these critical

transitions could then be related to events such as faults,

policy changes, and workload shifts, in order to describe

failure scenarios in a target system being modeled. The

perturbed TPM set could be used to simulate the rate at

which performance declines in response to such events

and to establish thresholds, beyond which increased

incidence of failure caused performance collapse. This

initial approach, however, required exhaustive search of

the TPM set in order to find failure scenarios.

 To overcome this limitation, this paper extends

(Dabrowski and Hunt 2009), to analyze the DTMC as a

directed graph and to use minimal s-t cut set analysis

(Tsukiyama, Shirakawa, Ozaki, and Ariyoshi 1980) to

identify critical state transitions, which if perturbed,

reveal potential performance collapses in the target

system being modeled. We show that the use of

minimal s-t cut set analysis reduces the computation

needed to find critical transitions, and can thus be

applied to more complex problems in comparison to the

exhaustive search methods used in our initial approach

(Dabrowski and Hunt 2009). Further, we show that

minimal s-t cut analysis can also find combinations of

critical transitions that represent more complicated

failure scenarios, which our initial approach also could

not do. In experiments, our new approach is applied to

analyze grid system simulations with different durations

and workloads. We assess the use of minimal s-t cut set

analysis to predict failure scenarios, using a detailed,

large-scale grid simulation as a proxy for a real-world

system. The application of minimal cut set analysis to a

grid system parallels our use of this method to analyze

dynamic behavior in cloud computing systems, which

we report in (Dabrowski and Hunt 2011). The use of

this method in two different domains is essential to

investigating the generality of the approach.

mailto:cdabrowski@nist.gov
mailto:fhunt@nist.gov

 This paper also considers whether minimal s-t cut

set analysis can be applied to large problems. Since

larger directed graph problems can potentially contain

many minimal s-t cut sets, we investigate the use of a

cut set identification algorithm that can be bounded to

run within reasonable time limits. We evaluate the

effectiveness of this algorithm in identifying critical

transitions in DTMCs with up to 50 states and 160 state

transitions. To our knowledge, the use of minimal s-t

cut set analysis to guide perturbation of a time-

inhomogeneous DTMC has not previously been studied

as an approach for analyzing dynamic behavior in

complex distributed systems.

 This paper is organized as follows. Section 2

reviews related work on using Markov chains to analyze

dynamic systems. Section 3 summarizes the DTMC for

the grid system example used here. Section 4 defines

minimal s-t cut sets and describes their use in finding

critical state transitions. Section 5 presents an algorithm

for computing minimal s-t cut sets in large DTMC

graphs and analyzes its performance. Section 6

discusses future work and concludes.

2. RELATED WORK

The method discussed in this paper is distinguishable

from the well-known use of DTMCs to provide

quantitative measures of system performance and

reliability, which we review in (Dabrowski and Hunt

2009). Instead of measuring system reliability, we use

DTMCs to examine alternative execution paths in

dynamic systems in order to identify failure scenarios.

 Both perturbation analysis and graph theory have

previously been applied to DTMCs, but for different

purposes than we intend. Perturbation analysis of

DTMCs has been the topic of theoretical (Schweitzer

1968; Hassin and Haviv 1992) and computational study

(Meyer 1989; Stewart and Dekker, 1994). Other

researchers have used system performance gradients

that are based on key decision parameters to perturb

Markov models (Ho and Li 1988; Suri 1989; Cao and

Zhang 2008). While gradient-based approaches

demonstrated potential in modeling performance

change, some issues involving computation of gradients

required further research to fully resolve (Cao and

Zhang 2008). Also, gradient-based approaches appear to

be geared for system optimization, rather than for

examining alternative execution paths to identify

situations in which performance degrades.

 Graph-theoretic methods have also been used

previously to study dynamic behavior in Markov chain

models. For example, graph decomposition has been

used to calculate stationary probability distribution

vectors of Markov chains (Benzi and Tuma 2002;

Gambin, Kryzanowski and Pokarski 2008; as well as to

measure how perturbation affects stationary

distributions (Solan and Vielle 2003). Minimal cut set

analysis has been used on topology graphs of avionics

system components to identify the shortest sequence of

component failures (Tang and Dugan 2004). However,

these applications of graph theory have been targeted

for analysis of specific subsystems in their respective

domains, rather than using minimal s-t cut set analysis

to identify global failure scenarios in the manner we

envision. Finally, there are maximum-flow algorithms

(Ford and Fulkerson 1962; Goldberg and Tarjan 1988),

well-known graph-theoretic methods that find s-t cut

sets on the basis of flow levels. These algorithms could

potentially be used to identify critical state transitions.

However, because these algorithms use flows, they are

distinguishable from Markov chain approaches and so

best merit separate investigation.

3. THE DISCRETE TIME MARKOV CHAIN

The DTMC model of a grid system was developed by

observing a large-scale grid computing simulation

(Mills and Dabrowski 2008). This section overviews the

DTMC model, with full details in (Dabrowski and Hunt

2009). The DTMC model of the grid system simulates

the progress of over 1000 computing tasks from the

time they are submitted by a user to the grid for

execution to the time they either complete or fail. Figure

1 shows a state diagram of this system, which describes

the lifecycle of a single task. This model has 7 states: an

Initial state, where a task remains prior to submission; a

Discovering state, during which service discovery

directories are accessed to locate grid service providers

who are able to execute the task; a Negotiating state

during which a Service Level Agreement (SLA) for task

execution is negotiated with a provider; a Waiting state

in which tasks reside that are temporarily unsuccessful

in discovery or negotiation; and a Monitoring phase in

which a provider who has entered into an SLA executes

a task by a deadline. Transitions between states, shown

in Figure 1 by arrows, represent actions taken by the

grid system to process a task. All tasks eventually enter

either the Tasks Completed or Tasks Failed state, which

are the absorbing states of the Markov chain, because

once entered, a task cannot leave. A Markov chain with

these characteristics is called an absorbing chain.

