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Rolled Latent

* Lights-out rank-1 hit rate
— Plain: 99.3%
— Latent: 67.2% (70.2% with image + markup)
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Motivation
* Different examiners provide different mark ups

Markup 1: Hit at rank-1 Markup 2: Hit at rank-129



Approach
* Use collective wisdom of multiple examiners

* Expert crowdsourcing [3]: use a team of latent
examiners for markup as needed

[3] D. Retelny, S. Robaszkiewicz, A. To, W. Lasecki, J. Patel, N. Rahmati, T. Doshi, M. Valentine, and M. S. Bernstein. Expert
crowdsourcing with flash teams. In ACM Symposium on UIST, 2014.



Expert Crowdsourcing Framework
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[3] S.S. Arora, E. Liu, K. Cao and A. K. Jain, “Latent Fingerprint Matching: Performance Gain via Feedback from Exemplar Prints”, IEEE TPAMI, 2014.
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How Many Experts are Enough?
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Experiments

 Latent Databases

Database #Latents Resolution Latent type #Ifllxaarrl?uiur:r
NIST SD27 258 500 operational 6
ELFT EFS 255 1000 operational 2
RS&A 200 1000 collected in lab 1

* Reference Database
— 250K rolled prints (true mates, MSP, NIST)

* Latent AFIS
— Top performing system in NIST ELFT-EFS 2



Sample Markups: NIST SD27
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Sample Markups: ELFT EFS & RS&A

Only a single markup
available for latents in RS&A

Markups by two examiners
for a latent in ELFT EFS

10



Hit Rate (%)

Performance of Crowdsourcing
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Performance of Crowdsourcing

_~» Best markup

NIST SD27
(85 ugly quality latents)

T Worst markup

Image only
Score fusion (sum rule)

[ ]lmage + Manual markup | |

50 100 150
Rank
Rank-1 hit rate improves by ~12%

200

12



Performance of Crowdsourcing

Different combinations of examiners

63.11 77.13 78.23

One examiner

Two examiners 68.04 80.88 81.96
Three examiners 69.42 82.15 83.29
Four examiners 70.00 82.71 83.98
Five examiners 70.80 83.14 84.56
All six examiners 70.93 82.95 84.88

Hit rates using different subsets of latent examiners



Performance of Crowdsourcing
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Performance of Crowdsourcing
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Performance Improvement Example
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Performance Improvement Example

 NIST SD27 (Latent 83)
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_ Image only Image + Markup-E1 Fusion (All 6)

Rank Failed to match Failed to match 2 (score: 226)
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Performance Decrease Example

 NIST SD27 (Latent 206)
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Image only Mated Exemplar

_ Image only Fusion (All 6)

Rank 82 (score: 97) 116 (score: 411)
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Greedy Crowdsourcing
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Conclusions and Next Steps

 Wisdom of multiple latent experts is effective
for latent fingerprint identification

* Performance of a latent AFIS is significantly
improved (~7.75 % on NIST SD27)

* Next steps:
— Evaluate open-set identification performance
— Incorporate latent quality

— Explore meta-algorithms such as boosting and
bagging to improve AFIS performance



