
Using Markov Chain Analysis to Study Dynamic Behaviour
in Large-Scale Grid Systems

Christopher Dabrowski and Fern Hunt
National Institute of Standards and Technology

Gaithersburg, MD, USA 20899

[Christopher.Dabrowski, Fern.Hunt]@nist.gov

Abstract
In large-scale grid systems with decentralized control, the
interactions of many service providers and consumers will
likely lead to emergent global system behaviours that
result in unpredictable, often detrimental, outcomes. This
possibility argues for developing analytical tools to allow
understanding, and prediction, of complex system
behaviour in order to ensure availability and reliability of
grid computing services. This paper presents an approach
for using piece-wise homogeneous Discrete Time Markov
chains to provide rapid, potentially scalable, simulation of
large-scale grid systems. This approach, previously used
in other domains, is used here to model dynamics of
large-scale grid systems. In this approach, a Markov chain
model of a grid system is first represented in a reduced,
compact form. This model can then be perturbed to
produce alternative system execution paths and identify
scenarios in which system performance is likely to
degrade or anomalous behaviours occur. The expeditious
generation of these scenarios allows prediction of how a
larger system will react to failures or high stress
conditions. Though computational effort increases in
proportion to the number of paths modelled, this cost is
shown to be far less than the cost of using detailed
simulation or testbeds. Moreover, cost is unaffected by
size of system being modelled, expressed in terms of
workload and number of computational resources, and is
adaptable to systems that are non-homogenous with
respect to time. The paper provides detailed examples of
the application of this approach.
Keywords: Grid computing; Perturbation analysis;
Discrete Markov chain; Piece-wise homogenous Markov
chain.

1 Introduction
The long-term continued commercial success of grid
technology will likely depend on emergence of large-
scale, decentralized grid systems in which large numbers
of service providers and consumer clients enter into
service-level agreements (SLAs) (Andrieux et al. 2007) to
allocate grid resources. Here, as in other large-scale
systems with decentralized control, the interactions of
many consumers and providers can lead to emergent
global system behaviours that result in unpredictable,

Copyright (c) 2009, Australian Computer Society, Inc. This
paper appeared at the 7th Australasian Symposium on Grid
Computing and e-Research (AUSGRID 2009), Wellington,
New Zealand. Conferences in Research and Practice in
Information Technology, Vol. 99. W. Kelly and P. Roe, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

often detrimental, outcomes (Mills and Dabrowski 2006).
The movement toward realization of large-scale grid
systems is evident in recent developments such as
commercial cloud computing, in which mass computing
services are made available for sale on-line. Clouds and
other commercial developments likely foreshadow
eventual creation of grid compute economies that operate
on market principles. Having in place analytical tools to
allow understanding, and prediction, of complex system
behaviour will be necessary to ensure availability and
reliability of grid services in economic settings.

For these reasons, the development of analytical tools
that take into account complex systems behaviour will be
a necessity. In particular, tools that can predict the impact
on overall system performance of changes to key system
parameters will be of particular importance. Previous
researchers have used simulation to study behaviour of
grid systems that utilize different economic strategies
(Chun and Culler 2002, Yeo and Buyya 2005, Mills and
Dabrowski 2008). Studies of failure scenarios in grid
system such as (Mills and Dabrowski 2006) have shown
that small variations in key variables can lead to
alternative execution paths that yield large differences in
overall system performance. Although more practical
than using operational grid systems as testbeds, large-
scale simulations that attempt to accurately reproduce
system structure and component behaviour are often a
computationally expensive proposition when many
alternative execution paths must be considered.
Moreover, computational expense increases dramatically
with increase in model size, a critical factor for analysing
grid systems which, even now, can consist of more than
105 computing resources (Carr 2006, Raffo 2006).

To remedy this situation, this paper presents an
approach in which discrete time Markov chain analysis is
combined with a form of rapid, scalable, simulation. This
approach, previously used in other areas, is used here to
model dynamics of large-scale grid systems. In this
approach, a state model of the system is first derived by
observing system operation and then converted into a
succinct Markov chain representation in which model
scale is reduced by taking advantage of the stochastic
characteristics of this model. The resulting model is
expressed as a set of transition probability matrices
(TPMs) that succinctly summarize system dynamics over
different time periods. The TPMs represent an execution
path that can be changed by altering, or perturbing, the
values of individual transition probabilities in the TPM.
By systematically perturbing combinations of transition
probabilities, it is possible to model alternative execution
paths, each of which lead to a different evolution of a grid
system over time. Among these are execution paths

where failure to meet fundamental guarantees of service
causes system performance to significantly degrade.

The approach presented in this paper allows
expeditious investigation of a large number of alternative
system execution paths and identification of paths, or
scenarios, in which failure to meet service guarantees
adversely affects overall system performance. In this
way, Markov chain analysis can be used to predict how a
larger system will react when key service guarantees are
not met. Though computational effort increases in
proportion to the number of paths modelled, we find that
the cost of using Markov chains is far less than the cost of
searching the same problem space using detailed, large-
scale simulation or testbeds. Moreover, computational
cost is unaffected by size of system being modelled,
where size is expressed in terms of workload and number
of computing resources. The approach can also be
adapted for cases in which transition probabilities change
with (e.g. are non-homogenous with respect to) time.

The plan of this paper is as follows. Section 2
summarizes previous work on Markov chain analysis and
related techniques in distributed systems. Section 3 more
precisely describes the problem being investigated using
Markov chain analysis. The section defines fundamental
guarantees of service that large-scale grid systems will
need to provide to their customers and which are the basis
for the analysis in this paper. Section 4 describes the state
model for our grid system, how this model is extended to
be a Markov chain model, and how the Markov chain is
used for simulation. This section describes how the size
of the model representation is reduced and adapted for
situations where the Markov chain is non-homogenous
with respect to time. Section 5 describes the method of
perturbing the Markov chain TPM to simulate alternative
execution paths that violate service guarantees defined in
section 3. Section 6 presents results of using the methods
described in sections 4 and 5 to predict system evolution
and compares these results to those produced by more
detailed simulation. Section 7 presents conclusions.

2 Previous Work
This section briefly reviews work on use of Markov

chains, focusing on two outstanding problems: methods
to reduce model size and perturbation analysis techniques
that reduce the size of the perturbation space. Discrete
Time Markov chain (DTMC) analysis is a well
established analytical tool that has been applied to study
dynamic system behaviour in a variety of real-world
domains. Markov chain analysis has long been used in
manufacturing for problems such as transient analysis of
dependability of manufacturing systems (Zakarian and
Kusiak 1997), split and merge production line processes
and part quality defects (Li et al. 2008). Markov chain
analysis has been used to model mean time to failure in
communications networks (Cassandras, Lee, and Ho
1990), link reliability (Balakrishnan and Reibman 1994),
as well as to examine fault-tolerance and performance in
multi-processor computer architectures (Aupperle and
Meyer 1991, Chiola et al. 1993), real-time process control
systems (Trivedi, Ramani, and Fricks 2003), and software
systems (Laprie and Kanoun 1992, Goseva and Trivedi
2001). In grid computing, Markov chains have been used
to model workload for scheduling (Song, Ernemann, and

Yahyapour 2004) and load balancing (Akioka and
Muraoka 2003). However, unlike these efforts or those
that quantitatively estimate performance or reliability,
this work uses Markov chain modelling to understand
alternative system behaviours that may occur as a
consequence of significant system-wide events or
decisions: in this case, the failure to meet fundamental
service guarantees for grid systems.

