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Abstract 
In large-scale grid systems with decentralized control, the 
interactions of many service providers and consumers will 
likely lead to emergent global system behaviours that 
result in unpredictable, often detrimental, outcomes. This 
possibility argues for developing analytical tools to allow 
understanding, and prediction, of complex system 
behaviour in order to ensure availability and reliability of 
grid computing services. This paper presents an approach 
for using piece-wise homogeneous Discrete Time Markov 
chains to provide rapid, potentially scalable, simulation of 
large-scale grid systems. This approach, previously used 
in other domains, is used here to model dynamics of 
large-scale grid systems. In this approach, a Markov chain 
model of a grid system is first represented in a reduced, 
compact form. This model can then be perturbed to 
produce alternative system execution paths and identify 
scenarios in which system performance is likely to 
degrade or anomalous behaviours occur. The expeditious 
generation of these scenarios allows prediction of how a 
larger system will react to failures or high stress 
conditions. Though computational effort increases in 
proportion to the number of paths modelled, this cost is 
shown to be far less than the cost of using detailed 
simulation or testbeds. Moreover, cost is unaffected by 
size of system being modelled, expressed in terms of 
workload and number of computational resources, and is 
adaptable to systems that are non-homogenous with 
respect to time.  The paper provides detailed examples of 
the application of this approach. 
Keywords: Grid computing; Perturbation analysis; 
Discrete Markov chain; Piece-wise homogenous Markov 
chain. 

1 Introduction 
The long-term continued commercial success of grid 
technology will likely depend on emergence of large-
scale, decentralized grid systems in which large numbers 
of service providers and consumer clients enter into 
service-level agreements (SLAs) (Andrieux et al. 2007) to 
allocate grid resources. Here, as in other large-scale 
systems with decentralized control, the interactions of 
many consumers and providers can lead to emergent 
global system behaviours that result in unpredictable, 
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often detrimental, outcomes (Mills and Dabrowski 2006). 
The movement toward realization of large-scale grid 
systems is evident in recent developments such as 
commercial cloud computing, in which mass computing 
services are made available for sale on-line. Clouds and 
other commercial developments likely foreshadow 
eventual creation of grid compute economies that operate 
on market principles. Having in place analytical tools to 
allow understanding, and prediction, of complex system 
behaviour will be necessary to ensure availability and 
reliability of grid services in economic settings. 

For these reasons, the development of analytical tools 
that take into account complex systems behaviour will be 
a necessity. In particular, tools that can predict the impact 
on overall system performance of changes to key system 
parameters will be of particular importance. Previous 
researchers have used simulation to study behaviour of 
grid systems that utilize different economic strategies 
(Chun and Culler 2002, Yeo and Buyya 2005, Mills and 
Dabrowski 2008). Studies of failure scenarios in grid 
system such as (Mills and Dabrowski 2006) have shown 
that small variations in key variables can lead to 
alternative execution paths that yield large differences in 
overall system performance. Although more practical 
than using operational grid systems as testbeds, large-
scale simulations that attempt to accurately reproduce 
system structure and component behaviour are often a 
computationally expensive proposition when many 
alternative execution paths must be considered.  
Moreover, computational expense increases dramatically 
with increase in model size, a critical factor for analysing 
grid systems which, even now, can consist of more than 
105 computing resources (Carr 2006, Raffo 2006). 

To remedy this situation, this paper presents an 
approach in which discrete time Markov chain analysis is 
combined with a form of rapid, scalable, simulation. This 
approach, previously used in other areas, is used here to 
model dynamics of large-scale grid systems. In this 
approach, a state model of the system is first derived by 
observing system operation and then converted into a 
succinct Markov chain representation in which model 
scale is reduced by taking advantage of the stochastic 
characteristics of this model. The resulting model is 
expressed as a set of transition probability matrices 
(TPMs) that succinctly summarize system dynamics over 
different time periods. The TPMs represent an execution 
path that can be changed by altering, or perturbing, the 
values of individual transition probabilities in the TPM. 
By systematically perturbing combinations of transition 
probabilities, it is possible to model alternative execution 
paths, each of which lead to a different evolution of a grid 
system over time. Among these are execution paths 



where failure to meet fundamental guarantees of service 
causes system performance to significantly degrade.  

The approach presented in this paper allows 
expeditious investigation of a large number of alternative 
system execution paths and identification of paths, or 
scenarios, in which failure to meet service guarantees 
adversely affects overall system performance. In this 
way, Markov chain analysis can be used to predict how a 
larger system will react when key service guarantees are 
not met. Though computational effort increases in 
proportion to the number of paths modelled, we find that 
the cost of using Markov chains is far less than the cost of 
searching the same problem space using detailed, large-
scale simulation or testbeds. Moreover, computational 
cost is unaffected by size of system being modelled, 
where size is expressed in terms of workload and number 
of computing resources. The approach can also be 
adapted for cases in which transition probabilities change 
with (e.g. are non-homogenous with respect to) time.  

The plan of this paper is as follows. Section 2 
summarizes previous work on Markov chain analysis and 
related techniques in distributed systems.  Section 3 more 
precisely describes the problem being investigated using 
Markov chain analysis. The section defines fundamental 
guarantees of service that large-scale grid systems will 
need to provide to their customers and which are the basis 
for the analysis in this paper. Section 4 describes the state 
model for our grid system, how this model is extended to 
be a Markov chain model, and how the Markov chain is 
used for simulation. This section describes how the size 
of the model representation is reduced and adapted for 
situations where the Markov chain is non-homogenous 
with respect to time. Section 5 describes the method of 
perturbing the Markov chain TPM to simulate alternative 
execution paths that violate service guarantees defined in 
section 3. Section 6 presents results of using the methods 
described in sections 4 and 5 to predict system evolution 
and compares these results to those produced by more 
detailed simulation. Section 7 presents conclusions. 

