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ABSTRACT 

We describe how a Discrete Time Markov chain 

simulation and graph theory concepts can be used 

together to efficiently analyze behavior of complex 

distributed systems. Specifically, the paper shows how 

minimal s-t cut set analysis can be used to identify state 

transitions in a directed graph of a time-inhomogeneous 

Markov chain, which when suitably perturbed, lead to 

performance degradations in the system being modeled. 

These state transitions can be then be related to failure 

scenarios in which system performance declines 

catastrophically in the target system being modeled. 

Using a large-scale simulation of the grid system, we 

provide examples of the use of this approach to identify 

failure scenarios. Preliminary experiments are reported 

that show this approach can be applied to problems of 

significant size. The approach described here combines 

techniques whose use together to analyze dynamic 

system behavior has not previously been reported. 

 

Keywords: time-inhomogeneous Discrete Time Markov 

chain; distributed system; minimal s-t cut set. 

 

1. INTRODUCTION 

In large-scale, dynamic distributed systems, such as 

computing grids, the interactions of many independent 

components can lead to emergent system-wide 

behaviors with unforeseen, often detrimental, outcomes 

(Mills and Dabrowski 2008). To ensure availability and 

reliability of computing services in such environments, 

new techniques will be needed to rapidly assess trends 

and predict changes in system behavior caused by such 

factors as shifts in workload, modifications to system 

configurations, policy changes, or failures. 

 In earlier work (Dabrowski and Hunt 2009), we 

described a succinct Discrete Time Markov chain 

(DTMC) representation for analyzing the behavior of a 

grid computing system in order to identify potential 

failure scenarios in which system-wide performance 

collapses. In this representation, the stochastic 

characteristics of Markov chains were used to 

summarize the evolving state of a system, in which 

dozens of users and grid service providers interacted to 

process over 1000 grid computing tasks over simulated 

time durations (Mills and Dabrowski 2008). To capture 

change in system behavior over time, the DTMC 

representation was made time inhomogeneous–also 

referred to as piecewise homogeneous (Rosenberg, 

Solan, and Vielle 2004)–in which a set of transition 

probability matrices (TPMs) was used to model 

successive time periods. The time-inhomogeneous TPM 

set could be perturbed by systematically changing the 

values of related state transition probabilities to 

examine alternative system execution paths. State 

transitions were deemed critical state transitions if they 

could be perturbed to cause system performance to 

decline drastically. Once identified, these critical 

transitions could then be related to events such as faults, 

policy changes, and workload shifts, in order to describe 

failure scenarios in a target system being modeled. The 

perturbed TPM set could be used to simulate the rate at 

which performance declines in response to such events 

and to establish thresholds, beyond which increased 

incidence of failure caused performance collapse. This 

initial approach, however, required exhaustive search of 

the TPM set in order to find failure scenarios.  

 To overcome this limitation, this paper extends 

(Dabrowski and Hunt 2009), to analyze the DTMC as a 

directed graph and to use minimal s-t cut set analysis 

(Tsukiyama, Shirakawa, Ozaki, and Ariyoshi 1980) to 

identify critical state transitions, which if perturbed, 

reveal potential performance collapses in the target 

system being modeled. We show that the use of 

minimal s-t cut set analysis reduces the computation 

needed to find critical transitions, and can thus be 

applied to more complex problems in comparison to the 

exhaustive search methods used in our initial approach 

(Dabrowski and Hunt 2009). Further, we show that 

minimal s-t cut analysis can also find combinations of 

critical transitions that represent more complicated 

failure scenarios, which our initial approach also could 

not do. In experiments, our new approach is applied to 

analyze grid system simulations with different durations 

and workloads. We assess the use of minimal s-t cut set 

analysis to predict failure scenarios, using a detailed, 

large-scale grid simulation as a proxy for a real-world 

system. The application of minimal cut set analysis to a 

grid system parallels our use of this method to analyze 

dynamic behavior in cloud computing systems, which 

we report in (Dabrowski and Hunt 2011). The use of 

this method in two different domains is essential to 

investigating the generality of the approach.  
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 This paper also considers whether minimal s-t cut 

set analysis can be applied to large problems. Since 

larger directed graph problems can potentially contain 

many minimal s-t cut sets, we investigate the use of a 

cut set identification algorithm that can be bounded to 

run within reasonable time limits. We evaluate the 

effectiveness of this algorithm in identifying critical 

transitions in DTMCs with up to 50 states and 160 state 

transitions. To our knowledge, the use of minimal s-t 

cut set analysis to guide perturbation of a time-

inhomogeneous DTMC has not previously been studied 

as an approach for analyzing dynamic behavior in 

complex distributed systems.  

 This paper is organized as follows. Section 2 

reviews related work on using Markov chains to analyze 

dynamic systems. Section 3 summarizes the DTMC for 

the grid system example used here. Section 4 defines 

minimal s-t cut sets and describes their use in finding 

critical state transitions. Section 5 presents an algorithm 

for computing minimal s-t cut sets in large DTMC 

graphs and analyzes its performance. Section 6 

discusses future work and concludes. 

 

2. RELATED WORK 

The method discussed in this paper is distinguishable 

from the well-known use of DTMCs to provide 

quantitative measures of system performance and 

reliability, which we review in (Dabrowski and Hunt 

2009). Instead of measuring system reliability, we use 

DTMCs to examine alternative execution paths in 

dynamic systems in order to identify failure scenarios. 