The combinatorial increase of the number of states in
DTMC models for large problems has long been widely
recognized as a barrier to practical use of Markov chain
analysis. To solve this problem, the concept of lumping
states with similar characteristics into larger aggregated
units was introduced (Kemeny and Snell 1976) and has
been worked on extensively since. Various lumping
approaches have been explored that use model structure
and symmetry to reduce size (Siegle 1992, Buchholz
1995, Nicol, Sanders, and Trivedi 2004). Other methods
for reducing model size are based on group-theoretic
concepts (Aupperle and Meyer 1991), Stochastic Activity
Nets (Sanders and Meyer 1991), stochastic coloured nets
(Chiola et al. 1993), use of reward variable structures to
identify symmetries (Obal and Sanders 2001), and use of
eigenvector equivalence classes to partition a Markov
state space into lumps (Jacobi and Gornerup 2007).
Fortunately, in the model we present, the number of states
is readily reducible using the stochastic characteristics of
Markov chains, described in section 4. While the number
of states in our model did not prove to be a barrier, the
size of the perturbation analysis problem did.

Perturbation analysis of discrete time Markov chains
has been the topic of theoretical work in the last three
decades (Schweitzer 1968). Like the problem of model
size, the size of a typical perturbation space may quickly
become computationally intractable, if there are many
combinations of alternative system variable values to
consider. To attack this problem, some researchers (Ho
1985, Suri 1989) have advanced the idea of perturbation
analysis of discrete event systems by calculating system
performance gradients that are based on key decision
parameters. This approach estimated the sensitivity of
changes to decision parameters in order to optimize
system performance. Gradient-based approaches were
seen to have the potential to reduce the size of the
perturbation space because they needed to observe as few
as one execution path of a system.

This approach was adapted for Markov chains by
estimating gradients for alternative execution paths (Ho
and Li 1988, Suri 1989). More recently the gradient-
based approach was extended to reduce problem size in
Markov models by grouping state transitions on the basis
of events in order to evaluate control policies (Cao 2005,
Cao and Zhang 2008). This approach was believed to
scale with the number of events and size of the system.
However, in this and earlier work, determination of
performance vectors and efficient gradient calculations
were issues that were not fully resolved. Further, not all
problems were reducible to a form which allowed
tractable calculation of gradients for specific control
policies. While gradient-based perturbation algorithms
have demonstrated potential as efficient tools for analysis
of some complex systems, they also introduce not
inconsiderable computational issues and were found not

to be applicable to all Markov problems. Moreover, the
gradient-based approaches appear more geared to
optimization problems that depend on relatively few
system parameters, rather than the more general problem
of assessing alternative execution paths.

Instead, the approach presented in this paper avoids
the computational difficulties of gradient-based methods.
The potential problem of size in Markov models is
mitigated through a straightforward, concise problem
representation that takes advantage of the stochastic
characteristics of Markov chains and an intuitive, limited
search strategy. While this approach does not completely
solve the issue of problem size, we show Markov chain
analysis yields comparable results at a fraction of the
computing cost of a large-scale simulation and provides a
viable analytical tool for study of system dynamics.

3 Questions to be Answered Through
Perturbation of Markov Chains

It is convenient to organize this analysis on the basis of
basic guarantees of service that grid systems must provide
to their users. These guarantees constitute basic grid
system requirements, which if not met, may render a grid
system useless. The extent to which a grid system fulfils,
or does not fulfil, these guarantees impacts overall system
performance. The ability of Markov chain analysis to
efficiently predict system behaviour if the guarantees are
not met is good way to gauge the usefulness of Markov
methods. Three guarantees may be described.

First, a grid system must guarantee that current
information about what grid computing services exist is
available to users. In grid systems, this guarantee is
fulfilled through service discovery mechanisms that
locate needed services and make information about them
available to users. The service discovery guarantee refers
to the ability of a grid system to provide necessary
information about grid computing services, including
relevant updates, which users require to make decisions.

Second, if a user has found a needed service, the
service is available (not reserved for other tasks), and the
user is qualified to use the service, then the grid system
should allow the user to engage that service. This is
called the service engagement guarantee. To be qualified,
the user must have security and administrative access,
and be able to afford the service. The service engagement
guarantee is meant to ensure that users and providers of
services who logically should cooperate, in fact do so. In
most cases, engagement of a service is signified by the
formation of an SLA, which reserves the service for the
user for a fee. The third guarantee is the service fulfilment
guarantee, which simply states that once a service has
been engaged, i.e. the SLA is in place, the terms of the
agreement should be fulfilled by both provider and user.

Understanding and predicting the consequences of not
fulfilling these guarantees is an important analysis
problem. Particularly important is understanding how the
performance of a grid compute economy is affected as the
extent of guarantee fulfilment decreases. Administrators
as well as providers and users need to understand how
different levels of non-fulfilment of each guarantee affect
a grid system. At what point of incremental increase of
guarantee non-fulfilment does system performance begin

to degrade rapidly? What specific actions by providers or
consumers affect non-fulfilment of a particular
guarantee? Answering questions like these by taking an
actual production system offline to use as a testbed is
impractical for obvious reasons. As indicated above,
simulation has been used successfully to estimate impacts
of failure scenarios. However, if simulation requires
many repetitions using a detailed compute-intensive
model to examine the effect of many system parameters,
the analysis may either take considerable time, be limited
to a restricted number of alternative execution paths, or
both. Markov chain analysis thus provides a viable
alternative for obtaining understanding of effects of not
fulfilling grid service guarantees. The rest of the paper
describes the basic approach and shows initial results.

4 The Markov Chain Model
The behaviour of a large-scale grid system can be
modelled in terms of the computing tasks executing in the
system at any time. Each task progresses through a life
cycle in which it is first submitted by a user, service
providers are discovered to run the task, an SLA is
negotiated with selected provider(s), and the task either
executes to completion or fails. The state of the grid
system can be described by the states of all the tasks that
are in the system at a particular time. This section first
describes the state transition model for a single task and
then shows how the aggregate of many task states can be
represented in a concise Markov chain model. This model
is then elaborated to represent a piece-wise homogenous
Markov chain that allows the dynamics of the grid system
to be studied over different time periods.

4.1 Representing a Task Lifecycle as a State
Model

The lifecycle of an individual task can be represented in
seven states, shown in Figure 1. This model is derived
from a large-scale simulation (Mills and Dabrowski
2008) that studies operation of a grid over an 8-hour day.
Three states in the model presented here—Discovering,
Negotiating, and Monitoring—can be further decomposed
into sub-states. The decompositions yield 27 additional
states, resulting in a larger model with a total of 34 states
(described in Dabrowski and Hunt 2008). Because the 34-
state model can be aggregated into the simpler seven-state
model, the latter is used in the rest of the paper.