2 Previous Work 
This section briefly reviews work on use of Markov 

chains, focusing on two outstanding problems: methods 
to reduce model size and perturbation analysis techniques 
that reduce the size of the perturbation space. Discrete 
Time Markov chain (DTMC) analysis is a well 
established analytical tool that has been applied to study 
dynamic system behaviour in a variety of real-world 
domains. Markov chain analysis has long been used in 
manufacturing for problems such as transient analysis of 
dependability of manufacturing systems (Zakarian and 
Kusiak 1997), split and merge production line processes 
and part quality defects (Li et al. 2008). Markov chain 
analysis has been used to model mean time to failure in 
communications networks (Cassandras, Lee, and Ho 
1990), link reliability (Balakrishnan and Reibman 1994), 
as well as to examine fault-tolerance and performance in 
multi-processor computer architectures (Aupperle and 
Meyer 1991, Chiola et al. 1993), real-time process control 
systems (Trivedi, Ramani, and Fricks 2003), and software 
systems (Laprie and Kanoun 1992, Goseva and Trivedi 
2001). In grid computing, Markov chains have been used 
to model workload for scheduling (Song, Ernemann, and 

Yahyapour 2004) and load balancing (Akioka and 
Muraoka 2003). However, unlike these efforts or those 
that quantitatively estimate performance or reliability, 
this work uses Markov chain modelling to understand 
alternative system behaviours that may occur as a 
consequence of significant system-wide events or 
decisions: in this case, the failure to meet fundamental 
service guarantees for grid systems. 

The combinatorial increase of the number of states in 
DTMC models for large problems has long been widely 
recognized as a barrier to practical use of Markov chain 
analysis. To solve this problem, the concept of lumping 
states with similar characteristics into larger aggregated 
units was introduced (Kemeny and Snell 1976) and has 
been worked on extensively since. Various lumping 
approaches have been explored that use model structure 
and symmetry to reduce size (Siegle 1992, Buchholz 
1995, Nicol, Sanders, and Trivedi 2004). Other methods 
for reducing model size are based on group-theoretic 
concepts (Aupperle and Meyer 1991), Stochastic Activity 
Nets (Sanders and Meyer 1991), stochastic coloured nets 
(Chiola et al. 1993), use of reward variable structures to 
identify symmetries (Obal and Sanders 2001), and use of 
eigenvector equivalence classes to partition a Markov 
state space into lumps (Jacobi and Gornerup 2007). 
Fortunately, in the model we present, the number of states 
is readily reducible using the stochastic characteristics of 
Markov chains, described in section 4. While the number 
of states in our model did not prove to be a barrier, the 
size of the perturbation analysis problem did.  

Perturbation analysis of discrete time Markov chains 
has been the topic of theoretical work in the last three 
decades (Schweitzer 1968). Like the problem of model 
size, the size of a typical perturbation space may quickly 
become computationally intractable, if there are many 
combinations of alternative system variable values to 
consider. To attack this problem, some researchers (Ho 
1985, Suri 1989) have advanced the idea of perturbation 
analysis of discrete event systems by calculating system 
performance gradients that are based on key decision 
parameters. This approach estimated the sensitivity of 
changes to decision parameters in order to optimize 
system performance. Gradient-based approaches were 
seen to have the potential to reduce the size of the 
perturbation space because they needed to observe as few 
as one execution path of a system.  

This approach was adapted for Markov chains by 
estimating gradients for alternative execution paths (Ho 
and Li 1988, Suri 1989). More recently the gradient-
based approach was extended to reduce problem size in 
Markov models by grouping state transitions on the basis 
of events in order to evaluate control policies (Cao 2005, 
Cao and Zhang 2008). This approach was believed to 
scale with the number of events and size of the system. 
However, in this and earlier work, determination of 
performance vectors and efficient gradient calculations 
were issues that were not fully resolved. Further, not all 
problems were reducible to a form which allowed 
tractable calculation of gradients for specific control 
policies. While gradient-based perturbation algorithms 
have demonstrated potential as efficient tools for analysis 
of some complex systems, they also introduce not 
inconsiderable computational issues and were found not 



to be applicable to all Markov problems. Moreover, the 
gradient-based approaches appear more geared to 
optimization problems that depend on relatively few 
system parameters, rather than the more general problem 
of assessing alternative execution paths.  

Instead, the approach presented in this paper avoids 
the computational difficulties of gradient-based methods. 
The potential problem of size in Markov models is 
mitigated through a straightforward, concise problem 
representation that takes advantage of the stochastic 
characteristics of Markov chains and an intuitive, limited 
search strategy. While this approach does not completely 
solve the issue of problem size, we show Markov chain 
analysis yields comparable results at a fraction of the 
computing cost of a large-scale simulation and provides a 
viable analytical tool for study of system dynamics. 

3 Questions to be Answered Through 
Perturbation of Markov Chains 

It is convenient to organize this analysis on the basis of 
basic guarantees of service that grid systems must provide 
to their users. These guarantees constitute basic grid 
system requirements, which if not met, may render a grid 
system useless. The extent to which a grid system fulfils, 
or does not fulfil, these guarantees impacts overall system 
performance. The ability of Markov chain analysis to 
efficiently predict system behaviour if the guarantees are 
not met is good way to gauge the usefulness of Markov 
methods. Three guarantees may be described. 

First, a grid system must guarantee that current 
information about what grid computing services exist is 
available to users. In grid systems, this guarantee is 
fulfilled through service discovery mechanisms that 
locate needed services and make information about them 
available to users. The service discovery guarantee refers 
to the ability of a grid system to provide necessary 
information about grid computing services, including 
relevant updates, which users require to make decisions.  

Second, if a user has found a needed service, the 
service is available (not reserved for other tasks), and the 
user is qualified to use the service, then the grid system 
should allow the user to engage that service. This is 
called the service engagement guarantee. To be qualified, 
the user must have security and administrative access, 
and be able to afford the service. The service engagement 
guarantee is meant to ensure that users and providers of 
services who logically should cooperate, in fact do so. In 
most cases, engagement of a service is signified by the 
formation of an SLA, which reserves the service for the 
user for a fee. The third guarantee is the service fulfilment 
guarantee, which simply states that once a service has 
been engaged, i.e. the SLA is in place, the terms of the 
agreement should be fulfilled by both provider and user. 