      Both perturbation analysis and graph theory have 

previously been applied to DTMCs, but for different 

purposes than we intend. Perturbation analysis of 

DTMCs has been the topic of theoretical (Schweitzer 

1968; Hassin and Haviv 1992) and computational study 

(Meyer 1989; Stewart and Dekker, 1994). Other 

researchers have used system performance gradients 

that are based on key decision parameters to perturb 

Markov models (Ho and Li 1988; Suri 1989; Cao and 

Zhang 2008). While gradient-based approaches 

demonstrated potential in modeling performance 

change, some issues involving computation of gradients 

required further research to fully resolve (Cao and 

Zhang 2008). Also, gradient-based approaches appear to 

be geared for system optimization, rather than for 

examining alternative execution paths to identify 

situations in which performance degrades.  

     Graph-theoretic methods have also been used 

previously to study dynamic behavior in Markov chain 

models. For example, graph decomposition has been 

used to calculate stationary probability distribution 

vectors of Markov chains (Benzi and Tuma 2002; 

Gambin, Kryzanowski and Pokarski 2008; as well as to 

measure how perturbation affects stationary 

distributions (Solan and Vielle 2003). Minimal cut set 

analysis has been used on topology graphs of avionics 

system components to identify the shortest sequence of 

component failures (Tang and Dugan 2004). However, 

these applications of graph theory have been targeted 

for analysis of specific subsystems in their respective 

domains, rather than using minimal s-t cut set analysis 

to identify global failure scenarios in the manner we 

envision. Finally, there are maximum-flow algorithms 

(Ford and Fulkerson 1962; Goldberg and Tarjan 1988), 

well-known graph-theoretic methods that find s-t cut 

sets on the basis of flow levels. These algorithms could 

potentially be used to identify critical state transitions. 

However, because these algorithms use flows, they are 

distinguishable from Markov chain approaches and so 

best merit separate investigation. 

 

3. THE DISCRETE TIME MARKOV CHAIN 

The DTMC model of a grid system was developed by 

observing a large-scale grid computing simulation 

(Mills and Dabrowski 2008). This section overviews the 

DTMC model, with full details in (Dabrowski and Hunt 

2009). The DTMC model of the grid system simulates 

the progress of over 1000 computing tasks from the 

time they are submitted by a user to the grid for 

execution to the time they either complete or fail. Figure 

1 shows a state diagram of this system, which describes 

the lifecycle of a single task. This model has 7 states: an 

Initial state, where a task remains prior to submission; a 

Discovering state, during which service discovery 

directories are accessed to locate grid service providers 

who are able to execute the task; a Negotiating state 

during which a Service Level Agreement (SLA) for task 

execution is negotiated with a provider; a Waiting state 

in which tasks reside that are temporarily unsuccessful 

in discovery or negotiation; and a Monitoring phase in 

which a provider who has entered into an SLA executes 

a task by a deadline. Transitions between states, shown 

in Figure 1 by arrows, represent actions taken by the 

grid system to process a task. All tasks eventually enter 

either the Tasks Completed or Tasks Failed state, which 

are the absorbing states of the Markov chain, because 

once entered, a task cannot leave. A Markov chain with 

these characteristics is called an absorbing chain. 

 

 

 

 

 

 

 

 

 

 

Figure 1: State model of grid computing system. 

 

The large-scale grid simulation was observed over 

extended durations to accumulate frequencies for the 

state transitions shown in Figure 1, compute transition 

probabilities, and form TPMs. We computed transition 

probabilities by determining where state transitions 
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occur in the large-scale model code and inserting 

counters at those places. State transition probabilities 

were derived as follows. Given states si, sj, i,j = 1…n 

where n=7, pij, is the probability of transitioning from 

state i to state j, written as si  sj. This probability is 

estimated by calculating the frequency of si  sj, or fij, 

and dividing by the sum of the frequencies of si to all 

other states sk, as shown in equation (1) 

 

                                                                             (1) 

 

 

Here i and j may be equal, to allow for self transitions, 

which are counted if the task process remained in a state 

longer than a discrete time step, chosen to be 85 s. The 

resulting TPM is a 7 × 7 stochastic matrix, where rows 

stand for the state the transition originates from, or the 

from state, i, and columns represent states the transition 

goes to, or the to state, j. Figure 2 shows an example of 

such a TPM. Each element in this TPM contains a pij, 

where i and j are the from and to states, respectively. As 

in any stochastic TPM, the transition values of all row 

elements must sum to 1.0. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

Figure 2: (a, b) Summary TPMs for the grid system 

over (a) 8- and (b) 640-hour durations. The summary 

TPMs are weighted averages of their component time 

period TPMs, in which the weight of each time period 

TPM is determined by the relative number of transitions 

in the time period.  

 

 Separate observations were made to create two 

cases: (a) one in which the system executes for 8 hours 

with varying workload; and (b) a 640-hour execution 

that reaches near steady state. To create time-

inhomogeneous representations for the two cases, the 

total duration of each was divided into equal periods of 

7200 s and a TPM was computed for each period. 

Figure 2 shows the summary TPMs for the two cases, 

which are weighted averages of their respective time 

period TPMs. The weights are based on the relative 

number of transitions in each period. 

 

3.1. Simulating System Behavior 

To simulate system behavior over time, a well-known 

DTMC method was employed, which we refer to as 

Markov simulation. For further description, see (Hunt, 

Morrison, and Dabrowski 2011; Dabrowski and Hunt 

2009). In Markov simulation, multiplication of time 

period TPMs is used to advance the system state in 

discrete time steps of a fixed duration, h.  Here, h = 

85 s. Since a time period covers a duration of dperiod = 

7200 s, each time-period TPM is made to represent S= 

dperiod/h, or 85, steps. Thus, an 8-hour Markov 

simulation, with a 2-hour period for residual clean-up, 

covers 5 time periods, consisting of a total of 425 time 

steps. Correspondingly, a 640-hour Markov simulation 

with a clean-up period covers 321 time periods with 

over 27, 000 time steps.  

