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Abstract—CRIM participated in all the 15 low resource lan-
guages and the three languages with case sensitive scoring in
the OpenASR21 Challenge for the constrained condition. For
acoustic modeling, we developed both hybrid DNN-HMM systems
and a conformer based system. We used three different multi-
stream acoustic models for decoding: one based on MFCC
features alone, second acoustic model based on combined MFCC
and conformer embeddings as input, and third one as combined
MFCC and VAD embeddings from a DNN-based voice activity
detector (VAD) as input. In the final submission, we used two
different voice activity detectors for segmenting the development
and evaluation audio: one based on a GMM-HMM system, and
another one based on a TDNN system.

For language modeling, we used 4-gram language models
followed by lattice rescoring with LSTM-based language models.
For language model text, we used the training text from LDC
disks when available. We also found significant amount of text
over the internet. We used sentence selection with this internet
text in order to use it effectively to reduce word error rates
(WER). For most languages, we were able to reduce WER
with this additional text. Our best results combined six decodes
after LSTM LM rescoring: two different voice activity detector
based segments, and three different acoustic models (MFCC only,
MFCC + conformer embedding, MFCC + VAD embedding).

In the final evaluation, we were ranked second in Tamil, third
in Farsi and Javanese, and fourth in seven other languages.
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I. INTRODUCTION

The OpenASR21 (Open Automatic Speech Recognition
2021) Challenge set out to assess the state of the art of
ASR (Automatic Speech Recognition) technologies under low-
resource language constraints. The task consisted of perform-
ing ASR on audio datasets in up to 15 different low-resource
languages and 3 languages with case sensitive scoring, to
produce the recognized written text. Ten languages were
carried over from the OpenASR20 challenge [1], and five
new languages were added for OpenASR21. A case sensitive
scoring was also added for three of these languages: Kazakh,
Swahili and Tagalog.

CRIM took part in the constrained condition for all the 15
languages and the 3 languages with case sensitive scoring.
In the Constrained Training condition, the only speech data
permissible for training is a 10-hour subset of the Build dataset
provided for the language being processed, clearly marked for
that purpose. Additional text data, either from the provided

Build dataset or publicly available resources, is permissible
for training in the Constrained Training condition. Any such
additional text training data must be specified in sufficient
detail in the system description.

For OpenASR20 challenge, two teams achieved very good
results [2] [3]. They both used larger training text and larger
lexicon from LDC disks for training the language models.
These language models gave significant reduction in word
error rates for that language. For 13 of the 15 languages in
OpenASR21 challenge, CRIM was able to download training
text from Linguistic Data Consortium (LDC) builds to aug-
ment the language model training text. This additional text
had a significant impact on the word error rate (WER) of the
development set. We were also able to download significant
amount of text for all the languages from the internet. The
sources for this text are outlined in the appropriate sections.
We had to do sentence selection in order to use the text
effectively to reduce the word error rate (WER). The sentence
selection reduced the total amount of text available for training
significantly. For some languages, even sentence selection did
not help reduce WER, so we fell back to LDC text only for
language modeling.

II. DATASET AND PREPROCESSING

In the constrained condition, the acoustic data available
for training an acoustic model is limited to a 10-hour Build
dataset provided by NIST for the language being processed,
with the corresponding transcripts in UTF-8 encoding. No
other acoustic data can be used, either private or public.
Training and development lexicons were also provided by
NIST. For the 13 languages with LDC disks, we used the
expanded lexicon provided in those disks. The lexicons include
the words <hes>, <noise>, and <v-noise> to represent the
various kinds of noise. Hesitation is actually transcribed, while
noise is represented as <sss> and vocal noise is represented
as <vns>.

We converted all audio files to 16 bits, 8 kHz sample
frequency wave files using NIST sph2pipe or sox.

III. ASR APPROACH

Our system is a hybrid HMM-DNN based on WFSTs
(Weighted Finite-State Transducers) and trained with the Kaldi



Fig. 1. WFST-based speech recognition.

toolkit [4]. As illustrated in Fig. 1, it is composed of distinct
components for acoustic, pronunciation and language model-
ing, represented as WFSTs and trained separately as described
in the following sections1.

We trained three different hybrid DNN-HMM acoustic
models. These hybrid DNN-HMM systems need alignments
between the acoustic data and the training transcripts. This
initial alignment is generated by a GMM-HMM based system.
We trained this GMM-HMM system using the Kaldi recipe
in babel egs2. This recipe uses 13-dimensional PLP feature
parameters, except for Cantonese and Vietnamese. For Can-
tonese and Vietnamese, we add 3 additional pitch features for
a total of 16 features. For generating the segments with noise
removed for the development and evaluation sets, we followed
the recipe in the babel egs of Kaldi. The resulting segments
were aggressive in removing noise segments, as compared to
the ones generated by TDNN-based voice activity detector
(VAD) described in the following Section.