Understanding and predicting the consequences of not 
fulfilling these guarantees is an important analysis 
problem. Particularly important is understanding how the 
performance of a grid compute economy is affected as the 
extent of guarantee fulfilment decreases. Administrators 
as well as providers and users need to understand how 
different levels of non-fulfilment of each guarantee affect 
a grid system. At what point of incremental increase of 
guarantee non-fulfilment does system performance begin 

to degrade rapidly? What specific actions by providers or 
consumers affect non-fulfilment of a particular 
guarantee? Answering questions like these by taking an 
actual production system offline to use as a testbed is 
impractical for obvious reasons. As indicated above, 
simulation has been used successfully to estimate impacts 
of failure scenarios.  However, if simulation requires 
many repetitions using a detailed compute-intensive 
model to examine the effect of many system parameters, 
the analysis may either take considerable time, be limited 
to a restricted number of alternative execution paths, or 
both. Markov chain analysis thus provides a viable 
alternative for obtaining understanding of effects of not 
fulfilling grid service guarantees. The rest of the paper 
describes the basic approach and shows initial results. 

4 The Markov Chain Model 
The behaviour of a large-scale grid system can be 
modelled in terms of the computing tasks executing in the 
system at any time. Each task progresses through a life 
cycle in which it is first submitted by a user, service 
providers are discovered to run the task, an SLA is 
negotiated with selected provider(s), and the task either 
executes to completion or fails. The state of the grid 
system can be described by the states of all the tasks that 
are in the system at a particular time. This section first 
describes the state transition model for a single task and 
then shows how the aggregate of many task states can be 
represented in a concise Markov chain model. This model 
is then elaborated to represent a piece-wise homogenous 
Markov chain that allows the dynamics of the grid system 
to be studied over different time periods. 

4.1 Representing a Task Lifecycle as a State 
Model 

The lifecycle of an individual task can be represented in 
seven states, shown in Figure 1. This model is derived 
from a large-scale simulation (Mills and Dabrowski 
2008) that studies operation of a grid over an 8-hour day. 
Three states in the model presented here—Discovering, 
Negotiating, and Monitoring—can be further decomposed 
into sub-states. The decompositions yield 27 additional 
states, resulting in a larger model with a total of 34 states 
(described in Dabrowski and Hunt 2008). Because the 34-
state model can be aggregated into the simpler seven-state 
model, the latter is used in the rest of the paper. 

The high-level model representation may be described 
as follows. In the Initial state, a task has not yet entered 
the grid system. Each task is assigned an arrival time and 
deadline from exponential distributions (Mills and 
Dabrowski 2008). At the arrival time, the task 
automatically transitions to the Discovering state. In 
Discovering, the task client attempts to discover eligible 
providers with sufficient computing resources to execute 
the task. After discovery actions conclude, the task may 
either transition to Negotiating or Waiting. Tasks enter 
the Negotiating state at regular intervals. A task that has 
completed Discovering and found at least one provider 
enters Negotiating if the interval has elapsed; otherwise it 
goes into the Waiting state. In Negotiating, clients rank 
discovered providers that they are qualified to use, e.g., 
can afford, on the basis of anticipated cost. They contact 



each provider, one at a time, and offer an SLA to execute 
the task for a fee. Once an available provider accepts the 
offer, negotiation ceases and the task enters the 
Monitoring state, during which the task is either blocked 
on an execution queue or executing. If negotiations fail 
(i.e., no provider can be found to accept an SLA), the task 
goes from the Negotiating state to either Discovering or 
Waiting. As in Negotiating, a task enters Discovering at 
regular intervals. If negotiations fail, a task transitions 
from Negotiating to Discovering if the start time has 
arrived. Otherwise it transitions to Waiting and remains 
until the next Discovering, or Negotiating, start time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. State model of the grid compute economy. 
 
A task that is in Monitoring state enters the Completed 

state if task execution is successful. If execution fails, the 
task re-enters the Negotiating state. Tasks may also 
transition to the Failed state from either the Negotiating 
or Waiting states. This occurs when it becomes 
impossible to complete the task by its deadline. Both 
Completed and Failed are terminal states from which 
tasks cannot leave once they enter. 

4.2 Evolving the State Model to a Markov 
Chain Model 

A Markov chain has the property that the probability of 
transition between any two states depends entirely on the 
circumstances in the state from which the transition 
originates and not on the previous history of the process. 
More formally, given a sequence of states X1, X2, …… 
Xn, the Markov Property is given as: 

 
 

                                                                                        (1) 
                                                                                                                                                                             
The state model depicted in Figure 1 satisfies the     
Markov property. Careful review of the preceding 
description shows that the decision to transition to 
another state depends only on the circumstances of the 
state the task is currently in. These circumstances include 
whether a time interval has elapsed, an SLA has been 
secured, task execution has succeeded or failed, etc. 

In a Markov chain, probabilities are associated with 
transitions between states. To calculate state-to-state 
transition probabilities, transition frequencies are first 
summed over a simulated an eight-hour day using the 
large-scale model (Mills and Dabrowski 2008). This is 

done by determining where state transitions occur in the 
model code and inserting counters at those places. In our 
experiments, frequencies were summed for all state 
transitions over 50 repetitions of a 36000 s period (10 
hours: 8 hours + two extra hours for late tasks) with a 
75% workload level. State transition probabilities were 
derived as follows. Given states si, sj, i, j = 1…n where 
n=7, pij, is the probability of transitioning for state i to 
state j, written as si à sj.  This probability is estimated by 
calculating the frequency of si à sj, or fij, divided by the 
sum of the frequencies of si to all other states sk, or 

 
                                                                                 (2) 

 
Here i and j may be equal, to allow for transition of a 
state to itself, or self-transition. A self-transition occurs 
when a task remains in a state longer than a specified 
interval (equal to a Markov simulation discrete time step, 
h, described below). The resulting TPM is a 7 × 7 
stochastic matrix, shown in Figure 2. Here rows stand for 
the state the transition originates from, or from state, and 
columns represent states the transition goes to, or to state. 
Each cell in a TPM represents a pij, where i and j are from 
and to states, respectively. As in any stochastic TPM, the 
transition values of all columns in a row must sum to 1.0. 
The only exception to this procedure involved arrival of 
tasks in the grid system, described above. Here, the 
Markov chain process was altered to reproduce exactly 
the exponential arrival times of the large-scale simulation. 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 2. Summary stochastic TPM. This TPM is a 
weighted average of five TPMs for equal time period 
divisions over the 36000 s duration.  Individual pij 
from the five periods are weighted by the relative 
number of transitions in their respective periods. See 
Appendix for time period matrix set.  