 In Markov simulation, the state of the system can 

be summarized at any time step in an n-element state 

vector v, where n is the number of states in the related 

Markov chain. Each of the n elements in v represents 

the proportion of tasks in one of the n states of the 

DTMC. For the Markov chain of the grid system, the 

n=7 elements are ordered so as to correspond to the 

states in Figure 1. Thus, the first element in v contains 

the proportion of tasks in the Initial state, the second 

contains the proportion of tasks in the Waiting state, and 

so forth. In Markov simulation, the vector v represents 

the system state at different time steps, such that the 

vector vm represents the system state at time step m. To 

evolve the system state by one discrete time step, the 

vector vm is multiplied by the TPM, Q
tp

, for the 

applicable time period tp to produce a new system state 

vm+1, as shown in equation (2): 

 

                                                                             (2)      

 

where T indicates a matrix transpose. Starting with v1, 

which represents a system state with a value of 1.0 for 

the Initial state (see Figure 1) and 0 for all other states 

(i.e., all tasks begin in the Initial state), equation (2) is 

repeated for 425 time steps to evolve the system state 

over 8 simulated hours. This results in a system state 

vector, v425 at the end of the simulated 8 hours. To 

simulate 640 hours, equation (2) is repeated for 27, 000 

time steps to produce a state vector, v27000, at the end of 

640 hours. In both cases, repeated application of 

equation (2) causes the proportion of tasks to be 

distributed over the 6 states other than the Initial state 

(i.e., all states have transitioned out of Initial). In an 

absorbing chain, tasks eventually transition into one of 

the absorbing states, i.e., the Tasks Completed or Failed 

states, where they remain permanently. Thus, a measure 

of the performance of a system is the proportion of tasks 

that enter the Tasks Completed state, because this 

absorbing state represents tasks that have succeeded. On 

the other hand, a performance collapse may be 

 (Qtp)T * vm= vm+1, where tp = integral value (m/S) + 1 

  

 


n

k ik

ij

ij

f

f
p

1

Initial Wait Disc Ngt Mon Comp Failed

Initial 0.9697 0 0.0303 0 0 0 0

Wait 0 0.8363 0.0673 0.0918 0 0 0.0046

Disc 0 0.0355 0.6714 0.2931 0 0 0

Ngt 0 0.4974 0.0182 0.2882 0.1961 0 0.0001

Mon 0 0 0 0.0003 0.9917 0.0080 0

Comp 0 0 0 0 0 1.0 0

Failed 0 0 0 0 0 0 1.0

Initial Wait Disc Ngt Mon Comp Failed

Initial 0.9997 0 0.0003 0 0 0 0

Wait 0 0.7612 0.0460 0.1911 0 0 0.0017

Disc 0 0.0686 0.6084 0.3230 0 0 0

Ngt 0 0.2401 0.0062 0.2378 0.4801 0 0.0358

Mon 0 0 0 0.0007 0.9902 0.009 0

Comp 0 0 0 0 0 1.0 0

Failed 0 0 0 0 0 0 1.0



simulated either when a large proportion of tasks enter 

the Task Failed state, or when they are otherwise 

prevented from entering Tasks Completed. Figure 3 

shows that Markov simulation of the grid system 

closely approximates the performance of a large-scale 

simulation in both the 8- and 640-hour cases in terms of 

proportion of tasks that enter the Tasks Completed state. 
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Figure 3: Performance of Markov chain and large-scale 

simulations as measured by Tasks Completed over: (a) 8 

hours (5 time-period TPMs – 421 time steps with an 

extra cleanup period), and (b) 640 hours (321 time-

period TPMs – 27000 time steps with cleanup). A time 

period represents 7200s and a time step represents 85 s. 

 

3.2. Perturbing Critical State Transitions  

To identify critical state transitions, we described a 

perturbation algorithm in (Dabrowski and Hunt 2009), 

which systematically raises and lowers all feasible 

combinations of non-zero state transition probabilities 

in individual rows of a TPM for a DTMC. The different 

combinations of changed values are then evaluated by 

Markov simulation in order to explore potential 

alternative system executions. This algorithm can be 

applied to exhaustively perturb all feasible 

combinations of state transition probabilities in all rows 

of a TPM. The algorithm outputs a set of individual 

critical state transitions, which when perturbed to 

extreme values, cause system performance to degrade 

drastically. We must omit the full description to the 

perturbation algorithm due to lack of space. In 

(Dabrowski and Hunt 2009), we showed that exhaustive 

application of this algorithm could replicate (with good 

agreement) scenarios in which performance drastically 

degraded in the large-scale grid simulation. 

 Figure 4 provides an example of a critical state 

transition, Negotiating  Monitoring, identified by the 

perturbation algorithm. The figure shows the impact of 

a set of related perturbations, in which lowering the 

probability of transition to 0 for Negotiating  

Monitoring causes the proportion of Tasks Completed to 

fall to 0 in the Markov simulation (blue curves). The 

perturbation of this transition models a failure scenario 

in which negotiations for SLAs fail, due to events such 

as system-wide viruses which gradually affect all 

providers; hence, tasks cannot progress to the 

Monitoring state. Figure 4 also shows the result altering 

the target large-scale grid simulation (red curve), to 

randomly fail negotiations with systematically increased 

incidence. The figure shows that both the Markov and 

large-scale simulation curves exhibit low thresholds for 

the rate of successful negotiation, below which there is 

a sharp drop in Tasks Completed. In the Markov 

simulation this threshold is below 0.05, while in the 

large-scale simulation, the threshold is slightly higher at 

0.15. However, both curves are sufficiently similar, so 

that the perturbation algorithm could be used to forecast 

that increased incidence of failed negotiation will 

eventually lead to a system performance collapse. In 

(Dabrowski and Hunt 2009), we provide the complete 

results of applying the perturbation algorithm. Though 

its computational cost prohibits use on large problems, 

the perturbation algorithm provides a baseline for 

assessing the use of minimal s-t cut set analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Perturbation of Negotiating State to reduce the 

probability of transition from Negotiating  

Monitoring while raising the probability of transition 

from Negotiating  Waiting in the 640-hour case. The 

blue curve shows the proportion of Tasks Completed 

estimated by the perturbation algorithm. Large-scale 

simulation results are denoted by red triangles. 