Figure 1: State model of grid computing system.

The large-scale grid simulation was observed over

extended durations to accumulate frequencies for the

state transitions shown in Figure 1, compute transition

probabilities, and form TPMs. We computed transition

probabilities by determining where state transitions

Tasks Completed

Waiting

Discovering

Initial

State

Tasks Failed

Negotiating

Monitoring

occur in the large-scale model code and inserting

counters at those places. State transition probabilities

were derived as follows. Given states si, sj, i,j = 1…n

where n=7, pij, is the probability of transitioning from

state i to state j, written as si  sj. This probability is

estimated by calculating the frequency of si  sj, or fij,

and dividing by the sum of the frequencies of si to all

other states sk, as shown in equation (1)

 (1)

Here i and j may be equal, to allow for self transitions,

which are counted if the task process remained in a state

longer than a discrete time step, chosen to be 85 s. The

resulting TPM is a 7 × 7 stochastic matrix, where rows

stand for the state the transition originates from, or the

from state, i, and columns represent states the transition

goes to, or the to state, j. Figure 2 shows an example of

such a TPM. Each element in this TPM contains a pij,

where i and j are the from and to states, respectively. As

in any stochastic TPM, the transition values of all row

elements must sum to 1.0.

(a)

(b)

Figure 2: (a, b) Summary TPMs for the grid system

over (a) 8- and (b) 640-hour durations. The summary

TPMs are weighted averages of their component time

period TPMs, in which the weight of each time period

TPM is determined by the relative number of transitions

in the time period.

 Separate observations were made to create two

cases: (a) one in which the system executes for 8 hours

with varying workload; and (b) a 640-hour execution

that reaches near steady state. To create time-

inhomogeneous representations for the two cases, the

total duration of each was divided into equal periods of

7200 s and a TPM was computed for each period.

Figure 2 shows the summary TPMs for the two cases,

which are weighted averages of their respective time

period TPMs. The weights are based on the relative

number of transitions in each period.

3.1. Simulating System Behavior

To simulate system behavior over time, a well-known

DTMC method was employed, which we refer to as

Markov simulation. For further description, see (Hunt,

Morrison, and Dabrowski 2011; Dabrowski and Hunt

2009). In Markov simulation, multiplication of time

period TPMs is used to advance the system state in

discrete time steps of a fixed duration, h. Here, h =

85 s. Since a time period covers a duration of dperiod =

7200 s, each time-period TPM is made to represent S=

dperiod/h, or 85, steps. Thus, an 8-hour Markov

simulation, with a 2-hour period for residual clean-up,

covers 5 time periods, consisting of a total of 425 time

steps. Correspondingly, a 640-hour Markov simulation

with a clean-up period covers 321 time periods with

over 27, 000 time steps.

 In Markov simulation, the state of the system can

be summarized at any time step in an n-element state

vector v, where n is the number of states in the related

Markov chain. Each of the n elements in v represents

the proportion of tasks in one of the n states of the

DTMC. For the Markov chain of the grid system, the

n=7 elements are ordered so as to correspond to the

states in Figure 1. Thus, the first element in v contains

the proportion of tasks in the Initial state, the second

contains the proportion of tasks in the Waiting state, and

so forth. In Markov simulation, the vector v represents

the system state at different time steps, such that the

vector vm represents the system state at time step m. To

evolve the system state by one discrete time step, the

vector vm is multiplied by the TPM, Q
tp

, for the

applicable time period tp to produce a new system state

vm+1, as shown in equation (2):

 (2)

where T indicates a matrix transpose. Starting with v1,

which represents a system state with a value of 1.0 for

the Initial state (see Figure 1) and 0 for all other states

(i.e., all tasks begin in the Initial state), equation (2) is

repeated for 425 time steps to evolve the system state

over 8 simulated hours. This results in a system state

vector, v425 at the end of the simulated 8 hours. To

simulate 640 hours, equation (2) is repeated for 27, 000

time steps to produce a state vector, v27000, at the end of

640 hours. In both cases, repeated application of

equation (2) causes the proportion of tasks to be

distributed over the 6 states other than the Initial state

(i.e., all states have transitioned out of Initial). In an

absorbing chain, tasks eventually transition into one of

the absorbing states, i.e., the Tasks Completed or Failed

states, where they remain permanently. Thus, a measure

of the performance of a system is the proportion of tasks

that enter the Tasks Completed state, because this

absorbing state represents tasks that have succeeded. On

the other hand, a performance collapse may be

 (Qtp)T * vm= vm+1, where tp = integral value (m/S) + 1

 


n

k ik

ij

ij

f

f
p

1

Initial Wait Disc Ngt Mon Comp Failed

Initial 0.9697 0 0.0303 0 0 0 0

Wait 0 0.8363 0.0673 0.0918 0 0 0.0046

Disc 0 0.0355 0.6714 0.2931 0 0 0

Ngt 0 0.4974 0.0182 0.2882 0.1961 0 0.0001

Mon 0 0 0 0.0003 0.9917 0.0080 0

Comp 0 0 0 0 0 1.0 0

Failed 0 0 0 0 0 0 1.0

Initial Wait Disc Ngt Mon Comp Failed

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.7612 0.0460 0.1911 0 0 0.0017

Disc 0 0.0686 0.6084 0.3230 0 0 0

Ngt 0 0.2401 0.0062 0.2378 0.4801 0 0.0358

Mon 0 0 0 0.0007 0.9902 0.009 0

Comp 0 0 0 0 0 1.0 0

Failed 0 0 0 0 0 0 1.0

simulated either when a large proportion of tasks enter

the Task Failed state, or when they are otherwise

prevented from entering Tasks Completed. Figure 3

shows that Markov simulation of the grid system

closely approximates the performance of a large-scale

simulation in both the 8- and 640-hour cases in terms of

proportion of tasks that enter the Tasks Completed state.