 
The Markov chain and related TPM can be further 

classified. Careful analysis of the description of the state 
model in section 4.1 and the structure of the matrix in 
Figure 2 shows that tasks can enter the Discovering, 
Waiting, Negotiating, and Monitoring states multiple 
times, but always remain temporarily. At some point they 
enter either the Completed or Failed state, where they 
remain permanently, or are absorbed (These states are 
absorbing states, in which only self-transitions are 
possible). A Markov chain with these characteristics is 
called an absorbing chain (Kemeny and Snell 1976) that 
can be divided into a transient part (the Discovering, 
Waiting, Negotiating, and Monitoring states), and an 
absorbing part (with two absorbing states, Completed and 
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Failed). This characterization is born out in the Markov 
chain simulation described below. While the summary 
TPM in Figure 2 is useful for illustrating concepts and for 
certain analytical studies of the system, it requires further 
elaboration to model non-homogeneity. 

4.3 Reducing Model Size and Handling Time 
Non-Homogeneity 

In the large-scale simulation at a 75% workload, there are 
typically over 400 tasks, each of which progresses 
through the seven states. With such numbers, it is 
impossible to model a system state in which all tasks are 
tracked simultaneously. However, the stochastic nature of 
Markov chains allows one to consider the distribution of 
the 400+ tasks among the seven states. It is easy to see 
that a system-wide state can be represented in terms of 
the proportion of tasks that are in each state. In this way, 
it is possible to represent the system state as a seven-
element vector in which the value of each vector element 
represents the proportion of tasks in the related state. This 
method of system state representation is a simplification 
that together with the combination of 34 states into seven, 
described above, facilitates problem analysis. 

In the large-scale simulation, task submission times 
varied exponentially over the simulated day, with mean 
task start time at t=3600 s (end of the first hour). This 
distribution resulted in different workload levels at 
different times in the day and caused transition 
probabilities over the 36000s-period to vary. Therefore, 
different TPMs were actually in force at different times, 
making the system non-homogenous with respect to time. 
For this reason, more accurate simulation results for the 
transient behaviour of the system were obtained by 
creating time-period partitions and computing a separate 
TPM for each period. In this experiment, frequencies 
were summed separately for five time periods of 7200 s 
each2. These matrices, shown in the Appendix, allow a 
representation of our model as a piece-wise homogenous 
Markov chain having a bounded number of pieces 
(Rosenberg, Solan, and Veille 2004) corresponding to the 
time periods. To produce the summary TPM, shown in 
Figure 2, the individual transition probabilities in the 
TPMs for these five periods were weight averaged on the 
basis of the relative transition frequencies in each period. 
In the summary matrix, each weight-averaged probability 
of transition, pij, is computed as follows 
 
                                                                                        (3) 
in which each wl

i represents the weight for row i in time 
period l, l ∈ {1.. nper} where nper=5. Each wl

i is 
computed by 

 
                                                                                        (4) 
 
where each ftp

ij is the frequency of transition from state i 
to state j in  time period tp and n is the dimension of the 
matrix (n = 7). The five time-period matrices more 
                                                           
2 Different numbers of time periods were attempted, 
including three, 10, and 15; however, five provided the 
most accurate results.  Devising a method of selecting an 
optimal number of time periods is left for future work. 

accurately captured system dynamics over time than did 
the summary TPM in Figure 2 and were therefore used in 
the Markov simulations described below. 

4.4 Using a Sequence of Markov Chain TPMs 
to Simulate a Dynamic System 

A well-known use of stochastic TPMs in a Discrete Time 
Markov chain is to describe how a dynamic system 
changes over time in discrete time steps, where each step 
represents a fixed time duration. In this experiment, a 
discrete time step is chosen to represent 85 s, or h = 85 
(which also is the time duration for a self-transition, 
discussed in section 4.2)3. Hence, if a time period covers 
a duration of dperiod = 7200 s, each of the five time-period 
matrices represent S= dperiod /h steps or 85 steps. 

As indicated above, the system state can be 
summarized in a vector v, where each element represents 
the proportion of tasks in one of the seven states. Using 
equation (5), a vector vm, which represents the system 
state at time step m, is multiplied by the TPM Qtp for the 
applicable time period tp to produce a new system state 
vm+1, to evolve the system over a single discrete time step. 

 
                                                                                       (5) 
 
where T indicates a matrix transpose. Starting with v0, 
which represents a system state with a value of 1.0 for the 
Initial state and 0 for all others (e.g, all tasks are in 
Initial), equation (5) is repeated for 339 time steps 
(representing 28,800 s or the simulated 8-hour day). This 
results in a system state vector, v339, in which the sum of 
the proportion of tasks in the Completed and Failed states 
approaches 1, while other states fall to 0. A goal of 
Markov chain analysis is to execute this procedure with a 
set of time period TPMs derived from a real-world 
system (or, in this case, the large-scale simulation) in 
order to approximate the operation of that system. Figure 
3 compares the proportion of tasks in the Completed and 
Failed states in the Markov chain simulation over 339 
steps with the proportion of tasks in these states in the 
large-scale simulation as it executes for 28,800 s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Change in Completed and Failed states over 
time in large-scale and Markov chain simulation. 
                                                           
3 Different values for h were also tried. A method of 
selecting h is left for future work. 
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This paper argues that a piecewise homogenous 
Markov chain can approximate the transient behaviour of 
a real-world grid system (for which the large-scale 
simulation is a proxy). By applying (5) to a set of 
perturbed TPMs to simulate alternative evolutions of a 
grid system, one can model, or predict, the effects of 
changed system capabilities, undesirable behaviours, and 
events of interest. In this study, we are interested in 
perturbing selected rows of the TPM set to represent 
changes in the ability of the system to fulfil the three grid 
system guarantees described in section 3, and then to 
predict the impact of these changes on the final system 
state (proportion of tasks in Completed or Failed states). 