 

4. MINIMAL S-T CUT SET ANALYSIS IN A 

MARKOV CHAIN MODEL 

This section describes how identifying minimal s-t cut 

sets on paths between an Initial state and a desired 

absorbing state can be used to identify critical state 

transitions in a DTMC, which if perturbed, lead to 

system performance degradations. In contrast to the 

perturbation algorithm, which can identify only single 

state transitions that are critical, minimal s-t cut set 

analysis identifies combinations of critical state 
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transitions, an important benefit for analysis of more 

complex problems. In Section 5, we describe an 

algorithm for finding minimal s-t cut sets and show its 

effectiveness for large problems. Our approach does not 

use flow levels to identify minimality, but instead uses 

cardinality and other factors discussed below. 

 

4.1. Definitions 

In graph theory, a graph G (V, E) consists of a set of 

vertices V connected by edges from the set E. A 

directed graph is a graph in which edges can be 

traversed in only one direction. A Markov chain is a 

directed graph, in which vertices correspond to states 

and directed edges correspond to state transitions. A 

directed path through this graph is a sequence of state 

transitions from one state to another. In this problem, 

the directed paths of most interest are non-cyclic paths 

that lead from the Initial state to one of the two 

absorbing states: Tasks Completed or Tasks Failed.  

This paper considers only paths to Tasks Completed. 

Figure 5 shows two such paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: There are 2 directed paths (in red) from the 

Initial state to Tasks Completed, labeled 1 and 2. Three 

single-transition s-t cuts (minimal s-t cut sets consisting 

of one state transition) are marked by single bars. Two 

multiple transition s-t cuts (s-t cut sets with two 

transitions each) are marked by double bars: (a) 

Discovering  Negotiating and Discovering  

Waiting; and (b) Discovering  Negotiating and 

Waiting  Negotiating. Trap states are denoted by T. 

 

 A set of one or more edges, which if removed, 

disconnects all paths between two vertices s and t is 

referred to as an s-t cut set (Tsukiyama, Shirakawa, 

Ozaki, and Ariyoshi 1980). An s-t cut set is a minimal s-

t cut set if removal of any edge from the cut set 

reconnects s and t. By finding minimal s-t cut sets 

consisting of state transitions that disconnect the Initial 

and Tasks Completed states, it is possible to know 

where reducing the related transition probabilities to 0 

prevent tasks from completing. In this paper, minimal s-

t cut sets with a single member will be referred to as 

single-transition s-t cuts, while those with more than 

one member are multiple-transition s-t cuts.  State 

transitions that are members of a minimal s-t cut set are 

critical state transitions as defined above. 

4.2. Identifying Minimal s-t Cut Sets in the Grid 

Markov Chain Model 

In Figure 5, there are 3 single-transition s-t cuts: Initial 

 Discovering, Negotiating  Monitoring, and 

Monitoring  Tasks Completed. Figure 4 shows that 

reducing the probability of transition for Negotiating  

Monitoring to 0 using Markov simulation causes the 

proportion of tasks reaching Tasks Completed to drop to 

0. The same result occurs when the other two single-

transition s-t cuts, Initial  Discovering and 

Monitoring  Tasks Completed, are similarly perturbed 

(see Dabrowski and Hunt 2009). Use of the exhaustive 

perturbation algorithm confirmed that the 3 single-

transition s-t cuts identify state transitions, which if 

reduced to 0, cause the proportion of tasks reaching the 

Tasks Completed state to fall to 0 (see Section 5). These 

3 single-transition s-t cuts are critical state transitions 

that clearly relate to resource allocation and task 

execution functions. Figure 5 also shows two multiple-

transition s-t cuts, labeled (a) and (b), which disconnect 

all paths between the Initial from the Tasks Completed 

state. Both multiple-transition cuts consist of two 

transitions. In a multiple-transition s-t cut, lowering 

transition probabilities to 0 of all transitions in the cut 

set reduces the proportion of Tasks Completed to 0. 

Multiple-transition s-t cuts identify situations where a 

combination of state transitions is critical and together 

describe circumstances that degrade system 

performance. We return to multiple-transition s-t cuts in 

Section 5. 

 

4.3. Identifying Trap States 

 The previous discussion considered only state 

transitions between different states. However, in a 

DTMC, a state may also transition to itself in the next 

discrete time step and remain in the same state. In this 

paper, this is referred to as a self-transition. If a self-

transition probability is near 1, the task may stay in the 

state for a long time. Such a state effectively becomes a 

trap state. Figure 6 shows an example of how a trap 

state affects performance, when the self-transition 

probability of the Discovering state is raised to 1. As the 

self-transition probability approaches 1, tasks are 

increasingly stalled in Discovering, so that they cannot 

proceed to other states and complete by their deadlines. 