(a)

(b)

Figure 3: Performance of Markov chain and large-scale

simulations as measured by Tasks Completed over: (a) 8

hours (5 time-period TPMs – 421 time steps with an

extra cleanup period), and (b) 640 hours (321 time-

period TPMs – 27000 time steps with cleanup). A time

period represents 7200s and a time step represents 85 s.

3.2. Perturbing Critical State Transitions

To identify critical state transitions, we described a

perturbation algorithm in (Dabrowski and Hunt 2009),

which systematically raises and lowers all feasible

combinations of non-zero state transition probabilities

in individual rows of a TPM for a DTMC. The different

combinations of changed values are then evaluated by

Markov simulation in order to explore potential

alternative system executions. This algorithm can be

applied to exhaustively perturb all feasible

combinations of state transition probabilities in all rows

of a TPM. The algorithm outputs a set of individual

critical state transitions, which when perturbed to

extreme values, cause system performance to degrade

drastically. We must omit the full description to the

perturbation algorithm due to lack of space. In

(Dabrowski and Hunt 2009), we showed that exhaustive

application of this algorithm could replicate (with good

agreement) scenarios in which performance drastically

degraded in the large-scale grid simulation.

 Figure 4 provides an example of a critical state

transition, Negotiating  Monitoring, identified by the

perturbation algorithm. The figure shows the impact of

a set of related perturbations, in which lowering the

probability of transition to 0 for Negotiating 

Monitoring causes the proportion of Tasks Completed to

fall to 0 in the Markov simulation (blue curves). The

perturbation of this transition models a failure scenario

in which negotiations for SLAs fail, due to events such

as system-wide viruses which gradually affect all

providers; hence, tasks cannot progress to the

Monitoring state. Figure 4 also shows the result altering

the target large-scale grid simulation (red curve), to

randomly fail negotiations with systematically increased

incidence. The figure shows that both the Markov and

large-scale simulation curves exhibit low thresholds for

the rate of successful negotiation, below which there is

a sharp drop in Tasks Completed. In the Markov

simulation this threshold is below 0.05, while in the

large-scale simulation, the threshold is slightly higher at

0.15. However, both curves are sufficiently similar, so

that the perturbation algorithm could be used to forecast

that increased incidence of failed negotiation will

eventually lead to a system performance collapse. In

(Dabrowski and Hunt 2009), we provide the complete

results of applying the perturbation algorithm. Though

its computational cost prohibits use on large problems,

the perturbation algorithm provides a baseline for

assessing the use of minimal s-t cut set analysis.

Figure 4: Perturbation of Negotiating State to reduce the

probability of transition from Negotiating 

Monitoring while raising the probability of transition

from Negotiating  Waiting in the 640-hour case. The

blue curve shows the proportion of Tasks Completed

estimated by the perturbation algorithm. Large-scale

simulation results are denoted by red triangles.

4. MINIMAL S-T CUT SET ANALYSIS IN A

MARKOV CHAIN MODEL

This section describes how identifying minimal s-t cut

sets on paths between an Initial state and a desired

absorbing state can be used to identify critical state

transitions in a DTMC, which if perturbed, lead to

system performance degradations. In contrast to the

perturbation algorithm, which can identify only single

state transitions that are critical, minimal s-t cut set

analysis identifies combinations of critical state

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000
4000

6000
8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

Time Step

Pr
o

p
o

rt
io

n
 T

as
ks

 C
o

m
p

le
te

d

Large-scale simulation

Markov simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s
k
s

C
o

m
p

le
te

d

Time Step

Large-scale simulation

Markov simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s

k
s

 C
o

m
p

le
te

Decrease in Probability of Transition from Negotiating to Monitoring

transitions, an important benefit for analysis of more

complex problems. In Section 5, we describe an

algorithm for finding minimal s-t cut sets and show its

effectiveness for large problems. Our approach does not

use flow levels to identify minimality, but instead uses

cardinality and other factors discussed below.

4.1. Definitions

In graph theory, a graph G (V, E) consists of a set of

vertices V connected by edges from the set E. A

directed graph is a graph in which edges can be

traversed in only one direction. A Markov chain is a

directed graph, in which vertices correspond to states

and directed edges correspond to state transitions. A

directed path through this graph is a sequence of state

transitions from one state to another. In this problem,

the directed paths of most interest are non-cyclic paths

that lead from the Initial state to one of the two

absorbing states: Tasks Completed or Tasks Failed.

This paper considers only paths to Tasks Completed.

Figure 5 shows two such paths.

Figure 5: There are 2 directed paths (in red) from the

Initial state to Tasks Completed, labeled 1 and 2. Three

single-transition s-t cuts (minimal s-t cut sets consisting

of one state transition) are marked by single bars. Two

multiple transition s-t cuts (s-t cut sets with two

transitions each) are marked by double bars: (a)

Discovering  Negotiating and Discovering 

Waiting; and (b) Discovering  Negotiating and

Waiting  Negotiating. Trap states are denoted by T.

 A set of one or more edges, which if removed,

disconnects all paths between two vertices s and t is

referred to as an s-t cut set (Tsukiyama, Shirakawa,

Ozaki, and Ariyoshi 1980). An s-t cut set is a minimal s-

t cut set if removal of any edge from the cut set

reconnects s and t. By finding minimal s-t cut sets

consisting of state transitions that disconnect the Initial

and Tasks Completed states, it is possible to know

where reducing the related transition probabilities to 0

prevent tasks from completing. In this paper, minimal s-

t cut sets with a single member will be referred to as

single-transition s-t cuts, while those with more than

one member are multiple-transition s-t cuts. State

transitions that are members of a minimal s-t cut set are

critical state transitions as defined above.