5 Method of Perturbation 
The algorithm for incrementally perturbing selected rows 
is intended to predict broad trends rather than precise 
outcomes. It is a limited, brute-force search that is 
restricted in order to conserve resources, while exploring 
a reasonable range of alternatives. The algorithm permits 
simultaneous perturbation of combinations of two rows in 
order to capture situations where inter-row dependencies 
exist. In each perturbed row, each row element, 
corresponding to a column, with a probability of 
transition greater than zero is selected in turn for 
incremental increase. At the same time, the transition 
probabilities of one or more other row elements with non-
zero values are decreased by a total equal to the increase, 
so that all elements in the perturbed row continue to sum 
to one. For a set of time-period matrices, these changes 
are applied to each matrix in the set. Each combination of 
altered transition probabilities represents a different 
execution path that the system may take. 

The algorithm requires that a user first select a 
primary row, r, to perturb. The secondary rows, s, to be 
perturbed are then automatically determined, as described 
below. The user also must select a perturbation limit L, 
on how far transition probabilities can be perturbed and 
also select the incremental amounts by which primary and 
secondary rows will be perturbed. These decisions define 
the extent and granularity of the perturbation that will 
take place. An overview of the procedure is provided 
below. For more detail, see (Dabrowski and Hunt 2008). 
This section also discusses the computational effort 
required to apply the perturbation algorithm to the 
Markov chain simulation. This effort is a small fraction of 
what would be necessary to explore the same set of 
alternative behaviours using the large-scale simulation. 
The next section, Section 6, then presents results of 
applying the perturbation algorithm and compares these 
results with those produced by the large-scale simulation. 

5.1 Overview of Perturbation Algorithm 
In the primary row, starting from numerically lowest row 
element, each element having a positive transition 
probability is used in turn to determine as the primary 
increase column, c↑. In this column, the transition 
probability is raised by a gradually increasing amount, 
mprim up to the limit L. These increases occur in 
increments defined by a primary increase amount, vprim. 
At the same time, the other elements in the primary row 
are reduced by proportions of mprim determined by weight 

factors, as follows. Each non-increase column in turn is 
selected as the primary column to decrement, termed a 
primary sink column, c↓. For the primary sink column, a 
sink weight, w, is selected from a predetermined set of 
sink weights called the sinkWeightSet. In the experiments 
reported here, the sinkWeightSet consisted of {0.2, 0.4, 
0.6, 0.8, 1.0}. The probability of transition for c↓ is 
reduced by the amount w ⋅ mprim. The remainder of the 
weighted reduction, or (1.0 – w)⋅ mprim, is distributed to 
the other non-sink columns. A perturbation of primary 
row r may be summarized by 

 
 
 
                                                                                   (6) 
 
 
 

for p(old)
rj > 0 where [a]+=a if a>0 and [a]+=0 otherwise. 

Of course, if w is 1.0, or if the primary increase column c↑  
and primary sink column c↓ are the only columns with 
non-zero transition probabilities, the primary sink column 
bears the entire reduction. 

The secondary row s can be selected on the basis of 
either: (a) the numeric value of the primary increase 
column c↑, if it is not equal to the number of the primary 
row, or c↑ ≠ s (otherwise no secondary row is selected); 
and (b) by strength of association, using the total value of 
transition probabilities between the two states the rows 
represent and (if known) the number of transitions that 
occur between these states. The default method is (a); and 
this was used for the results reported below. Thus in the 
primary row r, as each primary increase column, c↑, is 
selected, a different secondary row is also selected. As in 
the primary row r, each positive row element in the 
secondary row, s, is selected in turn for increase, and the 
corresponding column is designated as the secondary 
increase column, d↑. However, in the secondary row, the 
perturbation is simpler--the transition probability of a 
secondary increase column, d↑, is raised by a secondary 
increment amount, vsec, in 5 equal steps to produce 
successive perturbation amounts, msec, up to L. As in the 
primary row r, transition probabilities in the remaining 
columns of the secondary row are decreased by an equal 
amount; though here the amount of decrease for each 
column is assigned in proportion to the relative value of 
its transition probability (similar to non-sink columns in 
the primary row). To summarize,  

 
 
                                                                                   (7) 
                                 
 
 

 
Each combination of variable assignments for the 

primary row, primary increase column, primary sink 
column, sink weight, together with the secondary row, 
secondary increase column, and secondary increase 
amount (if any) is considered a unique perturbation 
combination, labelled {r, c↑, c↓, w, s, d↑, msec}. For each 
perturbation combination, a separate perturbation 
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sequence of L/vprim steps is carried out in the primary row. 
In each element of the perturbation sequence, the value of 
the primary increase column, c↑, is successively raised by 
vprim while the primary sink column, c↓, and non-sink 
columns, if any, are decremented as described above. For 
a set of time period matrices, this perturbation sequence is 
applied to each matrix in the set. For each assignment of 
incremental values in the perturbation sequence, the 
Markov chain simulation procedure described in section 
4.4 is carried out for the time-period matrix set. Each 
execution of the simulation represents a potentially 
different system execution path. The incremental 
increases in the perturbation sequence continue until the 
transition probability in the primary increase column, c↑, 
reaches L or 1.0 in each time-period matrix. Thus if 
L=0.25 and vprim = 0.01, there are a maximum of 25 
Markov chain simulations in a perturbation sequence for 
a perturbation combination.  

5.2 Implementing the Perturbation Approach  
The perturbation method described above was used to 
predict the result of failing to fulfil the three service 
guarantees described in section 3. To do this, we used the 
time-period matrix set in the Appendix (summarized by 
the weight-averaged matrix in Figure 2), together with the 
default method (a) for secondary row selection. The sink 
weight set and parameters values for L, vprim, and vsec 
described above were also used. Applying the 
perturbation method resulted in generation of 2805 
perturbation combinations and perturbation sequences 
consisting of 89,750 simulations, which required 3354 s 
(56 minutes) of computation time using an Intel Xeon MP 
processor. This is a substantial amount, but less than 
0.5% of the time (205 hours) that the large-scale 
simulation needed to show behaviours described below in 
which the service guarantees were violated.  