The high-level model representation may be described
as follows. In the Initial state, a task has not yet entered
the grid system. Each task is assigned an arrival time and
deadline from exponential distributions (Mills and
Dabrowski 2008). At the arrival time, the task
automatically transitions to the Discovering state. In
Discovering, the task client attempts to discover eligible
providers with sufficient computing resources to execute
the task. After discovery actions conclude, the task may
either transition to Negotiating or Waiting. Tasks enter
the Negotiating state at regular intervals. A task that has
completed Discovering and found at least one provider
enters Negotiating if the interval has elapsed; otherwise it
goes into the Waiting state. In Negotiating, clients rank
discovered providers that they are qualified to use, e.g.,
can afford, on the basis of anticipated cost. They contact

each provider, one at a time, and offer an SLA to execute
the task for a fee. Once an available provider accepts the
offer, negotiation ceases and the task enters the
Monitoring state, during which the task is either blocked
on an execution queue or executing. If negotiations fail
(i.e., no provider can be found to accept an SLA), the task
goes from the Negotiating state to either Discovering or
Waiting. As in Negotiating, a task enters Discovering at
regular intervals. If negotiations fail, a task transitions
from Negotiating to Discovering if the start time has
arrived. Otherwise it transitions to Waiting and remains
until the next Discovering, or Negotiating, start time.

Figure 1. State model of the grid compute economy.

A task that is in Monitoring state enters the Completed

state if task execution is successful. If execution fails, the
task re-enters the Negotiating state. Tasks may also
transition to the Failed state from either the Negotiating
or Waiting states. This occurs when it becomes
impossible to complete the task by its deadline. Both
Completed and Failed are terminal states from which
tasks cannot leave once they enter.

4.2 Evolving the State Model to a Markov
Chain Model

A Markov chain has the property that the probability of
transition between any two states depends entirely on the
circumstances in the state from which the transition
originates and not on the previous history of the process.
More formally, given a sequence of states X1, X2, ……
Xn, the Markov Property is given as:

 (1)

The state model depicted in Figure 1 satisfies the
Markov property. Careful review of the preceding
description shows that the decision to transition to
another state depends only on the circumstances of the
state the task is currently in. These circumstances include
whether a time interval has elapsed, an SLA has been
secured, task execution has succeeded or failed, etc.

In a Markov chain, probabilities are associated with
transitions between states. To calculate state-to-state
transition probabilities, transition frequencies are first
summed over a simulated an eight-hour day using the
large-scale model (Mills and Dabrowski 2008). This is

done by determining where state transitions occur in the
model code and inserting counters at those places. In our
experiments, frequencies were summed for all state
transitions over 50 repetitions of a 36000 s period (10
hours: 8 hours + two extra hours for late tasks) with a
75% workload level. State transition probabilities were
derived as follows. Given states si, sj, i, j = 1…n where
n=7, pij, is the probability of transitioning for state i to
state j, written as si à sj. This probability is estimated by
calculating the frequency of si à sj, or fij, divided by the
sum of the frequencies of si to all other states sk, or

 (2)

Here i and j may be equal, to allow for transition of a
state to itself, or self-transition. A self-transition occurs
when a task remains in a state longer than a specified
interval (equal to a Markov simulation discrete time step,
h, described below). The resulting TPM is a 7 × 7
stochastic matrix, shown in Figure 2. Here rows stand for
the state the transition originates from, or from state, and
columns represent states the transition goes to, or to state.
Each cell in a TPM represents a pij, where i and j are from
and to states, respectively. As in any stochastic TPM, the
transition values of all columns in a row must sum to 1.0.
The only exception to this procedure involved arrival of
tasks in the grid system, described above. Here, the
Markov chain process was altered to reproduce exactly
the exponential arrival times of the large-scale simulation.

Figure 2. Summary stochastic TPM. This TPM is a
weighted average of five TPMs for equal time period
divisions over the 36000 s duration. Individual pij
from the five periods are weighted by the relative
number of transitions in their respective periods. See
Appendix for time period matrix set.

The Markov chain and related TPM can be further

classified. Careful analysis of the description of the state
model in section 4.1 and the structure of the matrix in
Figure 2 shows that tasks can enter the Discovering,
Waiting, Negotiating, and Monitoring states multiple
times, but always remain temporarily. At some point they
enter either the Completed or Failed state, where they
remain permanently, or are absorbed (These states are
absorbing states, in which only self-transitions are
possible). A Markov chain with these characteristics is
called an absorbing chain (Kemeny and Snell 1976) that
can be divided into a transient part (the Discovering,
Waiting, Negotiating, and Monitoring states), and an
absorbing part (with two absorbing states, Completed and

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00800.99170.0003000Mon

0.000100.19610.28820.01820.49740Ngt

0000.29310.67140.03550Disc

0.0046000.09180.06730.83630Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

∑ =

= n

k ik

ij
ij f

f
p

1










=

=
=









==

= ++

nn

n

nn

n

xX

xX

xXxX

xX |
Pr

,,

|
Pr 1

11

1

K

Failed). This characterization is born out in the Markov
chain simulation described below. While the summary
TPM in Figure 2 is useful for illustrating concepts and for
certain analytical studies of the system, it requires further
elaboration to model non-homogeneity.

4.3 Reducing Model Size and Handling Time
Non-Homogeneity

In the large-scale simulation at a 75% workload, there are
typically over 400 tasks, each of which progresses
through the seven states. With such numbers, it is
impossible to model a system state in which all tasks are
tracked simultaneously. However, the stochastic nature of
Markov chains allows one to consider the distribution of
the 400+ tasks among the seven states. It is easy to see
that a system-wide state can be represented in terms of
the proportion of tasks that are in each state. In this way,
it is possible to represent the system state as a seven-
element vector in which the value of each vector element
represents the proportion of tasks in the related state. This
method of system state representation is a simplification
that together with the combination of 34 states into seven,
described above, facilitates problem analysis.

In the large-scale simulation, task submission times
varied exponentially over the simulated day, with mean
task start time at t=3600 s (end of the first hour). This
distribution resulted in different workload levels at
different times in the day and caused transition
probabilities over the 36000s-period to vary. Therefore,
different TPMs were actually in force at different times,
making the system non-homogenous with respect to time.
For this reason, more accurate simulation results for the
transient behaviour of the system were obtained by
creating time-period partitions and computing a separate
TPM for each period. In this experiment, frequencies
were summed separately for five time periods of 7200 s
each2. These matrices, shown in the Appendix, allow a
representation of our model as a piece-wise homogenous
Markov chain having a bounded number of pieces
(Rosenberg, Solan, and Veille 2004) corresponding to the
time periods. To produce the summary TPM, shown in
Figure 2, the individual transition probabilities in the
TPMs for these five periods were weight averaged on the
basis of the relative transition frequencies in each period.
In the summary matrix, each weight-averaged probability
of transition, pij, is computed as follows

 (3)
in which each wl

i represents the weight for row i in time
period l, l ∈ {1.. nper} where nper=5. Each wl

i is
computed by

 (4)

where each ftp

ij is the frequency of transition from state i
to state j in time period tp and n is the dimension of the
matrix (n = 7). The five time-period matrices more

2 Different numbers of time periods were attempted,
including three, 10, and 15; however, five provided the
most accurate results. Devising a method of selecting an
optimal number of time periods is left for future work.

accurately captured system dynamics over time than did
the summary TPM in Figure 2 and were therefore used in
the Markov simulations described below.