4.2. Identifying Minimal s-t Cut Sets in the Grid

Markov Chain Model

In Figure 5, there are 3 single-transition s-t cuts: Initial

 Discovering, Negotiating  Monitoring, and

Monitoring  Tasks Completed. Figure 4 shows that

reducing the probability of transition for Negotiating 

Monitoring to 0 using Markov simulation causes the

proportion of tasks reaching Tasks Completed to drop to

0. The same result occurs when the other two single-

transition s-t cuts, Initial  Discovering and

Monitoring  Tasks Completed, are similarly perturbed

(see Dabrowski and Hunt 2009). Use of the exhaustive

perturbation algorithm confirmed that the 3 single-

transition s-t cuts identify state transitions, which if

reduced to 0, cause the proportion of tasks reaching the

Tasks Completed state to fall to 0 (see Section 5). These

3 single-transition s-t cuts are critical state transitions

that clearly relate to resource allocation and task

execution functions. Figure 5 also shows two multiple-

transition s-t cuts, labeled (a) and (b), which disconnect

all paths between the Initial from the Tasks Completed

state. Both multiple-transition cuts consist of two

transitions. In a multiple-transition s-t cut, lowering

transition probabilities to 0 of all transitions in the cut

set reduces the proportion of Tasks Completed to 0.

Multiple-transition s-t cuts identify situations where a

combination of state transitions is critical and together

describe circumstances that degrade system

performance. We return to multiple-transition s-t cuts in

Section 5.

4.3. Identifying Trap States

 The previous discussion considered only state

transitions between different states. However, in a

DTMC, a state may also transition to itself in the next

discrete time step and remain in the same state. In this

paper, this is referred to as a self-transition. If a self-

transition probability is near 1, the task may stay in the

state for a long time. Such a state effectively becomes a

trap state. Figure 6 shows an example of how a trap

state affects performance, when the self-transition

probability of the Discovering state is raised to 1. As the

self-transition probability approaches 1, tasks are

increasingly stalled in Discovering, so that they cannot

proceed to other states and complete by their deadlines.

The evolution of Discovering into a trap state may

correspond to a real-world failure scenario in which

service discovery is impaired by directory failures, so

that information about existing grid services cannot be

retrieved. As the incidence of directory failures

increases, the length of time to complete service

discovery for all tasks also increases, until finally no

task can progress beyond the discovery stage to begin

negotiation. Figure 6 also shows how the large-scale

simulation behaves when the equivalent failure is

introduced. In the latter, the failure is modeled by

systematically increasing the frequency of directory

access failure. As in the example discussed in Section

3.2, the perturbation shown in Figure 6 predicts how

this failure scenario impacts the large-scale simulation.

Figure 6: Perturbation of Discovering to increase the

self-transition probability to 1, while decreasing the

transition probability from Discovering to other states to

0 in 640-hour case. The blue curve shows the

proportion of tasks completed as estimated by the

perturbation algorithm. Values from the large-scale

simulation are shown by red triangles.

 A trap states is distinguishable from a permanent

absorbing state, because the latter always has a self-

transition probability of 1, while in the former, the

transition probability varies. The concept of an s-t cut

set can be extended to include vertices whose removal

cuts all paths from s to t. A minimal set of such

elements (edges and vertices) is a minimal s-t

separating set (Hayakawa, Tsukiyama and Ariyoshi

1999) a topic we leave for future work.

5. PERFORMANCE OF MINIMAL S-T CUT

SET ANALYSIS

This section shows that minimal s-t cut set analysis is

an effective and efficient means of finding critical state

transitions and trap states. The section also shows the

potential applicability of this method to large problems.

Section 5.1 first describes a well-known algorithm,

known as the node contraction algorithm, which we

adapted to find minimal s-t cut sets in a directed graph.

The node contraction algorithm is considered

probabilistic (Karger and Stein 1996), because it can

find solutions with a probability which can be increased

to a high level by repeatedly executing the algorithm.

Though it is not guaranteed to find all minimal s-t cut

sets, the computational cost of node contraction can be

bounded, making it potentially applicable to large

problems where use of exhaustive methods would be

infeasible. The node contraction algorithm also finds

critical transitions that are part of multiple transition s-t

cuts, which the perturbation algorithm cannot find.

 Section 5.2 shows effectiveness and efficiency of

node contraction for the grid system problem. Here, the

node contraction algorithm is able to find all individual

critical transitions and trap states that were found using

the perturbation algorithm, but at far less cost. Section

5.3 then reports experiments on the use of node

contraction for finding critical state transitions in large

Markov chain problems. To do this, the performance of

the node contraction algorithm is tested by comparing it

to the performance of an algorithm (Provan and Shier

1996) that, unlike node contraction, enumerates all

minimal s-t cut sets in a directed graph, and thus finds

all critical transitions. While, like other algorithms of

this type, the time complexity of (Provan and Shier

1996) prohibits practical use on many large problems,

the algorithm provides a good baseline for testing the

effectiveness of node contraction. (The complexity of

the minimal s-t cut set enumeration algorithm described

in (Provan and Shier 1996) is O |E| for each s-t cut set

that exists, where |E| is the number of edges in the

graph). To examine the potential for scalability of

minimal s-t cut set analysis, we wish to know what

proportion of minimal s-t cut sets (and thus critical

transitions) can be found by node contraction in large

problems and the related computational cost.

5.1. Overview of the Node Contraction Algorithm

In this section, we summarize our implementation of the

node contraction algorithm, with pseudo-code in

(Dabrowski, Hunt and Morrison 2010). Though the time

complexity of node contraction algorithms for directed

graphs has not been studied, efficient versions of this

algorithm for undirected graphs find a minimum cut

with a complexity of O |V|
2
, where |V| is the number of

vertices in the graph (Karger and Stein 1996). While

this cost is significant, the algorithm can be used on

large problems by controlling the number of executions,

as will be discussed in Section 5.3.

 The node contraction algorithm operates by

randomly choosing two vertices connected by an edge

and replacing these vertices with a single, new vertex.