6 Comparing Perturbations of the Markov 
Chain and Large-Scale Simulation 

The systematic perturbation of the TPMs described in the 
preceding section revealed a wide range of behaviours. A 
subset of these behaviours, corresponding to a subset of 
the total perturbation combinations discussed above, 
show what might occur if individual guarantees were 
violated. These perturbation combinations represent 
service guarantee violation scenarios of interest. In the 
Markov chain model, violation of the Discovery 
Guarantee corresponded to a subset of perturbation 
combinations for rows 1-4 in which tasks were prevented 
from transitioning to the Discovering state. Two of these 
combinations are presented here.  

Failure to fulfil the Service Engagement Guarantee 
was enacted by reducing probability of transition from the 
Negotiating state to the Monitoring state in row 4. 
Perturbation combinations that reduced this probability 
represented a violation scenario in which SLAs were not 
granted even though users and providers might be eligible 
for, and should be able to obtain, agreements.  Violation 
of the Service Fulfilment Guarantee was enacted by 
reducing the probability of transition from the Monitoring 
state to the Completed state in row 5, while increasing the 
probability of transitioning from Monitoring to another 

state. This violation scenario corresponded to aborting a 
task that was either executing, or in a waiting queue. The 
results of these perturbations of the Markov chain are 
shown in graphs of perturbation sequences for relevant 
perturbation combinations. 

To compare the results of the perturbations to the 
Markov chain with similar changes to the behaviour of 
the large-scale simulation, the original model (Mills and  
Dabrowski 2008) was altered to simulate the effects of 
not fulfilling the three service guarantees. These changes 
to the large-scale model are described below and their 
effect on performance is graphed. In what follows, the 
results of perturbing both the Markov chain and large-
scale simulation to emulate violation of the three service 
guarantees are described. These results are compared in 
terms of how well the Markov chain simulation predicts 
the result of the large-scale simulation and the relative 
computational effort required by each method. 

6.1 Service Discovery Guarantee 
The effect of not fulfilling the Discovery guarantee is 
shown in two selected violation scenarios in which 
initiation of discovery actions is prevented. In the first, 
the probability of transition from the Initial State to the 
Discovering state is lowered (row 1). In the second, the 
transition probability from the Waiting state to the 
Discovering state is lowered (row 2).  

6.1.1 Perturbation of Transition to the 
Discovery state in Row 1 

Row 1, column 3 of the unperturbed weight-averaged 
matrix shows the probability of transition from the Initial 
state to the Discovering state. The five-period matrix set 
in the Appendix shows this transition occurs entirely in 
the first time period of the simulated day.  The transition 
from Initial to Discovering marks the arrival of a task in 
the grid system and is followed immediately by an 
attempt to discover providers to execute the task. 

Figure 4 shows the effect of systematically lowering 
the probability of the transition from Initial to 
Discovering in the Markov chain simulation and the 
equivalent operation in the large-scale simulation. To 
perturb the Markov chain simulation, column 1 of row 1 
is selected as the primary increase column, while column 
3, Discovering, is designated as the primary sink column.  
Since there are no other columns in row 1 that have 
transition probabilities greater than 0, the sink weight is 
1.0. Using the default secondary column selection 
method, no secondary row is perturbed, since the number 
of the primary row and increase column are the same.  

In the large-scale simulation, the equivalent of 
reducing the probability of transition to the Discovering 
state was achieved by systematically increasing the 
amount of time each task remains in the Initial state, thus 
in effect delaying arrival of tasks into the grid system. 
This perturbation had the effect of right-shifting the 
arrival time distribution described above (Mills and 
Dabrowski 2008) and caused tasks to fail to meet their 
deadlines. When column 1 of row 1 was selected as the 
primary increase column in the Markov chain simulation, 
the same right shift was simulated, because recall that the 
Markov chain process was modified to allow task arrival 



to take place using the distribution derived from the 
large-scale simulation (Section 4.1). Right-shifting this 
distribution delayed transition from the Initial to 
Discovering state, producing the same result. 

 
 
 
 
 
 
 
 
 
 
Figure 4. Proportion tasks complete in large-scale and 
Markov chain simulations in response to reduction in 
the probability of transition from Initial to 
Discovering (column 3 of row 1 is the primary sink 
column), while raising self-transition of Initial 
(column 1 is the primary increase column). 

 
In Figure 4, curves for both large-scale and Markov 

chain simulations show that proportion of tasks complete 
decreases relatively little as the probability of transition 
from Initial to Discovering state is reduced from 0.03 to 
0.01.  Below 0.01, the proportion complete drops sharply 
in both cases. This reflects the effect of increasing delay 
of tasks leaving the Initial state to progress through the 
Discovering, Negotiating, and Monitoring states, so that 
they do not have sufficient time to execute and reach 
Completed. Although the Markov chain curve declines 
more steeply, it is similar to the curve for the large-scale 
simulation. Both show that performance will decline little 
until the probability of transition to Discovering falls 
below 0.01. In our experiments, the Markov chain 
simulation completely perturbed row 1 in 82.39 s, while, 
the large-scale simulation required 21.18 hours to capture 
the similar guarantee violation behaviour.  

6.1.2 Perturbation of Transition to the 
Discovery state in Row 2 

The probability of transition from the Waiting state to the 
Discovering state is shown in row 2, column 3.  This 
transition represents subsequent attempts to initiate 
discovery operations by task clients after the first round 
of discovery which occurs when a task first arrives. In the 
Markov chain simulation, a violation scenario for the 
Discovery Guarantee was created by reducing the 
probability of transition from Waiting to Discovering 
(selecting column 3 as the primary sink column with a 
primary sink weight of 1) while raising the probability of 
transition from Waiting to Negotiating (selecting column 
4 as the primary increase column). In this case, row 4 
(Negotiating) was perturbed as the secondary row since 
the Negotiating state corresponds to column 4. Equivalent 
behavioural changes were made to the large-scale 
simulation by altering the code to prevent the task client 
from initiating subsequent rounds of discovery. The 
large-scale model was iteratively executed. On each 
iteration, the probability of delaying the start of a 

subsequent discovery phase was incrementally raised. 
TPMs were generated for this perturbed behaviour and 
compared with the Markov chain process. 