4.4 Using a Sequence of Markov Chain TPMs
to Simulate a Dynamic System

A well-known use of stochastic TPMs in a Discrete Time
Markov chain is to describe how a dynamic system
changes over time in discrete time steps, where each step
represents a fixed time duration. In this experiment, a
discrete time step is chosen to represent 85 s, or h = 85
(which also is the time duration for a self-transition,
discussed in section 4.2)3. Hence, if a time period covers
a duration of dperiod = 7200 s, each of the five time-period
matrices represent S= dperiod /h steps or 85 steps.

As indicated above, the system state can be
summarized in a vector v, where each element represents
the proportion of tasks in one of the seven states. Using
equation (5), a vector vm, which represents the system
state at time step m, is multiplied by the TPM Qtp for the
applicable time period tp to produce a new system state
vm+1, to evolve the system over a single discrete time step.

 (5)

where T indicates a matrix transpose. Starting with v0,
which represents a system state with a value of 1.0 for the
Initial state and 0 for all others (e.g, all tasks are in
Initial), equation (5) is repeated for 339 time steps
(representing 28,800 s or the simulated 8-hour day). This
results in a system state vector, v339, in which the sum of
the proportion of tasks in the Completed and Failed states
approaches 1, while other states fall to 0. A goal of
Markov chain analysis is to execute this procedure with a
set of time period TPMs derived from a real-world
system (or, in this case, the large-scale simulation) in
order to approximate the operation of that system. Figure
3 compares the proportion of tasks in the Completed and
Failed states in the Markov chain simulation over 339
steps with the proportion of tasks in these states in the
large-scale simulation as it executes for 28,800 s.

Figure 3. Change in Completed and Failed states over
time in large-scale and Markov chain simulation.

3 Different values for h were also tried. A method of
selecting h is left for future work.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
p
o
rt
io
n

Step

Comparison of Tasks Transitioning to Task Complete and Failed
States in Large-Scale and Markov Chain Simulations

Tasks complete (large-scale simulation)

Tasks complete (Markov simulation)

Tasks failed (large-scale simulation)

Tasks failed (Markov simulation)∑ ∑∑ ≤≤ ≤≤≤≤
=

npertp nj
tp

ijnj
l

ij
l
i ffw

1 11

 nper
ij

nper
iijiijiij pwpwpwp2211 ++=

(Qtp)T * vm= vm+1, where tp = integral value (m/S) + 1

This paper argues that a piecewise homogenous
Markov chain can approximate the transient behaviour of
a real-world grid system (for which the large-scale
simulation is a proxy). By applying (5) to a set of
perturbed TPMs to simulate alternative evolutions of a
grid system, one can model, or predict, the effects of
changed system capabilities, undesirable behaviours, and
events of interest. In this study, we are interested in
perturbing selected rows of the TPM set to represent
changes in the ability of the system to fulfil the three grid
system guarantees described in section 3, and then to
predict the impact of these changes on the final system
state (proportion of tasks in Completed or Failed states).

5 Method of Perturbation
The algorithm for incrementally perturbing selected rows
is intended to predict broad trends rather than precise
outcomes. It is a limited, brute-force search that is
restricted in order to conserve resources, while exploring
a reasonable range of alternatives. The algorithm permits
simultaneous perturbation of combinations of two rows in
order to capture situations where inter-row dependencies
exist. In each perturbed row, each row element,
corresponding to a column, with a probability of
transition greater than zero is selected in turn for
incremental increase. At the same time, the transition
probabilities of one or more other row elements with non-
zero values are decreased by a total equal to the increase,
so that all elements in the perturbed row continue to sum
to one. For a set of time-period matrices, these changes
are applied to each matrix in the set. Each combination of
altered transition probabilities represents a different
execution path that the system may take.

The algorithm requires that a user first select a
primary row, r, to perturb. The secondary rows, s, to be
perturbed are then automatically determined, as described
below. The user also must select a perturbation limit L,
on how far transition probabilities can be perturbed and
also select the incremental amounts by which primary and
secondary rows will be perturbed. These decisions define
the extent and granularity of the perturbation that will
take place. An overview of the procedure is provided
below. For more detail, see (Dabrowski and Hunt 2008).
This section also discusses the computational effort
required to apply the perturbation algorithm to the
Markov chain simulation. This effort is a small fraction of
what would be necessary to explore the same set of
alternative behaviours using the large-scale simulation.
The next section, Section 6, then presents results of
applying the perturbation algorithm and compares these
results with those produced by the large-scale simulation.

5.1 Overview of Perturbation Algorithm
In the primary row, starting from numerically lowest row
element, each element having a positive transition
probability is used in turn to determine as the primary
increase column, c↑. In this column, the transition
probability is raised by a gradually increasing amount,
mprim up to the limit L. These increases occur in
increments defined by a primary increase amount, vprim.
At the same time, the other elements in the primary row
are reduced by proportions of mprim determined by weight

factors, as follows. Each non-increase column in turn is
selected as the primary column to decrement, termed a
primary sink column, c↓. For the primary sink column, a
sink weight, w, is selected from a predetermined set of
sink weights called the sinkWeightSet. In the experiments
reported here, the sinkWeightSet consisted of {0.2, 0.4,
0.6, 0.8, 1.0}. The probability of transition for c↓ is
reduced by the amount w ⋅ mprim. The remainder of the
weighted reduction, or (1.0 – w)⋅ mprim, is distributed to
the other non-sink columns. A perturbation of primary
row r may be summarized by

 (6)

for p(old)
rj > 0 where [a]+=a if a>0 and [a]+=0 otherwise.

Of course, if w is 1.0, or if the primary increase column c↑
and primary sink column c↓ are the only columns with
non-zero transition probabilities, the primary sink column
bears the entire reduction.

The secondary row s can be selected on the basis of
either: (a) the numeric value of the primary increase
column c↑, if it is not equal to the number of the primary
row, or c↑ ≠ s (otherwise no secondary row is selected);
and (b) by strength of association, using the total value of
transition probabilities between the two states the rows
represent and (if known) the number of transitions that
occur between these states. The default method is (a); and
this was used for the results reported below. Thus in the
primary row r, as each primary increase column, c↑, is
selected, a different secondary row is also selected. As in
the primary row r, each positive row element in the
secondary row, s, is selected in turn for increase, and the
corresponding column is designated as the secondary
increase column, d↑. However, in the secondary row, the
perturbation is simpler--the transition probability of a
secondary increase column, d↑, is raised by a secondary
increment amount, vsec, in 5 equal steps to produce
successive perturbation amounts, msec, up to L. As in the
primary row r, transition probabilities in the remaining
columns of the secondary row are decreased by an equal
amount; though here the amount of decrease for each
column is assigned in proportion to the relative value of
its transition probability (similar to non-sink columns in
the primary row). To summarize,

 (7)

Each combination of variable assignments for the

primary row, primary increase column, primary sink
column, sink weight, together with the secondary row,
secondary increase column, and secondary increase
amount (if any) is considered a unique perturbation
combination, labelled {r, c↑, c↓, w, s, d↑, msec}. For each
perturbation combination, a separate perturbation













≠













−

=+

=
↑

+

↑≠

↑

∑
dj

p

p
mp

djmp

p

dk
sk

old
sjold

sj

old
sj

new
sj

)(

sec
)(

sec
)(

)(

[]













=⋅−

=+

=
↓+

↑

cjmwp

cjmp

p prim
old

rj

prim
old

rj

new
rj

)(

)(

)(

↓↑

↓↑≠

≠⋅−−
∑

ccj
p

p
mwp

cck
rk

old
rj

prim
old

rj ,)1(

,

)(
)(

+










sequence of L/vprim steps is carried out in the primary row.
In each element of the perturbation sequence, the value of
the primary increase column, c↑, is successively raised by
vprim while the primary sink column, c↓, and non-sink
columns, if any, are decremented as described above. For
a set of time period matrices, this perturbation sequence is
applied to each matrix in the set. For each assignment of
incremental values in the perturbation sequence, the
Markov chain simulation procedure described in section
4.4 is carried out for the time-period matrix set. Each
execution of the simulation represents a potentially
different system execution path. The incremental
increases in the perturbation sequence continue until the
transition probability in the primary increase column, c↑,
reaches L or 1.0 in each time-period matrix. Thus if
L=0.25 and vprim = 0.01, there are a maximum of 25
Markov chain simulations in a perturbation sequence for
a perturbation combination.