The evolution of Discovering into a trap state may 

correspond to a real-world failure scenario in which 

service discovery is impaired by directory failures, so 

that information about existing grid services cannot be 

retrieved. As the incidence of directory failures 

increases, the length of time to complete service 

discovery for all tasks also increases, until finally no 

task can progress beyond the discovery stage to begin 

negotiation. Figure 6 also shows how the large-scale 

simulation behaves when the equivalent failure is 

introduced. In the latter, the failure is modeled by 

systematically increasing the frequency of directory 

access failure. As in the example discussed in Section 

3.2, the perturbation shown in Figure 6 predicts how 

this failure scenario impacts the large-scale simulation. 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Perturbation of Discovering to increase the 

self-transition probability to 1, while decreasing the 

transition probability from Discovering to other states to 

0 in 640-hour case. The blue curve shows the 

proportion of tasks completed as estimated by the 

perturbation algorithm. Values from the large-scale 

simulation are shown by red triangles. 

 

 A trap states is distinguishable from a permanent 

absorbing state, because the latter always has a self-

transition probability of 1, while in the former, the 

transition probability varies. The concept of an s-t cut 

set can be extended to include vertices whose removal 

cuts all paths from s to t. A minimal set of such 

elements (edges and vertices) is a minimal s-t 

separating set (Hayakawa, Tsukiyama and Ariyoshi 

1999) a topic we leave for future work. 

 

5. PERFORMANCE OF MINIMAL S-T CUT 

SET ANALYSIS 

This section shows that minimal s-t cut set analysis is 

an effective and efficient means of finding critical state 

transitions and trap states. The section also shows the 

potential applicability of this method to large problems. 

Section 5.1 first describes a well-known algorithm, 

known as the node contraction algorithm, which we 

adapted to find minimal s-t cut sets in a directed graph. 

The node contraction algorithm is considered 

probabilistic (Karger and Stein 1996), because it can 

find solutions with a probability which can be increased 

to a high level by repeatedly executing the algorithm. 

Though it is not guaranteed to find all minimal s-t cut 

sets, the computational cost of node contraction can be 

bounded, making it potentially applicable to large 

problems where use of exhaustive methods would be 

infeasible. The node contraction algorithm also finds 

critical transitions that are part of multiple transition s-t 

cuts, which the perturbation algorithm cannot find.  

 Section 5.2 shows effectiveness and efficiency of 

node contraction for the grid system problem. Here, the 

node contraction algorithm is able to find all individual 

critical transitions and trap states that were found using 

the perturbation algorithm, but at far less cost. Section 

5.3 then reports experiments on the use of node 

contraction for finding critical state transitions in large 

Markov chain problems. To do this, the performance of 

the node contraction algorithm is tested by comparing it 

to the performance of an algorithm (Provan and Shier 

1996) that, unlike node contraction, enumerates all 

minimal s-t cut sets in a directed graph, and thus finds 

all critical transitions. While, like other algorithms of 

this type, the time complexity of (Provan and Shier 

1996) prohibits practical use on many large problems, 

the algorithm provides a good baseline for testing the 

effectiveness of node contraction. (The complexity of 

the minimal s-t cut set enumeration algorithm described 

in (Provan and Shier 1996) is O |E| for each s-t cut set 

that exists, where |E| is the number of edges in the 

graph). To examine the potential for scalability of 

minimal s-t cut set analysis, we wish to know what 

proportion of minimal s-t cut sets (and thus critical 

transitions) can be found by node contraction in large 

problems and the related computational cost. 

 

5.1. Overview of the Node Contraction Algorithm 

In this section, we summarize our implementation of the 

node contraction algorithm, with pseudo-code in 

(Dabrowski, Hunt and Morrison 2010). Though the time 

complexity of node contraction algorithms for directed 

graphs has not been studied, efficient versions of this 

algorithm for undirected graphs find a minimum cut 

with a complexity of O |V|
2
, where |V| is the number of 

vertices in the graph (Karger and Stein 1996). While 

this cost is significant, the algorithm can be used on 

large problems by controlling the number of executions, 

as will be discussed in Section 5.3.  

 The node contraction algorithm operates by 

randomly choosing two vertices connected by an edge 

and replacing these vertices with a single, new vertex. 

The new vertex assumes the edges by which the two 

replaced vertices were connected to the remainder of the 

graph (i.e., the edges of replaced vertices become the 

edges of the new vertex) and takes up the edges that 

connected the two replaced vertices. The result of each 

contraction is recorded. The process of randomly 

selecting pairs of vertices repeats until only two large, 

mega-vertices remain. The directed edges between the 

two remaining mega-vertices c1 and c2, and the directed 

edges between vertices <v1, v2>, v1≠ v2, in which v1 was 

replaced by c1 and v2 was replaced by c2, constitute a 

minimal s-t cut set of the graph. The node contraction 

algorithm was modified for an absorbing Markov chain 

problem to prevent the two vertices representing the 

Initial state, s, and the Tasks Completed absorbing state, 

t, from being contracted into the same vertex. This 

ensures that the Initial state, s, and Tasks Completed 

state, t, will not both end up in either c1 or c2. In this 

way, the edges between the two remaining mega-

vertices, c1 and c2, together with the vertices each has 

absorbed, yield a minimal s-t cut set of state transitions, 

which if removed, disconnect the Initial and absorbing 

state (Tasks Completed).  

 Since the algorithm randomly selects two 

connected vertices to combine, repeated applications 

produce different cut sets. The more the algorithm is 

repeated, the greater the chances that a large proportion, 

if not all, of the minimal s-t cut sets of interest will be 

obtained. Hence, the operation of the algorithm is 
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considered to be probabilistic. Because the number of 

repetitions can be controlled, computation cost can be 

bounded. Further, cut sets can identify potential trap 

states, which exist when all transitions in the cut set 

originate in one state. Perturbation then need be applied 

only to the transitions in the s-t cut set, in order to 

generate curves of tasks completed, such as appear in 

Figures 4 and 6, and to identify performance thresholds. 

