Crosslinking silica-based nanoporous networks under ambient conditions

Caleb Wigham Ryan Murphy Katie Weigandt Yun Liu

Properties of Nanoporous Silica Networks

High Porosity Low Thermal Conductivity

Hydrophobic Low Surface Energy and High Contact Angle

Catalysis - High Surface Area

- 1. Zhang, H.; Gu, W.; Li, M.-J.; Fang, W.-Z.; Li, Z.-Y.; Tao, W.-Q. Influence of Environmental Factors on the Adsorption Capacity and Thermal Conductivity of Silica Nano-Porous Materials. J. Nanosci. Nanotechnol. 2015, 15 (4), 3048–3054.
- <u>https://news.softpedia.com/news/Omniphobic-Material-Repels-Any-Liquid-97625.shtml</u>
- **3.** Catal. Sci. Technol., 2016,6, 2465-2466

2

Building Nanoporous Silica Networks

Removing the Solvent

Ambient Pressure Drying (APD)

<u>Advantages</u>

- Lower Cost
- Fewer Synthesis Steps
- Easier Scalability

Disadvantages

- Harder to Control
- Destructive Capillary Forces

Ambient Pressure Drying

New Synthetic Approach

Our Approach

Problems Encountered

Particle and Polymer Effects Shape and Molecular Weight

Phase Separation

Rate of Solvent Evaporation

Slow

Fast

Catalyst Addition Delay after Reaction

0 Hours

2 Hours

Particle and Polymer Effects

Increasing Polymer Molecular Weight

What is SANS?

P(Q): Form Factor – particle shape, size, dispersity

S(Q): Structure Factor – spatial distribution of particles, interactions between particles

 $q = \frac{4\pi}{\lambda}\sin(\theta)$

5. Monica Castellanos, Maria & Mcauley, Arnold & Curtis, Joseph. (2016). Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering. 10 Computational and Structural Biotechnology Journal. 15. 10.1016/j.csbj.2016.12.004.

SANS Before Solvent Evaporation

Solvated Silica Particle Network

SANS After Solvent Evaporation

Problems Encountered

Particle and Polymer Effects Shape and Molecular Weight

Phase Separation

Rate of Solvent Evaporation

Slow

Fast

Catalyst Addition Delay after Reaction

0 Hours

1.5 Hours

Summary of Key Results

 Incubation time of ~2 hours greatly increases structural integrity

 Slow solvent evaporation dispenses stresses

 Optimum polymer additive molecular weight ~ 3800 g/mol 0 hours

1.5 hours

Slow

1100 g/mol

3750 g/mol

Future Work

• Quantify effect of particle shape, size, and structure

 Mitigate phase separation using incubation times and solvent variations

• Use uSANS for larger length-scale probing

• Measure accessible surface area and thermal conductivity

Acknowledgements

- Ryan Murphy Mentor
- Katie Weigandt Co-Mentor
- Julie Borchers, Joe Dura NCNR SURF Directors