The new vertex assumes the edges by which the two

replaced vertices were connected to the remainder of the

graph (i.e., the edges of replaced vertices become the

edges of the new vertex) and takes up the edges that

connected the two replaced vertices. The result of each

contraction is recorded. The process of randomly

selecting pairs of vertices repeats until only two large,

mega-vertices remain. The directed edges between the

two remaining mega-vertices c1 and c2, and the directed

edges between vertices <v1, v2>, v1≠ v2, in which v1 was

replaced by c1 and v2 was replaced by c2, constitute a

minimal s-t cut set of the graph. The node contraction

algorithm was modified for an absorbing Markov chain

problem to prevent the two vertices representing the

Initial state, s, and the Tasks Completed absorbing state,

t, from being contracted into the same vertex. This

ensures that the Initial state, s, and Tasks Completed

state, t, will not both end up in either c1 or c2. In this

way, the edges between the two remaining mega-

vertices, c1 and c2, together with the vertices each has

absorbed, yield a minimal s-t cut set of state transitions,

which if removed, disconnect the Initial and absorbing

state (Tasks Completed).

 Since the algorithm randomly selects two

connected vertices to combine, repeated applications

produce different cut sets. The more the algorithm is

repeated, the greater the chances that a large proportion,

if not all, of the minimal s-t cut sets of interest will be

obtained. Hence, the operation of the algorithm is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
 T

a
s

k
s

 C
o

m
p

le
te

Increase in Probability of Discovering Self-Transition

considered to be probabilistic. Because the number of

repetitions can be controlled, computation cost can be

bounded. Further, cut sets can identify potential trap

states, which exist when all transitions in the cut set

originate in one state. Perturbation then need be applied

only to the transitions in the s-t cut set, in order to

generate curves of tasks completed, such as appear in

Figures 4 and 6, and to identify performance thresholds.

5.2. Comparing the Perturbation Algorithm with

Minimal s-t Cut Set Analysis

Table 1 compares the result of applying the perturbation

algorithm described in Section 3 with the result of

minimal s-t cut set analysis using node contraction,

when both are used to identify individual critical state

transitions and trap states. The perturbation algorithm

was applied to the 5 rows representing non-absorbing

states (labeled a-e) in the time period TPMs for the 8-

and 640-hour cases. The combinations of row elements

representing the transition probability being decreased

and increased appear in the two leftmost columns. For

each such combination of transitions, the next two

columns show the proportion of Tasks Completed for

the 8- and 640-hour cases as the transition probability

being decreased falls to 0. The rightmost column

indicates if the state transition being reduced

corresponds to a single-transition s-t cut (see Figure 5).

 Table 1 shows that all combinations where

perturbation causes a decline in the proportion in Tasks

Completed to 0 correspond to single- transition s-t cuts.

There are 7 such combinations, and all correspond to

single-transition s-t cuts that are verified by large-scale

simulation. In no case, did node contraction find an s-t

cut that did not correspond to such a drastic reduction.

For instance, in Table 1(c), rows 10–12, when the

probability of transition from the Negotiating state to

Monitoring (i.e., Negotiating  Monitoring) is reduced

to 0, the proportion of Tasks Completed falls to 0. This

is shown in Figure 4. Figure 5 shows that Negotiating

 Monitoring is a single-transition s-t cut.

 Note that in Table 1(d), row 3, reducing the

probability of Monitoring self-transition while raising

the probability of Monitoring  Negotiating also

caused a severe decline in the proportion of Tasks

Completed. This happens because the probability of

transition for Monitoring  Tasks Completed is very

low (see Figure 2), and so the probability of Monitoring

self-transition must be very high to ensure tasks remain

in the Monitoring state long enough to eventually

transition to Tasks Completed. Thus, reducing the

probability of Monitoring self-transition to 0 while

raising the probability of Monitoring  Negotiating

prevents tasks from reaching Tasks Completed—and

acts like a single-transition s-t cut on Monitoring 

Tasks Completed. However, because the transition

probability of Monitoring  Tasks Completed is not

lowered to 0 by this perturbation, some tasks are able to

complete. Table 1 also contains 3 rows that show only

partial reductions (Table 1 (a), rows 5 and 6, and Table

1 (b), row 5). These correspond to the state transitions

(c) row = Negotiating

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.985 0.938 No
3 Waiting Monitoring 1.000 0.939 No
4 Discovering Waiting 0.954 0.935 No
5 Discovering Negotiating 0.957 0.935 No
6 Discovering Monitoring 0.967 0.936 No
7 Negotiating Waiting 0.923 0.931 No
8 Negotiating Discovering 0.941 0.933 No
9 Negotiating Monitoring 0.988 0.938 No
10 Monitoring Waiting 0.000 0.000 Yes
11 Monitoring Discovering 0.000 0.000 Yes
12 Monitoring Negotiating 0.000 0.000 Yes

(a) row = Discovering

Element
reduced0

Element
raised

Proportion of
Tasks Complete

s-t cut
exists

8-hour 640-hour

1 Waiting Discovering 0.957 0.935 No
2 Waiting Negotiating 0.959 0.935 No
3 Discovering Waiting 0.939 0.935 No
4 Discovering Negotiating 0.963 0.935 No
5 Negotiating Waiting 0.894 0.933 No
6 Negotiating Discovering 0.651 0.932 No

(d) row = Monitoring

1 Negotiating Monitoring 0.982 0.937 No
2 Negotiating Tasks Comp 0.982 0.938 No
3 Monitoring Negotiating 0.028 0.186 Yes
4 Monitoring Tasks Comp 0.980 0.949 No
5 Tasks Comp Negotiating 0.001 0.006 Yes
6 Tasks Comp Monitoring 0.002 0.016 Yes

(b) row = Waiting

Element
reduced0

Element
raised

Proportion of
Tasks Complete

s-t cut
exists

8-hour 640-hour

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.981 0.939 No
3 Discovering Waiting 0.937 0.934 No
4 Discovering Negotiating 0.963 0.936 No
5 Negotiating Waiting 0.818 0.843 No
6 Negotiating Discovering 0.939 0.932 No

(e) row = Initial

1 Discovering Initial 0 0 Yes
2 Initial Discovering 0.970 0.988 No

Table 1: Correspondence of results of applying the perturbation algorithm to the TPMs for the 8- and 640-hour cases

with single-transition s-t cuts found by the node contraction algorithm. The perturbations represented by individual rows

correspond to single-transition s-t cuts in Figure 5 as follows: Table (c) rows 10–12 to Negotiating  Monitoring; Table

(d) rows 3, 5, and 6 to Monitoring  Tasks Completed; and Table (e) row 1 to Initial  Discovering. Note also the

explanation in the text for Table (d) row 3. Perturbations verified by large-scale simulation are bolded and shaded.

ations verified by altering the large-scale grid system simultion are bolded and shaded.