Figure 5 shows the result of these alterations to the 
large-scale simulation together with the Markov chain 
perturbation sequences for 15 perturbation combinations 
of row 2 that best captured this violation scenario. 
Exploring all 425 perturbation combinations for row 2 
required 373.44 s of computational time, while the large-
scale simulation required 12.17 hours to execute the 
perturbed behaviour. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Proportion tasks complete in the large-scale 
and Markov chain simulations (shown using linear 
trend lines) in response to reduction in the probability 
of transition from Waiting to Discovering (column 3 of 
row 2 is the primary sink column) while raising the 
transition probability of Waiting to Negotiating 
(column 4 is the primary increase column). 

 
In Figure 5, both the curves for the Markov chain and 

large-scale simulation show essentially no reduction in 
task completion as the probability of initiating subsequent 
discovery actions goes to zero. In the large-scale 
simulation, failing to initiate subsequent discovery does 
not affect task completion, because the discovery process 
is sufficiently efficient so that all eligible providers are 
found on the first discovery attempt (see Section 6.1.1). 
Hence, subsequent discovery actions are not actually    
needed, and the absence of these actions does not impact 
performance. The curves for the related Markov chain 
perturbation combinations shown in Figure 5 agree well 
with the large-scale simulation. If the Markov chain 
curves were used to make predications, they would 
accurately predict the result of the large-scale simulation 
with relatively minor differences in value of tasks 
completed. Other perturbations of transitions to the 
Discovering state in rows 3 and 4 describe violation 
scenarios of the Discovery Guarantee that also agree with 
the large-scale simulation. These are omitted due to lack 
of space. (Please see Dabrowski and Hunt 2008). 

6.2 Service Engagement Guarantee 
The act of engaging a service to execute a task is 
represented in the Markov chain by the transition from 
the Negotiating state to the Monitoring state. In row 4 of 
the TPM, the effects of non-fulfilment of the Service 
Engagement Guarantee can be illustrated by reducing this 
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probability of transition. This perturbation is meant to 
predict the effect of reducing acceptance of agreements 
because either users or providers fail to conclude SLAs 
they should enter into. Along with decreasing the 
probability of transition from Negotiating to Monitoring 
(making column 5 of row 4 the sink column), the time-
period TPM set is perturbed by increasing the probability 
of transition from Negotiating to either Waiting, 
Discovering, or Negotiating, i.e., choosing columns 2, 3, 
or 4 of row 3 as the primary increase columns. Choosing 
column 2 or 3 involves selecting corresponding rows 
(rows 2 or 3) for secondary perturbation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Proportion of tasks complete in the large-scale 
and Markov chain simulations in response to reducing 
the probability of transition from Negotiating to 
Monitoring (column 5 of row 4 is the primary sink 
column) while the transition probability to Waiting 
increases (column 2 is the primary increase column). 

 
Figure 6 shows curves for perturbation sequences of 

15 relevant perturbation combinations for row 4 (out the 
785 total) in which the probability of transition from 
Negotiating to Waiting is raised (column 2 is the primary 
increase column) while the transition probability from 
Negotiating to Monitoring is lowered (column 5 is the 
sink, with a sink weight of 1). Row 2, Waiting, is chosen 
for secondary perturbation. In the large-scale simulation, 
the equivalent perturbation was accomplished by 
systematically increasing the probability that a provider 
rejects the agreement, the result of which is also shown in 
Figure 6. This figure shows that the perturbation of the 
Markov chain simulation is generally predictive of the 
large-scale simulation result. The Markov chain curves 
correctly predict that as the probability of transition to 
Monitoring falls to zero, i.e., users and providers fail to 
conclude SLAs, the proportion of tasks completed also 
falls to zero. In the case where secondary perturbation of 
row 2 increased Waiting self-transition to simulate 
additional delay, the Markov chain curves show that 
system performance would degrade still further. 

A similar set of curves can be produced by the Markov 
chain simulation for perturbation combinations where 
column 3 (Discovering) is made the primary increase 
column while column 5 (Monitoring) remains the sink 
column. In this case, the Markov chain is generally 
predictive as well. This analysis is omitted due to lack of 
space (see Dabrowski and Hunt 2008). The computational 

cost for the entire 785 perturbation combinations required 
to perturb all of row 4 was 789.17 s. Raising L to 0.5 to 
obtain additional perturbation sequences needed to 
increase range in this case required another 1480.46 s. 
Here, the large-scale simulation required 41.57 hours. 

6.3 Agreement Fulfilment Guarantee 
The Monitoring state is entered once an SLA is 
concluded. In the Markov chain, failure to fulfil an 
agreement may be modelled by increasing the probability 
of transition from Monitoring to states other than the 
Completed state; namely, either increasing the probability 
of transition to the Negotiating state (representing a task 
abort) or increasing the probability of self-transition in 
the Monitoring state (representing an extended delay). In 
the former violation scenario, a task that transitions from 
Monitoring to Negotiating (aborts) may recover from this 
setback by later obtaining another SLA, returning to the 
Monitoring state, and then completing. In this section, 
this violation scenario is simulated in the Markov chain 
by making Negotiating, column 4 of row 5, the primary 
increase column, while making Completed, column 6, the 
sink column. In the resulting perturbation combinations, 
secondary row perturbation is applied to the Negotiating 
row (row 4). In the large-scale simulation, the equivalent 
behaviour change was enabled by systematically 
increasing the rate at which a provider aborts a queued or 
executing task. As before, the large-scale simulation 
iterated, with the abort rate increasing on each iteration.  