5.2 Implementing the Perturbation Approach
The perturbation method described above was used to
predict the result of failing to fulfil the three service
guarantees described in section 3. To do this, we used the
time-period matrix set in the Appendix (summarized by
the weight-averaged matrix in Figure 2), together with the
default method (a) for secondary row selection. The sink
weight set and parameters values for L, vprim, and vsec
described above were also used. Applying the
perturbation method resulted in generation of 2805
perturbation combinations and perturbation sequences
consisting of 89,750 simulations, which required 3354 s
(56 minutes) of computation time using an Intel Xeon MP
processor. This is a substantial amount, but less than
0.5% of the time (205 hours) that the large-scale
simulation needed to show behaviours described below in
which the service guarantees were violated.

6 Comparing Perturbations of the Markov
Chain and Large-Scale Simulation

The systematic perturbation of the TPMs described in the
preceding section revealed a wide range of behaviours. A
subset of these behaviours, corresponding to a subset of
the total perturbation combinations discussed above,
show what might occur if individual guarantees were
violated. These perturbation combinations represent
service guarantee violation scenarios of interest. In the
Markov chain model, violation of the Discovery
Guarantee corresponded to a subset of perturbation
combinations for rows 1-4 in which tasks were prevented
from transitioning to the Discovering state. Two of these
combinations are presented here.

Failure to fulfil the Service Engagement Guarantee
was enacted by reducing probability of transition from the
Negotiating state to the Monitoring state in row 4.
Perturbation combinations that reduced this probability
represented a violation scenario in which SLAs were not
granted even though users and providers might be eligible
for, and should be able to obtain, agreements. Violation
of the Service Fulfilment Guarantee was enacted by
reducing the probability of transition from the Monitoring
state to the Completed state in row 5, while increasing the
probability of transitioning from Monitoring to another

state. This violation scenario corresponded to aborting a
task that was either executing, or in a waiting queue. The
results of these perturbations of the Markov chain are
shown in graphs of perturbation sequences for relevant
perturbation combinations.

To compare the results of the perturbations to the
Markov chain with similar changes to the behaviour of
the large-scale simulation, the original model (Mills and
Dabrowski 2008) was altered to simulate the effects of
not fulfilling the three service guarantees. These changes
to the large-scale model are described below and their
effect on performance is graphed. In what follows, the
results of perturbing both the Markov chain and large-
scale simulation to emulate violation of the three service
guarantees are described. These results are compared in
terms of how well the Markov chain simulation predicts
the result of the large-scale simulation and the relative
computational effort required by each method.

6.1 Service Discovery Guarantee
The effect of not fulfilling the Discovery guarantee is
shown in two selected violation scenarios in which
initiation of discovery actions is prevented. In the first,
the probability of transition from the Initial State to the
Discovering state is lowered (row 1). In the second, the
transition probability from the Waiting state to the
Discovering state is lowered (row 2).

6.1.1 Perturbation of Transition to the
Discovery state in Row 1

Row 1, column 3 of the unperturbed weight-averaged
matrix shows the probability of transition from the Initial
state to the Discovering state. The five-period matrix set
in the Appendix shows this transition occurs entirely in
the first time period of the simulated day. The transition
from Initial to Discovering marks the arrival of a task in
the grid system and is followed immediately by an
attempt to discover providers to execute the task.

Figure 4 shows the effect of systematically lowering
the probability of the transition from Initial to
Discovering in the Markov chain simulation and the
equivalent operation in the large-scale simulation. To
perturb the Markov chain simulation, column 1 of row 1
is selected as the primary increase column, while column
3, Discovering, is designated as the primary sink column.
Since there are no other columns in row 1 that have
transition probabilities greater than 0, the sink weight is
1.0. Using the default secondary column selection
method, no secondary row is perturbed, since the number
of the primary row and increase column are the same.

In the large-scale simulation, the equivalent of
reducing the probability of transition to the Discovering
state was achieved by systematically increasing the
amount of time each task remains in the Initial state, thus
in effect delaying arrival of tasks into the grid system.
This perturbation had the effect of right-shifting the
arrival time distribution described above (Mills and
Dabrowski 2008) and caused tasks to fail to meet their
deadlines. When column 1 of row 1 was selected as the
primary increase column in the Markov chain simulation,
the same right shift was simulated, because recall that the
Markov chain process was modified to allow task arrival

to take place using the distribution derived from the
large-scale simulation (Section 4.1). Right-shifting this
distribution delayed transition from the Initial to
Discovering state, producing the same result.

Figure 4. Proportion tasks complete in large-scale and
Markov chain simulations in response to reduction in
the probability of transition from Initial to
Discovering (column 3 of row 1 is the primary sink
column), while raising self-transition of Initial
(column 1 is the primary increase column).

In Figure 4, curves for both large-scale and Markov

chain simulations show that proportion of tasks complete
decreases relatively little as the probability of transition
from Initial to Discovering state is reduced from 0.03 to
0.01. Below 0.01, the proportion complete drops sharply
in both cases. This reflects the effect of increasing delay
of tasks leaving the Initial state to progress through the
Discovering, Negotiating, and Monitoring states, so that
they do not have sufficient time to execute and reach
Completed. Although the Markov chain curve declines
more steeply, it is similar to the curve for the large-scale
simulation. Both show that performance will decline little
until the probability of transition to Discovering falls
below 0.01. In our experiments, the Markov chain
simulation completely perturbed row 1 in 82.39 s, while,
the large-scale simulation required 21.18 hours to capture
the similar guarantee violation behaviour.

6.1.2 Perturbation of Transition to the
Discovery state in Row 2

The probability of transition from the Waiting state to the
Discovering state is shown in row 2, column 3. This
transition represents subsequent attempts to initiate
discovery operations by task clients after the first round
of discovery which occurs when a task first arrives. In the
Markov chain simulation, a violation scenario for the
Discovery Guarantee was created by reducing the
probability of transition from Waiting to Discovering
(selecting column 3 as the primary sink column with a
primary sink weight of 1) while raising the probability of
transition from Waiting to Negotiating (selecting column
4 as the primary increase column). In this case, row 4
(Negotiating) was perturbed as the secondary row since
the Negotiating state corresponds to column 4. Equivalent
behavioural changes were made to the large-scale
simulation by altering the code to prevent the task client
from initiating subsequent rounds of discovery. The
large-scale model was iteratively executed. On each
iteration, the probability of delaying the start of a

subsequent discovery phase was incrementally raised.
TPMs were generated for this perturbed behaviour and
compared with the Markov chain process.