 

5.2. Comparing the Perturbation Algorithm with 

Minimal s-t Cut Set Analysis  

Table 1 compares the result of applying the perturbation 

algorithm described in Section 3 with the result of 

minimal s-t cut set analysis using node contraction, 

when both are used to identify individual critical state 

transitions and trap states. The perturbation algorithm 

was applied to the 5 rows representing non-absorbing 

states (labeled a-e) in the time period TPMs for the 8- 

and 640-hour cases. The combinations of row elements 

representing the transition probability being decreased 

and increased appear in the two leftmost columns. For 

each such combination of transitions, the next two 

columns show the proportion of Tasks Completed for 

the 8- and 640-hour cases as the transition probability 

being decreased falls to 0. The rightmost column 

indicates if the state transition being reduced 

corresponds to a single-transition s-t cut (see Figure 5).  

 Table 1 shows that all combinations where 

perturbation causes a decline in the proportion in Tasks 

Completed to 0 correspond to single- transition s-t cuts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are 7 such combinations, and all correspond to 

single-transition s-t cuts that are verified by large-scale 

simulation. In no case, did node contraction find an s-t 

cut that did not correspond to such a drastic reduction. 

For instance, in Table 1(c), rows 10–12, when the 

probability of transition from the Negotiating state to 

Monitoring (i.e., Negotiating  Monitoring) is reduced 

to 0, the proportion of Tasks Completed falls to 0. This 

is shown in Figure 4. Figure 5 shows that Negotiating 

 Monitoring is a single-transition s-t cut.  

 Note that in Table 1(d), row 3, reducing the 

probability of Monitoring self-transition while raising 

the probability of Monitoring  Negotiating also 

caused a severe decline in the proportion of Tasks 

Completed. This happens because the probability of 

transition for Monitoring  Tasks Completed is very 

low (see Figure 2), and so the probability of Monitoring 

self-transition must be very high to ensure tasks remain 

in the Monitoring state long enough to eventually 

transition to Tasks Completed. Thus, reducing the 

probability of Monitoring self-transition to 0 while 

raising the probability of Monitoring  Negotiating 

prevents tasks from reaching Tasks Completed—and 

acts like a single-transition s-t cut on Monitoring  

Tasks Completed. However, because the transition 

probability of Monitoring  Tasks Completed is not 

lowered to 0 by this perturbation, some tasks are able to 

complete. Table 1 also contains 3 rows that show only 

partial reductions (Table 1 (a), rows 5 and 6, and Table 

1 (b), row 5). These correspond to the state transitions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) row = Negotiating

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.985 0.938 No
3 Waiting Monitoring 1.000 0.939 No
4 Discovering Waiting 0.954 0.935 No
5 Discovering Negotiating 0.957 0.935 No
6 Discovering Monitoring 0.967 0.936 No
7 Negotiating Waiting 0.923 0.931 No
8 Negotiating Discovering 0.941 0.933 No
9 Negotiating Monitoring 0.988 0.938 No
10 Monitoring Waiting 0.000 0.000 Yes
11 Monitoring Discovering 0.000 0.000 Yes
12 Monitoring Negotiating 0.000 0.000 Yes

(a)  row = Discovering

Element 
reduced0

Element 
raised

Proportion of 
Tasks Complete

s-t cut 
exists

8-hour 640-hour

1 Waiting Discovering 0.957 0.935 No
2 Waiting Negotiating 0.959 0.935 No
3 Discovering Waiting 0.939 0.935 No
4 Discovering Negotiating 0.963 0.935 No
5 Negotiating Waiting 0.894 0.933 No
6 Negotiating Discovering 0.651 0.932 No

(d)  row = Monitoring

1 Negotiating Monitoring 0.982 0.937 No
2 Negotiating Tasks Comp 0.982 0.938 No
3 Monitoring Negotiating 0.028 0.186 Yes
4 Monitoring Tasks Comp 0.980 0.949 No
5 Tasks Comp Negotiating 0.001 0.006 Yes
6 Tasks Comp Monitoring 0.002 0.016 Yes

(b)  row = Waiting

Element 
reduced0

Element 
raised

Proportion of 
Tasks Complete

s-t cut 
exists

8-hour 640-hour

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.981 0.939 No
3 Discovering Waiting 0.937 0.934 No
4 Discovering Negotiating 0.963 0.936 No
5 Negotiating Waiting 0.818 0.843 No
6 Negotiating Discovering 0.939 0.932 No

(e)  row = Initial

1 Discovering Initial 0 0 Yes
2 Initial Discovering 0.970 0.988 No

Table 1: Correspondence of results of applying the perturbation algorithm to the TPMs for the 8- and 640-hour cases 

with single-transition s-t cuts found by the node contraction algorithm. The perturbations represented by individual rows 

correspond to single-transition s-t cuts in Figure 5 as follows: Table (c) rows 10–12 to Negotiating  Monitoring; Table 

(d) rows 3, 5, and 6 to Monitoring  Tasks Completed; and Table (e) row 1 to Initial  Discovering.  Note also the 

explanation in the text for Table (d) row 3. Perturbations verified by large-scale simulation are bolded and shaded. 
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In the two multiple transition s-t cuts in Figure 5, which 

were identified by node contraction, but could not be 

found by the perturbation algorithm of Section 3. 