In the two multiple transition s-t cuts in Figure 5, which

were identified by node contraction, but could not be

found by the perturbation algorithm of Section 3.

 The perturbation algorithm was also applied to

raise the self-transition probability of the 5 non-

absorbing states in the grid model to 1. This

perturbation caused the proportion of Tasks Completed

to decline to 0 when applied to 4 of these states: Initial,

Discovering, Negotiating, and Monitoring states. All 4

are trap states found through node contraction. The fifth

state Waiting, is not a trap state; but is part of a state

transition that is a member of both multiple-transition s-

t cuts in Figure 5. Hence, if the self-transition

probability of Waiting is raised toward 1, there is only a

partial reduction in proportion of tasks completed.

 Executing the exhaustive perturbation algorithm on

non-absorbing rows of the grid model took 56 minutes

in the 8-hour case and 4.5 hours in the 640-hour case. In

comparison, node contraction needed less than 0.01 s to

find all minimal s-t cut sets and trap states. In the 8-

hour case, generating Markov simulation curves to

reduce the proportion of Tasks Completed to 0 for all

minimal s-t cut sets and trap states required 244 s, or 7

% of the 56 minutes needed by the perturbation

algorithm. For the 640-hour case, these computations

took 230 s, or 1.4 % of the 4.5 hours needed by the

perturbation algorithm. Thus, minimal s-t cut set

analysis needed two orders of magnitude less time than

exhaustive application of the perturbation algorithm. All

experiments were executed on a workstation with dual

quad-core, 3.16GHz processors and 32 GB memory.

5.3. Using Node Contraction to Find Minimal s-t Cut

Sets in Large Problems

This section reports the results of experiments on the

use of the node contraction algorithm to find critical

transitions in large, complex Markov chain models with

many multiple transition minimal s-t cuts. These

experiments compare the results of using the

contraction algorithm to the results produced by the

enumeration algorithm of (Provan and Shier 1996)

which is guaranteed to find all minimal s-t cut sets and

the critical transitions in these cut sets. Here, the

criticality of transitions is estimated using measures we

define for these experiments. The results show that,

with some exceptions, the node contraction algorithm

found a large proportion of the most critical cut sets in

two orders of magnitude less time than did exhaustive

enumeration. While further experiments are needed,

these preliminary investigations suggest that minimal s-

t cut set analysis can effectively identify critical

transitions in large, complex Markov chain graphs as

might be encountered in real-world problems.

5.3.1. Experimental Design

To perform these experiments, four Markov chain

models were selected, each consisting of 40 or 50 states,

from (Boyarsky 1988; Stewart 2004; Jensen and Jessup

1986) and single time-period TPMs were generated

using (Hunt 1994). All four problems were originally

ergodic chains, which were suitably modified to be

absorbing chains. Though the matrices were sparse,

these problems were large and complex, with a very

sizable number of minimal s-t cut sets between the

Initial and absorbing states (> 4×10
8
 for the largest; see

Table 2.) In contrast to the grid system model, minimal

s-t cut sets for these problems consisted of multiple

state transitions, which could correspond to

combinations of circumstances that impact system

performance. In (Dabrowski, Hunt and Morrison 2010),

the full description of all four Markov chain problems is

provided, which we omit here due to lack of space.

 To provide a baseline measure for the number of

minimal s-t cut sets in these Markov chain graphs, we

implemented the minimal s-t cut set enumeration

algorithm of (Provan and Shier 1996), which lists all cut

sets. To determine which minimal s-t cut sets were most

critical, we selected ranking criteria based on the idea

that the most critical cut sets will have a small number

of state transitions. We chose this basis, because fewer

transitions represent smaller combinations of

circumstances that are more likely to occur and thus

more likely to impact a system. (Note: this intuition is

supported in the case of undirected graphs by the

finding (Karger 2001) that small cut sets are more likely

to disconnect undirected graphs, if edges of the graph

that fail independently with a known probability. Also

in (Dabrowski and Hunt 2011), we use this ranking

criterion to analyze a DTMC for a cloud computing

system.) We used this basis to choose 3 ranking criteria.

The first criterion, Sort A, ranks minimal s-t cut sets by

the fewest number of edges as the primary sorting

criterion and lowest total transition probability of edges

as the secondary criterion. The second, Sort B, uses

only the lowest total transition probability of edges in

the cut set as a sorting criterion (which also tends to

rank cut sets with few transitions higher). Hence, Sorts

A and B are likely to identify minimal s-t cut sets in

which small perturbations to the fewest number of state

transitions are likely to produce the largest changes. The

third ranking criterion, Sort C, uses the least number of

edges as a primary sorting criterion and the highest total

transition probability of edges as a secondary criterion.

Sort C identifies cut sets consisting of state transitions

that are more likely to be taken and therefore, if

perturbed, more likely to affect system behavior.