Figure 5 shows the result of these alterations to the
large-scale simulation together with the Markov chain
perturbation sequences for 15 perturbation combinations
of row 2 that best captured this violation scenario.
Exploring all 425 perturbation combinations for row 2
required 373.44 s of computational time, while the large-
scale simulation required 12.17 hours to execute the
perturbed behaviour.

Figure 5. Proportion tasks complete in the large-scale
and Markov chain simulations (shown using linear
trend lines) in response to reduction in the probability
of transition from Waiting to Discovering (column 3 of
row 2 is the primary sink column) while raising the
transition probability of Waiting to Negotiating
(column 4 is the primary increase column).

In Figure 5, both the curves for the Markov chain and

large-scale simulation show essentially no reduction in
task completion as the probability of initiating subsequent
discovery actions goes to zero. In the large-scale
simulation, failing to initiate subsequent discovery does
not affect task completion, because the discovery process
is sufficiently efficient so that all eligible providers are
found on the first discovery attempt (see Section 6.1.1).
Hence, subsequent discovery actions are not actually
needed, and the absence of these actions does not impact
performance. The curves for the related Markov chain
perturbation combinations shown in Figure 5 agree well
with the large-scale simulation. If the Markov chain
curves were used to make predications, they would
accurately predict the result of the large-scale simulation
with relatively minor differences in value of tasks
completed. Other perturbations of transitions to the
Discovering state in rows 3 and 4 describe violation
scenarios of the Discovery Guarantee that also agree with
the large-scale simulation. These are omitted due to lack
of space. (Please see Dabrowski and Hunt 2008).

6.2 Service Engagement Guarantee
The act of engaging a service to execute a task is
represented in the Markov chain by the transition from
the Negotiating state to the Monitoring state. In row 4 of
the TPM, the effects of non-fulfilment of the Service
Engagement Guarantee can be illustrated by reducing this

0.5

0.6

0.7

0.8

0.9

1

P
ro
p
o
rt
io
n
 T
ak
s
 C
o
m
p
le
te

Decrease in Probability of Transition from Waiting to Discovery

Large-scale simulation
Secondary perturbation of Negotiating to Monitoring
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary perturbation of Negotiating self-transition
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary perturbation of Negotiating to Waiting
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
po
rt
io
n
Ta
sk
s
C
om
pl
et
e

Decrease in Probability of Transition from Initial to Discovery

Large-scale simulation

Markov chain simulation

2 per. Mov. Avg. (Large-scale simulation)

probability of transition. This perturbation is meant to
predict the effect of reducing acceptance of agreements
because either users or providers fail to conclude SLAs
they should enter into. Along with decreasing the
probability of transition from Negotiating to Monitoring
(making column 5 of row 4 the sink column), the time-
period TPM set is perturbed by increasing the probability
of transition from Negotiating to either Waiting,
Discovering, or Negotiating, i.e., choosing columns 2, 3,
or 4 of row 3 as the primary increase columns. Choosing
column 2 or 3 involves selecting corresponding rows
(rows 2 or 3) for secondary perturbation.

Figure 6. Proportion of tasks complete in the large-scale
and Markov chain simulations in response to reducing
the probability of transition from Negotiating to
Monitoring (column 5 of row 4 is the primary sink
column) while the transition probability to Waiting
increases (column 2 is the primary increase column).

Figure 6 shows curves for perturbation sequences of

15 relevant perturbation combinations for row 4 (out the
785 total) in which the probability of transition from
Negotiating to Waiting is raised (column 2 is the primary
increase column) while the transition probability from
Negotiating to Monitoring is lowered (column 5 is the
sink, with a sink weight of 1). Row 2, Waiting, is chosen
for secondary perturbation. In the large-scale simulation,
the equivalent perturbation was accomplished by
systematically increasing the probability that a provider
rejects the agreement, the result of which is also shown in
Figure 6. This figure shows that the perturbation of the
Markov chain simulation is generally predictive of the
large-scale simulation result. The Markov chain curves
correctly predict that as the probability of transition to
Monitoring falls to zero, i.e., users and providers fail to
conclude SLAs, the proportion of tasks completed also
falls to zero. In the case where secondary perturbation of
row 2 increased Waiting self-transition to simulate
additional delay, the Markov chain curves show that
system performance would degrade still further.

A similar set of curves can be produced by the Markov
chain simulation for perturbation combinations where
column 3 (Discovering) is made the primary increase
column while column 5 (Monitoring) remains the sink
column. In this case, the Markov chain is generally
predictive as well. This analysis is omitted due to lack of
space (see Dabrowski and Hunt 2008). The computational

cost for the entire 785 perturbation combinations required
to perturb all of row 4 was 789.17 s. Raising L to 0.5 to
obtain additional perturbation sequences needed to
increase range in this case required another 1480.46 s.
Here, the large-scale simulation required 41.57 hours.

6.3 Agreement Fulfilment Guarantee
The Monitoring state is entered once an SLA is
concluded. In the Markov chain, failure to fulfil an
agreement may be modelled by increasing the probability
of transition from Monitoring to states other than the
Completed state; namely, either increasing the probability
of transition to the Negotiating state (representing a task
abort) or increasing the probability of self-transition in
the Monitoring state (representing an extended delay). In
the former violation scenario, a task that transitions from
Monitoring to Negotiating (aborts) may recover from this
setback by later obtaining another SLA, returning to the
Monitoring state, and then completing. In this section,
this violation scenario is simulated in the Markov chain
by making Negotiating, column 4 of row 5, the primary
increase column, while making Completed, column 6, the
sink column. In the resulting perturbation combinations,
secondary row perturbation is applied to the Negotiating
row (row 4). In the large-scale simulation, the equivalent
behaviour change was enabled by systematically
increasing the rate at which a provider aborts a queued or
executing task. As before, the large-scale simulation
iterated, with the abort rate increasing on each iteration.

Figure 7 shows the resulting curves for Markov chain
perturbation sequences in which the probability of
transition to the Negotiating state is raised (i.e., column 4
is the primary increase column) as the probability of
transition to Completed (i.e., column 5 is the sink) falls
from a weighted average of 0.008 to zero. The figure
shows that this perturbation causes the proportion of tasks
completed to fall dramatically. This figure shows 20 of
the most relevant perturbation combinations (out of a
total of 270) for the case where the Completed state has a
sink weight of 0.2. Alternative perturbations using
Monitoring as the sink column (not shown) produce a
similar result. In all cases, the Markov chain curves show
a pronounced reduction in proportion of tasks completed
that is substantially predictive of the curve for the large-
scale simulation, also shown in Figure 7. The figure
shows that 5 of the 20 curves represent accurate
approximations of the large-scale simulation result. The
remainder show the distinct downward trend in tasks
completed, though at markedly different slopes. In the 5
curves closest to the large-scale simulation result, the
secondary row, Negotiating (row 4), is perturbed to raise
the probability of transition to the Monitoring state
(column 5). This effectively models a situation where
tasks that fail to transition from Monitoring to Completed
(abort) are later able to negotiate new SLAs, return to the
Monitoring state, and complete—as might be expected in
the real world. While only a relatively small proportion of
the curves produced through Markov chain simulation are
this accurate, all curves (including those not shown)
predict that if the probability of transition from
Monitoring to Negotiating is raised sufficiently (i.e., the
probability of task abort is high enough), system
performance will drastically degrade. The Markov chain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
p
o
rt
io
n
 T
a
s
k
s
 C
o
m
p
le
te

Decrease in Probability of Transition from Negotiating to Monitoring

Large-scale Simulation
Secondary row perturbation of Waiting self-transition
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary row perturbation of Waiting to Discovery
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

Secondary row perturbation of Waiting to Negotiating
increase of 0.063
increase of 0.125
increase of 0.188
increase of 0.25

simulation required 260.2 s of execution time to process
the 270 perturbation combinations for row 5. The large-
scale simulation required a lengthy 122.6 hours to carry
out the equivalent perturbation behaviour, because
repeated task aborts entailed extensive delays.