 The perturbation algorithm was also applied to 

raise the self-transition probability of the 5 non-

absorbing states in the grid model to 1. This 

perturbation caused the proportion of Tasks Completed 

to decline to 0 when applied to 4 of these states: Initial, 

Discovering, Negotiating, and Monitoring states. All 4 

are trap states found through node contraction. The fifth 

state Waiting, is not a trap state; but is part of a state 

transition that is a member of both multiple-transition s-

t cuts in Figure 5. Hence, if the self-transition 

probability of Waiting is raised toward 1, there is only a 

partial reduction in proportion of tasks completed. 

 Executing the exhaustive perturbation algorithm on 

non-absorbing rows of the grid model took 56 minutes 

in the 8-hour case and 4.5 hours in the 640-hour case. In 

comparison, node contraction needed less than 0.01 s to 

find all minimal s-t cut sets and trap states. In the 8-

hour case, generating Markov simulation curves to 

reduce the proportion of Tasks Completed to 0 for all 

minimal s-t cut sets and trap states required 244 s, or 7 

% of the 56 minutes needed by the perturbation 

algorithm. For the 640-hour case, these computations 

took 230 s, or 1.4 % of the 4.5 hours needed by the 

perturbation algorithm. Thus, minimal s-t cut set 

analysis needed two orders of magnitude less time than 

exhaustive application of the perturbation algorithm. All 

experiments were executed on a workstation with dual 

quad-core, 3.16GHz processors and 32 GB memory.  

 

5.3. Using Node Contraction to Find Minimal s-t Cut 

Sets in Large Problems 

This section reports the results of experiments on the 

use of the node contraction algorithm to find critical 

transitions in large, complex Markov chain models with 

many multiple transition minimal s-t cuts. These 

experiments compare the results of using the 

contraction algorithm to the results produced by the 

enumeration algorithm of (Provan and Shier 1996) 

which is guaranteed to find all minimal s-t cut sets and 

the critical transitions in these cut sets. Here, the 

criticality of transitions is estimated using measures we 

define for these experiments. The results show that, 

with some exceptions, the node contraction algorithm 

found a large proportion of the most critical cut sets in 

two orders of magnitude less time than did exhaustive 

enumeration. While further experiments are needed, 

these preliminary investigations suggest that minimal s-

t cut set analysis can effectively identify critical 

transitions in large, complex Markov chain graphs as 

might be encountered in real-world problems. 

 

5.3.1. Experimental Design  

To perform these experiments, four Markov chain 

models were selected, each consisting of 40 or 50 states, 

from (Boyarsky 1988; Stewart 2004; Jensen and Jessup 

1986) and single time-period TPMs were generated 

using (Hunt 1994). All four problems were originally 

ergodic chains, which were suitably modified to be 

absorbing chains. Though the matrices were sparse, 

these problems were large and complex, with a very 

sizable number of minimal s-t cut sets between the 

Initial and absorbing states (> 4×10
8
 for the largest; see 

Table 2.) In contrast to the grid system model, minimal 

s-t cut sets for these problems consisted of multiple 

state transitions, which could correspond to 

combinations of circumstances that impact system 

performance. In (Dabrowski, Hunt and Morrison 2010), 

the full description of all four Markov chain problems is 

provided, which we omit here due to lack of space. 

 To provide a baseline measure for the number of 

minimal s-t cut sets in these Markov chain graphs, we 

implemented the minimal s-t cut set enumeration 

algorithm of (Provan and Shier 1996), which lists all cut 

sets. To determine which minimal s-t cut sets were most 

critical, we selected ranking criteria based on the idea 

that the most critical cut sets will have a small number 

of state transitions. We chose this basis, because fewer 

transitions represent smaller combinations of 

circumstances that are more likely to occur and thus 

more likely to impact a system. (Note: this intuition is 

supported in the case of undirected graphs by the 

finding (Karger 2001) that small cut sets are more likely 

to disconnect undirected graphs, if edges of the graph 

that fail independently with a known probability. Also 

in (Dabrowski and Hunt 2011), we use this ranking 

criterion to analyze a DTMC for a cloud computing 

system.) We used this basis to choose 3 ranking criteria. 

The first criterion, Sort A, ranks minimal s-t cut sets by 

the fewest number of edges as the primary sorting 

criterion and lowest total transition probability of edges 

as the secondary criterion. The second, Sort B, uses 

only the lowest total transition probability of edges in 

the cut set as a sorting criterion (which also tends to 

rank cut sets with few transitions higher). Hence, Sorts 

A and B are likely to identify minimal s-t cut sets in 

which small perturbations to the fewest number of state 

transitions are likely to produce the largest changes. The 

third ranking criterion, Sort C, uses the least number of 

edges as a primary sorting criterion and the highest total 

transition probability of edges as a secondary criterion. 

Sort C identifies cut sets consisting of state transitions 

that are more likely to be taken and therefore, if 

perturbed, more likely to affect system behavior. 

 

5.3.2. Experimental Results  

We applied the node contraction algorithm and the 

enumeration algorithm of (Provan and Shier 1996) to 

the four TPMs, ranked the minimal cut sets produced by 

each using the ranking criteria described above, and 

compared the results to determine the proportion of 

most highly ranked cut sets that the node contraction 

algorithm could find. With the exception of Matrix 1, 

Table 2 shows that, with 100,000 repetitions, node 

contraction generated 91.4 % of the top 100 ranked cut 

sets that were generated by the enumeration algorithm 

for all four TPMs under all three sorting criteria. The 

contraction algorithm produced these results in 1.3 % of 



the time needed by the enumeration algorithm. This 

amounts to a two-order of magnitude improvement in 

time. For instance, for Matrices 2 and 3, the algorithm 

was able to find almost all top 100 minimal s-t cut sets 

in a relatively small fraction of the number of hours 

required by the enumeration algorithm. For Matrix 4, 

the node contraction algorithm could find all the top 

100 under sort criteria B and C in about 15 minutes (as 

opposed to 156.1 hours through enumeration). Here, 

node contraction was successful despite the fact that 

Matrix 4 has over 4 ×10
8
 minimal s-t cut sets. 