5.3.2. Experimental Results

We applied the node contraction algorithm and the

enumeration algorithm of (Provan and Shier 1996) to

the four TPMs, ranked the minimal cut sets produced by

each using the ranking criteria described above, and

compared the results to determine the proportion of

most highly ranked cut sets that the node contraction

algorithm could find. With the exception of Matrix 1,

Table 2 shows that, with 100,000 repetitions, node

contraction generated 91.4 % of the top 100 ranked cut

sets that were generated by the enumeration algorithm

for all four TPMs under all three sorting criteria. The

contraction algorithm produced these results in 1.3 % of

the time needed by the enumeration algorithm. This

amounts to a two-order of magnitude improvement in

time. For instance, for Matrices 2 and 3, the algorithm

was able to find almost all top 100 minimal s-t cut sets

in a relatively small fraction of the number of hours

required by the enumeration algorithm. For Matrix 4,

the node contraction algorithm could find all the top

100 under sort criteria B and C in about 15 minutes (as

opposed to 156.1 hours through enumeration). Here,

node contraction was successful despite the fact that

Matrix 4 has over 4 ×10
8
 minimal s-t cut sets.

Table 2: Comparison of minimal s-t cut sets generated

by the enumeration algorithm of (Provan and Shier

1996) and by the node contraction algorithm. At 10,000

repetitions, node contraction generated 77.2 % (variance

555.2) of the top 100 ranked cut sets in 0.14 % of the

time for Sorts A–C. At 100,000 repetitions, node

contraction generated 91.4 % (variance 432.0) of the cut

sets found by enumeration in 1.3 % of the time.

However, in Matrix 4, the algorithm found only 37 of

100 high ranked minimal s-t cut sets under Sort A.

Also, for Matrix 1, Table 2 shows that the node

contraction algorithm had to run longer than the

enumeration algorithm, before it began to produce a

large percentage of highly-ranked cut sets. This

difference in performance may be attributable in part to

topological characteristics such as vertices (states) with

large numbers of edges (state transitions), which

increases vertex interconnectivity and impedes the

contraction process. This exception suggests that in

some cases where TPMs are small, it may be more

efficient to enumerate cut sets than to generate them

probabilistically. Despite these exceptions, the data

shows that the node contraction algorithm can be used

to find a high proportion of minimal s-t cut sets

representing combinations of critical state transitions in

larger Markov chains within reasonable time limits.

6. CONCLUSIONS AND FUTURE WORK

This paper has described an approach for using minimal

s-t cut set analysis to guide perturbation of a time-

inhomogeneous DTMC in order to understand the

potential for failure in grid computing systems. The

approach combines multiple techniques in a way not

previously reported. In this approach, minimal s-t cut

sets are computed for paths from the Initial to selected

absorbing states in the directed graph of a DTMC.

These cut sets can be used to identify critical state

transitions, which if perturbed, reveal areas for potential

performance degradation. The perturbation of critical

state transitions in turn provides a basis to identify

potential failure scenarios that could occur in the target

system being modeled. By perturbing critical state

transitions incrementally, it is possible to quantitatively

measure performance degradation and to predict how

the target system being modeled is likely to respond to

increased incidence of failure. As we have shown, the

stochastic character of the Markov chain representation

of the system state enables modeling of systems having

large numbers of tasks, while time inhomogeneity

allows modeling of system evolution over time. Using a

large-scale grid system as a proxy for a real-world

system, we used the approach described here to identify

failure scenarios in systems that process hundreds of

tasks over different durations. Our results showed that

minimal cut set analysis could be used to identify (in

two-orders of magnitude less time) all of the failure

scenarios found using exhaustive search techniques. In

addition, this method also discovered failure scenarios

that involved multiple state transitions, which the

exhaustive search algorithm could not. To find critical

state transitions in larger Markov chains, the paper has

presented a probabilistic algorithm for minimal s-t cut

set analysis. Experimental results in Section 5.3.2 show

the potential of this algorithm for efficiently analyzing

large, complex problems and finding related critical

transitions that represent complicated circumstances.

 To further evaluate the utility of minimal s-t cut set

analysis, it will be necessary to carry out experiments in

which DTMC representations are constructed for

different problem domains, such as reported in

(Dabrowski and Hunt 2011). The use of this approach

will have to be further evaluated on larger problems as

we have begun to do in this paper. As part of this effort,

it will also be necessary to investigate other methods for

finding minimal s-t cut sets in large, complex directed

graphs. For instance, there are alternative approaches to

node contraction, such as (Curet, DeVinney and Gaston

2000) which could be examined. Another possible

method involves use of maximum-flow algorithms

(Ford and Fulkerson 1962; Goldberg and Tarjan 1988)

to find s-t cut sets that identify critical transitions. These

algorithms find s-t cut sets on the basis of maximum

flow and minimum capacity. Potentially, maximum-

flow algorithms could be adapted to find cut sets and

rank them on the basis of their nearness to maximum

flow and minimum capacity, rather than the criteria

described here. To enable such rankings, the work of

(Curet, DeVinney and Gaston 2000; Balcioglu and

Wood 2003) could be used. In addition, we are also

investigating the use of methods that are not based on

graph theory concepts to analyze dynamic behavior in

complex systems. In (Hunt, Morrison and Dabrowski

2011), we describe the use of spectral methods for

eigendecompositon to identify critical state transitions,

and in (Dabrowski, Hunt and Morrison 2010) we

employ this technique as a complementary method to

Minimal s-t cut
set
enumeration

Proportion (in %) of 100 top-ranked minimal
s-t cut sets ranked by criteria A, B that were
found by the node contraction algorithm

Number
of cut
sets

Time
(in
hours)

After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332 s 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36.0 218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 193.6 106 s 30 80 62 1051 s 37 100 100

N
u

m
b

er

O
rd

er

minimal s-t cut set analysis. Beyond this, it is our hope

that this paper will provide useful ideas to other

researchers studying dynamic behavior in complex

systems, and that ultimately, the work will lead to the

development of effective tools for this purpose.

REFERENCES

Balcioglu, A. and Wood, K., 2003. Enumerating Near-

Min s-t Cuts. In: D. Woodruff, ed., Network

Interdiction and Stochastic Integer Programming.

