Crowd Powered Latent Fingerprint Identification: Fusing AFIS with Examiner Markups

Sunpreet S. Arora¹, Kai Cao¹, Anil K. Jain¹ and Gregoire Michaud²

¹Michigan State University ²Forensic Science Division, Michigan State Police

State of the art

- Lights-out rank-1 hit rate
 - Plain: 99.3%
 - Latent: 67.2% (70.2% with image + markup)

[1] C. Watson, G. Fiumara, E. Tabassi, S. L. Cheng, P. Flanagan, W. Salamon. Fingerprint Vendor Technology Evaluation, NISTIR, 8034, 2012. [2] M. Indovina, V. Dvornychenko, R. Hicklin, and G. Kiebuzinski. ELFT-EFS Evaluation of Latent Fingerprint Technologies: Extended Feature Sets [Evaluation# 2], NISTIR, 7859, 2012.

Motivation

Different examiners provide different mark ups

Markup 1: Hit at rank-1

Markup 2: Hit at rank-129

Approach

- Use collective wisdom of multiple examiners
- Expert crowdsourcing [3]: use a team of latent examiners for markup as needed

[3] D. Retelny, S. Robaszkiewicz, A. To, W. Lasecki, J. Patel, N. Rahmati, T. Doshi, M. Valentine, and M. S. Bernstein. Expert crowdsourcing with flash teams. In ACM Symposium on UIST, 2014.

Expert Crowdsourcing Framework

When to Crowdsource?

Histogram of top-K comparison scores between latent query and reference

Upper outlier detected => Lights-out AFIS adequate

No upper outlier detected => Obtain examiner markups

[3] S. S. Arora, E. Liu, K. Cao and A. K. Jain, "Latent Fingerprint Matching: Performance Gain via Feedback from Exemplar Prints", IEEE TPAMI, 2014.

How Many Experts are Enough?

Experiments

Latent Databases

Database	#Latents	Resolution	Latent type	#Examiner Markups
NIST SD27	258	500	operational	6
ELFT EFS	255	1000	operational	2
RS&A	200	1000	collected in lab	1

- Reference Database
 - 250K rolled prints (true mates, MSP, NIST)
- Latent AFIS
 - Top performing system in NIST ELFT-EFS 2

Sample Markups: NIST SD27

Markups by 6 examiners for a latent in NIST

Sample Markups: ELFT EFS & RS&A

Markups by two examiners for a latent in ELFT EFS

Only a single markup available for latents in RS&A

Rank-1 hit rate improves by ~7.75%

Different combinations of examiners

Combination	Rank-1	Rank-50	Rank-100
One examiner	63.11	77.13	78.23
Two examiners	68.04	80.88	81.96
Three examiners	69.42	82.15	83.29
Four examiners	70.00	82.71	83.98
Five examiners	70.80	83.14	84.56
All six examiners	70.93	82.95	84.88

Hit rates using different subsets of latent examiners

Rank-1 accuracy improves by ~2.5%

Performance Improvement Example

Markup 1 (Rank 80)

Markup 4 (Rank 7)

Markup 2 (Failed to match)

Markup 5 (Rank 57)

Markup 3 (Rank 45)

Markup 6 (Rank 12,971)

Lights-out: Failed to match

Fusion rank: 2

NIST SD27 (Latent 236)

Performance Improvement Example

NIST SD27 (Latent 83)

	Image only	lmage + Markup-E1	Fusion (All 6)
Rank	Failed to match	Failed to match	2 (score: 226)

Performance Decrease Example

NIST SD27 (Latent 206)

Image only

Mated Exemplar

	Image only	Fusion (All 6)
Rank	82 (score: 97)	116 (score: 411)

Greedy Crowdsourcing

Conclusions and Next Steps

- Wisdom of multiple latent experts is effective for latent fingerprint identification
- Performance of a latent AFIS is significantly improved (~7.75 % on NIST SD27)
- Next steps:
 - Evaluate open-set identification performance
 - Incorporate latent quality
 - Explore meta-algorithms such as boosting and bagging to improve AFIS performance