  

Table 2:  Comparison of minimal s-t cut sets generated 

by the enumeration algorithm of (Provan and Shier 

1996) and by the node contraction algorithm. At 10,000 

repetitions, node contraction generated 77.2 % (variance 

555.2) of the top 100 ranked cut sets in 0.14 % of the 

time for Sorts A–C. At 100,000 repetitions, node 

contraction generated 91.4 % (variance 432.0) of the cut 

sets found by enumeration in 1.3 % of the time.   

 

 

 

 

 

 

 

 

 

 

 

 

However, in Matrix  4, the algorithm found only 37 of 

100 high ranked minimal s-t cut sets under Sort A. 

Also, for Matrix 1, Table 2 shows that the node 

contraction algorithm had to run longer than the 

enumeration algorithm, before it began to produce a 

large percentage of highly-ranked cut sets. This 

difference in performance may be attributable in part to 

topological characteristics such as vertices (states) with 

large numbers of edges (state transitions), which 

increases vertex interconnectivity and impedes the 

contraction process. This exception suggests that in 

some cases where TPMs are small, it may be more 

efficient to enumerate cut sets than to generate them 

probabilistically. Despite these exceptions, the data 

shows that the node contraction algorithm can be used 

to find a high proportion of minimal s-t cut sets 

representing combinations of critical state transitions in 

larger Markov chains within reasonable time limits. 

 

6. CONCLUSIONS AND FUTURE WORK 

This paper has described an approach for using minimal 

s-t cut set analysis to guide perturbation of a time-

inhomogeneous DTMC in order to understand the 

potential for failure in grid computing systems. The 

approach combines multiple techniques in a way not 

previously reported. In this approach, minimal s-t cut 

sets are computed for paths from the Initial to selected 

absorbing states in the directed graph of a DTMC. 

These cut sets can be used to identify critical state 

transitions, which if perturbed, reveal areas for potential 

performance degradation. The perturbation of critical 

state transitions in turn provides a basis to identify 

potential failure scenarios that could occur in the target 

system being modeled. By perturbing critical state 

transitions incrementally, it is possible to quantitatively 

measure performance degradation and to predict how 

the target system being modeled is likely to respond to 

increased incidence of failure. As we have shown, the 

stochastic character of the Markov chain representation 

of the system state enables modeling of systems having 

large numbers of tasks, while time inhomogeneity 

allows modeling of system evolution over time. Using a 

large-scale grid system as a proxy for a real-world 

system, we used the approach described here to identify 

failure scenarios in systems that process hundreds of 

tasks over different durations. Our results showed that 

minimal cut set analysis could be used to identify (in 

two-orders of magnitude less time) all of the failure 

scenarios found using exhaustive search techniques. In 

addition, this method also discovered failure scenarios 

that involved multiple state transitions, which the 

exhaustive search algorithm could not. To find critical 

state transitions in larger Markov chains, the paper has 

presented a probabilistic algorithm for minimal s-t cut 

set analysis. Experimental results in Section 5.3.2 show 

the potential of this algorithm for efficiently analyzing 

large, complex problems and finding related critical 

transitions that represent complicated circumstances. 

 To further evaluate the utility of minimal s-t cut set 

analysis, it will be necessary to carry out experiments in 

which DTMC representations are constructed for 

different problem domains, such as reported in 

(Dabrowski and Hunt 2011). The use of this approach 

will have to be further evaluated on larger problems as 

we have begun to do in this paper. As part of this effort, 

it will also be necessary to investigate other methods for 

finding minimal s-t cut sets in large, complex directed 

graphs. For instance, there are alternative approaches to 

node contraction, such as (Curet, DeVinney and Gaston 

2000) which could be examined. Another possible 

method involves use of maximum-flow algorithms 

(Ford and Fulkerson 1962; Goldberg and Tarjan 1988) 

to find s-t cut sets that identify critical transitions. These 

algorithms find s-t cut sets on the basis of maximum 

flow and minimum capacity. Potentially, maximum-

flow algorithms could be adapted to find cut sets and 

rank them on the basis of their nearness to maximum 

flow and minimum capacity, rather than the criteria 

described here. To enable such rankings, the work of 

(Curet, DeVinney and Gaston 2000; Balcioglu and 

Wood 2003) could be used. In addition, we are also 

investigating the use of methods that are not based on 

graph theory concepts to analyze dynamic behavior in 

complex systems. In (Hunt, Morrison and Dabrowski 

2011), we describe the use of spectral methods for 

eigendecompositon to identify critical state transitions, 

and in (Dabrowski, Hunt and Morrison 2010) we 

employ this technique as a complementary method to 

Minimal s-t cut 
set 
enumeration

Proportion (in %) of 100 top-ranked minimal 
s-t cut sets ranked by criteria A, B that were 
found by the node contraction algorithm

Number 
of cut 
sets

Time
(in 
hours)

After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332 s 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36.0  218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 193.6 106 s 30 80 62 1051 s 37 100 100
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minimal s-t cut set analysis. Beyond this, it is our hope 

that this paper will provide useful ideas to other 

researchers studying dynamic behavior in complex 

systems, and that ultimately, the work will lead to the 

development of effective tools for this purpose. 
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