IV. VOICE ACTIVITY DETECTION (VAD)

To optimize DNN-based speech activity detection, we tried
two different TDNN architectures:

1) VAD-TDNN: TDNN as outlined in Chime6 track2
speech activity detection3 : 40-dimensional MFCC fea-
tures, 5 TDNN layers and 2 layers of statistics pooling
[5], the overall context of the TDNN is about 1 sec, with
0.8 sec of left context and 0.2 sec of right context, with 2
(speech/nonspeech) posteriors, simple Viterbi decoding
on an HMM with duration constraints of 0.3 sec for
speech and 0.1 sec for silence to decode frames as
speech/nonspeech. We added a bottleneck layer with a
dimension of 40 just before the last hidden layer to fa-
cilitate generation of embeddings. Since every 3rd frame
is input to the TDNN, posteriors for three consecutive
frames are averaged to generate the desired posteriors
for training. This TDNN is trained only from the ope-
nASR21 training set separately for each language. For

1Except for pronunciation probabilities which are not trained here.
2https://github.com/kaldi-asr/kaldi/tree/master/egs/babel/s5d
3https://chimechallenge.github.io/chime6/track2 software.html

Cantonese and Vietnamese, we added 3 pitch features
to better represent the tones in these languages.

2) VAD-TDNN with specAugment layer: We added a
specAugment layer after the input layer in the VAD-
TDNN described above. This VAD-TDNN gave lower
WER than the VAD-TDNN without specAugment layer
above, so this VAD was used for final segmentation of
development (dev) and evaluation (eval) sets for decod-
ing. This VAD-TDNN gave lower WER than GMM-
HMM based VAD for 10 out of 18 languages for the
dev set, and 12 out of 18 languages for the eval set.
Some example WER differences are shown in the Table
I for the dev set. Even though the WER differences are
small, the speech segments for the two VAD’s are quite
different. The GMM-HMM based VAD is much more
aggressive (labels more regions as non-speech) than the
TDNN-based VAD. For this reason, we used both the
VAD’s for segmenting the evaluation set. The resulting
ctm files were later combined using ROVER [6]. This
TDNN-based VAD with specAugment layer was also
used to generate 40-dimensional embeddings for training
multi-stream TDNN-F acoustic models with combined
MFCC + VAD embedding features.

TABLE I. Comparison of WER for GMM-HMM based VAD versus TDNN-
based VAD for segmenting development sets for different languages.

Language GMM-HMM VAD TDNN VAD
Amharic 39.7% 39.2%
Cantonese 47.9% 48.6%
Farsi 53.8% 53.5%
Georgian 41.2% 41.3%
Kazakh 48.5% 48.2%
Mongolian 50.1% 49.1%

V. ACOUSTIC MODEL

For each language, we trained three different acoustic mod-
els based on a multi-stream convolutional neural net (CNN)
architecture outlined in [7]. We varied this architecture to
get the lowest possible WER for three different features: 40-
dimensional MFCC’s, 40-dim MFCC + 40-dim conformer
embeddings from a conformer model trained for the same
language, 40 dim MFCC + 40-dim embeddings from the
TDNN-VAD trained in Section IV for the same language. The
details of optimisation are outlined below:

A. Multi-stream acoustic models with 40-dimensional MFCCs

In the proposed multi-stream CNN architecture in [7], the
input features are processed by 5 CNN layers in a single
stream. This single stream is then branched out into 3 streams
with 17 TDNN-F layers in each stream and with different dila-
tion rate in each stream. The input MFCC features to the single
stream are first converted into filter-bank features by IDCT
(inverse-discrete cosine transform), followed by SpecAugment
and then followed by 5 2D-CNN layers. The output of CNN is
fed to 3 different streams with a stack of 17 TDNN-F layers in
each stream. We experimented with one, two or three streams,
and also with the number of TDNN-F layers in the stream.



We also compared multi-stream architecture with TDNN-F
architecture with 17 layers in the Kaldi librispeech egs4 [8]
(lines 1 and 2 in Table II). As can be seen from Table II,
the best multi-stream architecture has 2-streams, 12 TDNN-
F layers per stream with the dimension of the output layer
reduced by half. This architecture was used for training 40-
dim MFCC acoustic models for all the 15 languages and the
three case-sensitive scoring languages.

TABLE II. Comparison of WER for Amharic dev set for different TDNN-F
and multi-stream architectures. All the architectures use the same language
model (3-gram from OpenASR21 build).