Figure 7. Proportion tasks complete in large-scale and
Markov chain simulation in response to increasing the
probability of transition from Monitoring to
Negotiating (column 4 in row 5 is the primary increase
column) while decreasing the probability of transition
from Monitoring to Completed (column 6 is the sink
column with a sink weight of 0.2) from 0.008 to 0.

6.4 Summary of Analysis and Outstanding
Issues for Future Work

The preceding sections showed that perturbation of TPMs
carried out through application of the method described in
sections 4 and 5 does indeed generally predict how the
large-scale grid system will perform when key service
guarantees are violated. In the case of the Discovery
guarantee, the Markov chain was found to accurately
correspond to the large-scale simulation in both cases
shown. For the Engagement guarantee, perturbations of
the Markov chain were found to generally correspond to
the results produced by the large-scale simulation for one
violation scenario. For the violation of the Service
Fulfilment Guarantee, the perturbation of the Markov
chain accurately captured the behaviour exhibited by the
large-scale simulation. Thus perturbation of the Markov
chain was show to be an effective predictor for all cases
shown in this paper (for additional examples, see
Dabrowski and Hunt 2008). In no case, did the Markov
chain simulation produce results that contradicted the
large-scale simulation. Moreover, the Markov chain
approach achieved these results at less than 0.5% of the
computational cost of the large-scale simulation. If the
required data was obtained from a real-world system to
create a Markov model and related TPMs, it is reasonable
to believe that comparable results could be achieved.

Despite this success, important issues still remain to be
resolved. The most important is scalability, which has
three aspects. First is whether the approach scales with
respect to the size of the system being modelled, as
expressed in terms of such variables as number of entities
being modelled, number of transitions taken, and

workload. As section 4 has shown, the method of
counting state transitions and generating transition
probabilities is a straightforward arithmetic process that
clearly does not depend on number of transitions. Here,
scale does not hinder analysis. Second, there is the all-
important issue of the size of the state model, that is, the
number of states and the corresponding size of the TPM.
Here, further work incorporating lumping techniques
described in Section 2 will be needed. Finally, it is
important to consider scalability with respect to the
number of perturbations, or alternative execution paths,
investigated. Despite the dramatic reduction in execution
time seen for Markov chain method (< 0.5% of the
execution time used by large-scale simulation), scalability
may not be good for very large matrices or if many
perturbations are needed. Follow-on research will be
needed to examine this issue. Here, there is the possibility
of extending non-linear algebra techniques and matrix
methods (Stewart and Sun 1990) to generate
eigensystems that can be analysed to determine what
parts of the matrix are most sensitive to perturbation and
thus where investigation should be focused. Despite these
issues, the Markov chain approach entails dramatically
less computational effort than large-scale simulation.
Beyond scale, other issues exist, such as improving the
accuracy of Markov chain simulation by selecting
optimal sizes for time periods and identifying appropriate
tests of statistical significance to measure accuracy.

7 Conclusions
Section 6 showed that perturbation of TPMs and Markov
chain simulation was generally predictive of changes to
performance arising from failure to fulfil basic service
guarantees provided by grid computing systems. While
Markov chain analysis did not reproduce the exact
performance curves generated by the large-scale
simulation, a carefully limited brute-force perturbation of
TPMs produced a family of related curves which
estimated the impact of not fulfilling service guarantees.
Perturbed TPMs produced by Markov chain analysis
were predictive both in cases where changes to the
behaviour of the large-scale simulation resulted in severe
performance degradation as well as cases where changes
to the large-scale simulation did not significantly impact
results. Thus, it is possible to conclude that the approach
to perturbing Markov chains described in this paper did
indeed answer the questions posed in section 3; namely,
how non-fulfilment of the three service guarantees affects
performance of a large-scale grid system. Moreover, the
Markov chain procedure performed the analysis needed
to answer this question using only 0.5% of the
computational resources (less than two orders of
magnitude) that was needed for the large-scale
simulation. If, instead of the large-scale simulation, a
real-world system could be used as a testbed in which
conditions are sufficiently controlled to allow execution
of repeated trials, the contrast in time (and resource)
expenditure could be much greater. The study thus shows
that Markov chain analysis is a valuable tool for
understanding complex system behaviour in large-scale
grid systems and can be used to predict performance
changes that result when fundamental guarantees of
service are not met.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
p
o
rt
io
n
 T
a
s
k
s
 C
o
m
p
le
te

Increase in Probability of Transition from Monitoring to Negotiating

Large-scale simulation
Secondary perturbation of Negotiating to Waiting
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250
Secondary perturbation of Negotiating to Discovering
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250
Secondary perturbation of Negotiating self-transition
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250
Secondary perturbation of Negotiating to Monitoring
Increase of 0.063
Increase of 0.125
Increase of 0.188
Increase of 0.250

8 References
Akioka, S. and Muraoka, Y. (2003): The Markov Model

Based Algorithm to Predict Networking Load on the
Computational Grid. Journal of Mathematical
Modelling and Algorithms 2: 251–261.

Andrieux A., Czajkowskim K., Dan, A., Keakey, K.,
Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J.,
Tuecke, S. and Xu, M. (2007): Web Services
Agreement Specification (WS-Agreement). GFD.107,
Open Grid Forum.

Aupperle, B. and Meyer, J. (1991): State space generation
for degradable multiprocessor systems. Twenty-First
International Symposium on Fault-Tolerant Computing
(FTCS-21), Digest of Papers, Montreal Canada, 308-
315, IEEE Computer Society Press.

Balakrishnan, M. and Reibman, A. (1994): Reliability
models for fault-tolerant private network applications.
IEEE Transactions on Computers. 43 (9): 1039-1053.

Buchholz, P. (1995): Hierarchical Markovian Models:
Symmetries and Reduction. Performance Evaluation
22 (1): 93-100.

Cao, X. (2005): Basic Ideas for Event-Based
Optimization of Markov Systems. Discrete Event
Dynamic Systems: Theory and Applications 15 (2):
169–197.

 Cao, X. and Zhang, J. (2008): Event-Based Optimization
of Markov Systems. IEEE Transactions on Automatic
Control 53 (4): 1076-1082.

Carr D., How Google Works. Baseline Magazine, July 6,
2006. http://www.baselinemag.com. Accessed 15 July
2008.

Cassandras, C., Lee, J. and Ho, Y. (1990): Efficient
parametric analysis of performance measures for
communication networks. IEEE Journal on Selected
Areas in Communications 8 (9): 1709-1722.