Kluwer Academic Publishers, 21–49.

Benzi, M. and Tuma, M., 2002. A parallel solver for

large-scale Markov chains. Applied Numerical

Mathematics, 41, 135–153.

Boyarksy, A., 1988. A matrix method for estimating the

Liapunov exponent of one-dimensional systems.

Journal of Statistical Physics, 50 (1-2), 213–229.

Cao, X. and Zhang, J., 2008. Event-Based Optimization

of Markov Systems. IEEE Transactions on

Automatic Control, 53 (4), 1076–1082.

Curet, N., DeVinney, J. and Gaston, M., 2000. An

Efficient Network Flow Code for Finding all

Minimum Cost s-t Cutsets. Computers and

Operations Research, 29, 205–219.

Dabrowski, C. and Hunt, F., 2009. Using Markov Chain

Analysis to Study Dynamic Behavior in Large-

Scale Grid Systems. Proceedings of the Seventh

Australasian Symposium on Grid Computing and

e-Research–Volume 99, pp. 29–40. January 21,

Wellington (New Zealand).

Dabrowski, C., Hunt, F. and Morrison, K., 2010.

Improving the Efficiency of Markov Chain

Analysis of Complex Distributed Systems. National

Institute of Standards and Technology,

Interagency Report 7744.

Dabrowski, C. and Hunt, F., 2011. Identifying Failure

Scenarios in Complex Systems by Perturbing

Markov Chain Models. Proceedings of the 2011

Pressure Vessels and Piping Division Conference.

July 17–21, Baltimore (Maryland, USA). In press.

Ford, L. and Fulkerson, D., 1962. Flows in Networks.

Princeton: Princeton University Press.

Gambin, A., Kryzanowski, P. and Pokarowski, P., 2008.

Aggregation Algorithms for Perturbed Markov

Chains with Applications to Network Modeling.

SIAM Journal of Scientific Computation, 31 (1),

45–77.

Goldberg, A. and Tarjan, R., 1988. A New Approach to

the Maximum-Flow Problem. Journal of the ACM,

35 (4), 921–940.

Hassin, R. and Haviv, M., 1992. Mean Passage Times

and Nearly Uncoupled Markov Chains. SIAM

Journal of Discrete Mathematics, 5 (3), 386–397.

Hayakawa, J., Tsukiyama, S. and Ariyoshi, H., 1999.

Generation of Minimal Separating Sets of Graphs.

IEICE Transaction Fundamentals, E82-A (5),

775–783.

Ho, Y. and Li, S., 1988. Extensions of infinitesimal

perturbation analysis. IEEE Transactions on

Automation Control, AC-33 (5), 427–438.

Hunt, F., 1994. A Monte Carlo Approach To The

Approximation of Invariant Measures. Random

and Computational Dynamics, 2 (1), 111–112.

Hunt, F., Morrison, K. and Dabrowski, C., 2011.

Spectral Based Methods That Streamline the

Search for Failure Scenarios in Large-Scale

Distributed Systems. Nineteenth IASTAD

International Conference on Modeling and

Simulation. June 22–24, Crete (Greece). In press.

Jensen, R. and Jessup, E., 1986. Statistical Properties of

the Circle Map. Journal of Statistical Physics, 43

(1–2), 369–389.

Karger, D. and Stein, C., 1996. A New Approach to the

Minimum Cut Problem. Journal of the ACM, 43,

601–640.

Karger, D., 2001. A Randomized Fully Polynomial

Time Approximation Scheme for the All-Terminal

Network Reliability Problem. SIAM Review, 43

(3), 499–522.

Mills, K. and Dabrowski, C., 2008. Can Economics-

based Resource Allocation Prove Effective in a

Computation Marketplace? Journal of Grid

Computing, 6 (3), 291–311.

Meyer, C., 1989. Stochastic Complementation,

Uncoupling Markov Chains, and the Theory of

Nearly Reducible Systems. SIAM Review, 31 (2),

240–272.

Provan, J. and Shier, D., 1996. A Paradigm for Listing

(s,t)-cuts in Graphs. Algorithmica, 15, 351–372.

Rosenberg, D., Solan, E. and Vielle, N., 2004.

Approximating a Sequence of Observations by a

Simple Process. The Annals of Statistics, 32 (6),

2742–2775.

Schweitzer, P., 1968. Perturbation Theory and Finite

Markov Chains. Journal of Applied Probability, 5

(2), 401–413.

Solan, E. and Vielle, N., 2003. Perturbed Markov

Chains. Journal of Applied Probability, 40, 107–

122.

Stewart, G., 2004. MVMRWK: Markov Chain

Transition Probability Matrix. National Institute

of Standards and Technology. Available from:

http://math.nist.gov/MatrixMarket/data/NEP/

mvmrwk/rw136.html. [Accessed 27 June 2011]

Stewart, W. and Dekker, M., 1994. Numerical Solution

of Markov Chains. Princeton: Princeton University

Press.

Suri. R., 1989. Perturbation Analysis: The State of the

Art and Research Issues Explained via the GI/G/l

Queue. Proceedings of the IEEE, 77 (1), 114-138.

Tang, Z. and Dugan, J., 2004. Minimal cut set/sequence

generation for dynamic fault trees. Proceedings of

the 2004 Annual Symposium on Reliability and

Maintainability, pp. 207–213. January 26–29, Los

Alamitos (California USA).

Tsukiyama, S., Shirakawa, I., Ozaki, H. and Ariyoshi,

H., 1980. An Algorithm to Enumerate All Cut Sets

of a Graph in Linear Time per Cutset. Journal of

the ACM, 27 (4), 619–632.

http://math.nist.gov/MatrixMarket/data/NEP/%20mvmrwk/rw136.html
http://math.nist.gov/MatrixMarket/data/NEP/%20mvmrwk/rw136.html
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9034
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9034