Figure 7 shows the resulting curves for Markov chain 
perturbation sequences in which the probability of 
transition to the Negotiating state is raised (i.e., column 4 
is the primary increase column) as the probability of 
transition to Completed (i.e., column 5 is the sink) falls 
from a weighted average of 0.008 to zero. The figure 
shows that this perturbation causes the proportion of tasks 
completed to fall dramatically. This figure shows 20 of 
the most relevant perturbation combinations (out of a 
total of 270) for the case where the Completed state has a 
sink weight of 0.2. Alternative perturbations using 
Monitoring as the sink column (not shown) produce a 
similar result. In all cases, the Markov chain curves show 
a pronounced reduction in proportion of tasks completed 
that is substantially predictive of the curve for the large-
scale simulation, also shown in Figure 7. The figure 
shows that 5 of the 20 curves represent accurate 
approximations of the large-scale simulation result. The 
remainder show the distinct downward trend in tasks 
completed, though at markedly different slopes.  In the 5 
curves closest to the large-scale simulation result, the 
secondary row, Negotiating (row 4), is perturbed to raise 
the probability of transition to the Monitoring state 
(column 5). This effectively models a situation where 
tasks that fail to transition from Monitoring to Completed 
(abort) are later able to negotiate new SLAs, return to the 
Monitoring state, and complete—as might be expected in 
the real world. While only a relatively small proportion of 
the curves produced through Markov chain simulation are 
this accurate, all curves (including those not shown) 
predict that if the probability of transition from 
Monitoring to Negotiating is raised sufficiently (i.e., the 
probability of task abort is high enough), system 
performance will drastically degrade. The Markov chain 
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simulation required 260.2 s of execution time to process 
the 270 perturbation combinations for row 5. The large-
scale simulation required a lengthy 122.6 hours to carry 
out the equivalent perturbation behaviour, because 
repeated task aborts entailed extensive delays.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Proportion tasks complete in large-scale and 
Markov chain simulation in response to increasing the 
probability of transition from Monitoring to 
Negotiating (column 4 in row 5 is the primary increase 
column) while decreasing the probability of transition 
from Monitoring to Completed (column 6 is the sink 
column with a sink weight of 0.2) from 0.008 to 0.  

6.4 Summary of Analysis and Outstanding 
Issues for Future Work 

The preceding sections showed that perturbation of TPMs 
carried out through application of the method described in 
sections 4 and 5 does indeed generally predict how the 
large-scale grid system will perform when key service 
guarantees are violated. In the case of the Discovery 
guarantee, the Markov chain was found to accurately 
correspond to the large-scale simulation in both cases 
shown. For the Engagement guarantee, perturbations of 
the Markov chain were found to generally correspond to 
the results produced by the large-scale simulation for one 
violation scenario. For the violation of the Service 
Fulfilment Guarantee, the perturbation of the Markov 
chain accurately captured the behaviour exhibited by the 
large-scale simulation. Thus perturbation of the Markov 
chain was show to be an effective predictor for all cases 
shown in this paper (for additional examples, see 
Dabrowski and Hunt 2008). In no case, did the Markov 
chain simulation produce results that contradicted the 
large-scale simulation. Moreover, the Markov chain 
approach achieved these results at less than 0.5% of the 
computational cost of the large-scale simulation. If the 
required data was obtained from a real-world system to 
create a Markov model and related TPMs, it is reasonable 
to believe that comparable results could be achieved. 

Despite this success, important issues still remain to be 
resolved. The most important is scalability, which has 
three aspects. First is whether the approach scales with 
respect to the size of the system being modelled, as 
expressed in terms of such variables as number of entities 
being modelled, number of transitions taken, and 

workload.  As section 4 has shown, the method of 
counting state transitions and generating transition 
probabilities is a straightforward arithmetic process that 
clearly does not depend on number of transitions. Here, 
scale does not hinder analysis. Second, there is the all-
important issue of the size of the state model, that is, the 
number of states and the corresponding size of the TPM. 
Here, further work incorporating lumping techniques 
described in Section 2 will be needed.  Finally, it is 
important to consider scalability with respect to the 
number of perturbations, or alternative execution paths, 
investigated. Despite the dramatic reduction in execution 
time seen for Markov chain method (< 0.5% of the 
execution time used by large-scale simulation), scalability 
may not be good for very large matrices or if many 
perturbations are needed.  Follow-on research will be 
needed to examine this issue. Here, there is the possibility 
of extending non-linear algebra techniques and matrix 
methods (Stewart and Sun 1990) to generate 
eigensystems that can be analysed to determine what 
parts of the matrix are most sensitive to perturbation and 
thus where investigation should be focused. Despite these 
issues, the Markov chain approach entails dramatically 
less computational effort than large-scale simulation. 
Beyond scale, other issues exist, such as improving the 
accuracy of Markov chain simulation by selecting 
optimal sizes for time periods and identifying appropriate 
tests of statistical significance to measure accuracy. 

7 Conclusions 
Section 6 showed that perturbation of TPMs and Markov 
chain simulation was generally predictive of changes to 
performance arising from failure to fulfil basic service 
guarantees provided by grid computing systems.  While 
Markov chain analysis did not reproduce the exact 
performance curves generated by the large-scale 
simulation, a carefully limited brute-force perturbation of 
TPMs produced a family of related curves which 
estimated the impact of not fulfilling service guarantees. 
Perturbed TPMs produced by Markov chain analysis 
were predictive both in cases where changes to the 
behaviour of the large-scale simulation resulted in severe 
performance degradation as well as cases where changes 
to the large-scale simulation did not significantly impact 
results. Thus, it is possible to conclude that the approach 
to perturbing Markov chains described in this paper did 
indeed answer the questions posed in section 3; namely, 
how non-fulfilment of the three service guarantees affects 
performance of a large-scale grid system. Moreover, the 
Markov chain procedure performed the analysis needed 
to answer this question using only 0.5% of the 
computational resources (less than two orders of 
magnitude) that was needed for the large-scale 
simulation. If, instead of the large-scale simulation, a 
real-world system could be used as a testbed in which 
conditions are sufficiently controlled to allow execution 
of repeated trials, the contrast in time (and resource) 
expenditure could be much greater. The study thus shows 
that Markov chain analysis is a valuable tool for 
understanding complex system behaviour in large-scale 
grid systems and can be used to predict performance 
changes that result when fundamental guarantees of 
service are not met.  
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9 APPENDIX Five Time-Period Transition 
Matrices Showing Non-Homogeneity With 
Respect to Time 
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