Chun, B., and Culler, E. (2002): User-centric
performance analysis of market-based cluster batch
schedulers. Proceedings of the 2nd IEEE International
Symposium on Cluster Computing and the Grid, Berlin
Germany, 30, IEEE Computer Society Press.

Chiola, G., Dutheillet, C., Franceschinis, G. and Haddad,
S. (1993): Stochastic Well-Formed Colored Nets and
Symmetric Modeling Applications. IEEE Transactions
on Computers 42 (11): 1343-1360.

Dabrowski, C. and Hunt F. (2008): Markov Chain
Analysis for Large-Scale Grid Systems. Draft NIST
Internal Report.

Goseva-Popstojanova, K., and Trivedi, K. (2001):
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation. 45 (2-3):
179-204.

Ho, Y. (1985): A Survey of the Perturbation Analysis of
Discrete Event Dynamic Systems. Annals of
Operations Research 3 (8): 393-402.

Ho, Y. and Li, S. (1988): Extensions of infinitesimal
perturbation analysis. IEEE Transactions on
Automation Control AC-33 (5): 427-438.

Jacobi, M. and Gornerup, O. (2007): A Dual Eigenvector
Condition for Strong Lumpability of Markov Chains.

 arXiv.org, http://arxiv.org/abs/0710.1986. Accessed 20
November, 2008.

Kemeny, J. and Snell, J. (1976): Finite Markov Chains.
New York, Springer.

Laprie, J. and Kanoun, K. (1992): X-ware reliability and
availability modeling. IEEE Transactions on Software
Engineering 18 (2): 130-147.

 Li, J., Blumenfeld, D., Huang, N. and Alden, J. (2008):
Throughput analysis of production systems: recent
advances and future topics. International Journal of
Production Research. To appear,

Mills K. and Dabrowski C. (2006): Investigating Global
Behavior in Computing Grids. Lecture Notes in
Computer Science 4124: 120-136, Springer.

Mills, K. and Dabrowski C. (2008) Can Economics-based
Resource Allocation Prove Effective in a Computation
Marketplace? Journal of Grid Computing 6 (3): 291-
311.

Nicol, D., Sanders, W. and Trivedi, K. (2004): Model-
based evaluation: from dependability to security. IEEE
Transactions on Dependable and Secure Computing
1 (1): 48 – 65.

Obal, W. and Sanders, W. (2001): Measure-adaptive
state-space construction. Performance Evaluation 44
(1-4): 237-258.

Raffo D. (2006): Grid, redundancy, and home-cooked
management help site survive. Byte and Switch,
November 22, 2006.

Rosenberg, D., Solan, E. and Vielle N. (2004):
Approximating a Sequence of Observations by a
Simple Process. The Annals of Statistics 32 (6): 2742-
2775.

Sanders, W. and Meyer, J. (1991): Reduced base model
construction methods for stochastic activity networks.
IEEE Journal on Selected Areas in Communications,
special issue on Computer-Aided Modeling Analysis,
and Design of Communication Networks 9 (1): 25–36.

Schweitzer, P. (1968): Perturbation Theory and Finite
Markov Chains. Journal of Applied Probability 5 (2):
401-413.

Siegle, M. (1992): On Efficient Markovian Modelling.
Proceedings of the QMIPS Workshop on Stochastic
Petri Nets, Sophia Antipolis, France, 213-225.

Song, B., Ernemann, C. and Yahyapour, R. (2004)
Parallel Computer Workload Modeling with Markov
Chains. Lecture Notes in Computer Science 3277: 47-
62, Springer.

Stewart, G. and Sun, J. (1990) Matrix Perturbation
Theory. San Diego USA, Academic Press.

Suri, R. (1989): Perturbation Analysis: The State of the
Art and Research Issues Explained via the GI/G/l
Queue. Proceedings of the IEEE 77 (1): 114-138.

Trivedi, K., Ramani, S. and Fricks, R. (2003): Recent
advances in modeling response-time distributions in
real-time systems. Proceedings of the IEEE 91 (7):
1023-1037.

http://www.baselinemag.com/
http://arxiv.org/abs/0710.1986

Yeo, C. and Buyya, R. (2005): Service level agreement
based allocation of cluster resources: handling penalty
to enhance utility. Proceedings of the 7th IEEE
International Conference on Cluster Computing.
Boston, USA, 27-30, IEEE Computer Society Press.

Zakarian, A. and Kusiak, A. (1997): Modeling
manufacturing dependability. IEEE Transactions on
Robotics and Automation 13 (2): 161-168.

9 APPENDIX Five Time-Period Transition
Matrices Showing Non-Homogeneity With
Respect to Time

Time Period 1, 0-7200 s

Time Period 2, 7201-14400 s

Time Period 3, 14401-21600s

Time Period 4, 21601-28800s

Time Period 5, 28801-36000s

0000000Fail

01.000000Comp

00.00390.99610000Mon

000.34420.29200.01320.35060Ngt

0000.33560.60130.06310Disc

0000.13780.05500.80720Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

0000000Fail

01.000000Comp

00.00390.99610000Mon

000.34420.29200.01320.35060Ngt

0000.33560.60130.06310Disc

0000.13780.05500.80720Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00710.99280.0001000Mon

000.04480.37700.03160.54660Ngt

0000.50120.498800Disc

0.0002000.07490.07220.85270Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00710.99280.0001000Mon

000.04480.37700.03160.54660Ngt

0000.50120.498800Disc

0.0002000.07490.07220.85270Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.01620.98280.0010000Mon

0.000100.01570.18540.01430.78450Ngt

0000.35930.640700Disc

0.0074000.07020.07300.84940Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.01620.98280.0010000Mon

0.000100.01570.18540.01430.78450Ngt

0000.35930.640700Disc

0.0074000.07020.07300.84940Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.0670.93170.0013000Mon

0.010100000.98990Ngt

0000.00090.999100Disc

0.0249000.06890.07220.83400Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.0670.93170.0013000Mon

0.010100000.98990Ngt

0000.00090.999100Disc

0.0249000.06890.07220.83400Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

0.06700.93170.0013000Mon

0.010100000.98990Ngt

0.00090.999100Disc

0.0435000.07340.07200.81110Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

0.06700.93170.0013000Mon

0.010100000.98990Ngt

0.00090.999100Disc

0.0435000.07340.07200.81110Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

	1 Introduction
	2 Previous Work
	3 Questions to be Answered Through Perturbation of Markov Chains
	4 The Markov Chain Model
	4.1 Representing a Task Lifecycle as a State Model
	4.2 Evolving the State Model to a Markov Chain Model
	4.3 Reducing Model Size and Handling Time Non-Homogeneity
	4.4 Using a Sequence of Markov Chain TPMs to Simulate a Dynamic System

	5 Method of Perturbation
	5.1 Overview of Perturbation Algorithm
	5.2 Implementing the Perturbation Approach

	6 Comparing Perturbations of the Markov Chain and Large-Scale Simulation
	6.1 Service Discovery Guarantee
	6.1.1 Perturbation of Transition to the Discovery state in Row 1
	6.1.2 Perturbation of Transition to the Discovery state in Row 2

	6.2 Service Engagement Guarantee
	6.3 Agreement Fulfilment Guarantee
	6.4 Summary of Analysis and Outstanding Issues for Future Work

	7 Conclusions
	8 References
	9 APPENDIX Five Time-Period Transition Matrices Showing Non-Homogeneity With Respect to Time