Architecture WER
1. TDNN-F (17 layers) 57.5%
2. TDNN-F (1) with specAugment layer 54.2%
3. one-stream of multi-stream CNN 52.4%
4. reduce output layer dim by half in (3) 52.3%
5. reduce 17 TDNN-F layers to 12 in (4) 52.26%
6. reduce TDNN-F layer dimensions by half in (5) 54.0%
7. multi-stream (6) 52.8%
8. multi-stream (5) 52.17%
9. 2-stream (5) 51.94%

B. Multi-stream acoustic models with 40-dimensional MFCCs
plus 40-dimensional conformer embeddings

We experimented with many different acoustic model ar-
chitectures in order to get the lowest possible WER with con-
former embeddings. We tried embeddings from the conformer
model (Section V-D) alone, and with 40-dimensional MFCC
features. The architecture that worked the best is the 2-stream
architecture in line 9 of Table II with a third stream with
40-dim conformer embeddings as input to this stream. The
conformer embeddings are produced every 40 msec, so each
frame is duplicated 4 times. We varied the number of TDNN-F
layers in this third stream for conformer embeddings, and we
found that 6 TDNN-F layers worked the best. We used this
architecture for all the languages. The various experiments
are summarized in the Table III. If we replace MFCC’s
with conformer embeddings in line 2 of Table II, then the
WER goes up from 54.2% to 62.9%. Table III uses a 4-
gram language model from LDC build text, so the WERs are
significantly lower than in Table II. Note that 45.04% WER
in Table III corresponds to 40.4% WER for 40-dim MFCC
features without the 3rd stream for conformer embeddings.

TABLE III. Comparative WER for Amharic dev set for different multi-stream
architectures with conformer embeddings input to the third stream. All the
architectures use the same language model (4-gram from LDC build).

Architecture WER
1. one TDNN-F layer in 3rd stream 48.55%
2. 6 TDNN-F layers in 3rd stream 45.04%
3. 12 TDNN-F layers in 3rd stream 45.83%

C. Multi-stream acoustic models with 40-dimensional MFCCs
plus 40-dimensional TDNN-VAD embeddings

We also trained acoustic models with 40-dim MFCCs con-
catenated with 40-dimensional embeddings from TDNN-based

4https://github.com/kaldi-asr/kaldi/egs/librispeech/s5/local/chain/run tdnn.sh

voice activity detector (VAD) (VAD-TDNN with specAugment
layer in Sec. IV). The VAD embeddings are generated every
10 ms. The idea here is that VAD embeddings will provide
a gradual transition from silence frames to voiced frames
and may lead to better results, specially for noisy utterances.
The same 3-stream architecture was used as for MFCC plus
conformer embeddings: the third stream had VAD embeddings
as input and there were 6 TDNN-F layers in the third stream.
The comparative results between MFCC features and MFCC +
VAD features are shown in Table IV for some of the languages.
Note that for Farsi, the VAD embedding features reduce WER
by 0.4% absolute.

TABLE IV. Comparison of dev set WER for MFCC features versus
MFCC+VAD embeddings features for some of the languages. The same
language model (4-gram from LDC build) is used.

Language 40-dim MFCCs 40-dim MFCCs
+ VAD embeddings

Amharic 39.7% 39.85%
Cantonese 47.9% 48.54%
Farsi 53.8% 53.38%
Georgian 41.2% 41.72%
Guarani 42.8% 43.39%
Javanese 54.0% 54.19%

D. Conformer embeddings

To generate these embeddings we used a Conformer
model [9], a transformer-based architecture augmented with
convolutional input layers that we trained from scratch on
each language, with a LF-MMI criterion [10]. We based our
implementation on the snowfall k2-fsa5 version. Features were
filterbanks with 80 mel bins. The default model sizes were re-
duced to 6 encoder layers, 4 attention heads, and the bottleneck
and hidden dimensions to the embedding dimension of 40. We
performed data augmentation with 5 speed perturbation values
[0.8, 0.9, 1.0, 1.1, 1.2] but no other data augmentation such as
SpecAugment or noise/music/reverberation. We ran training
for 50 epochs for all languages, with 3000 warmup steps.
When extracting the embeddings, we averaged the model over
the last 5 epochs, except for Cantonese for which the latest
epoch was 15.

VI. LANGUAGE MODEL

For language modeling in the constrained condition, we
could use any text publicly available over the internet. For
13 of the 15 languages, we used the LDC IARPA Babel
language packs from 2016 to 2020, taking care to exclude
transcriptions of any recording that appeared in OpenASR21
build or dev set (we kept transcriptions for 7061 out of 8597
Babel recordings). Only Farsi and Somali did not have a Babel
language pack. We used the training text and the expanded
lexicon (from the LDC build directory) to enhance our text
and lexicon for language modeling. This text together with
the larger lexicon had a significant impact on WER for all the
languages involved. This text is from conversational speech,
probably transcribed by the same group of transcribers with

5https://github.com/k2-fsa/snowfall

https://github.com/k2-fsa/snowfall


the same transcribing instructions, so the text is probably quite
consistent in transcription and has a significant impact on
WER. Table V shows the impact of LDC build on WER
of the dev set for some of the languages. For example, for
Amharic, the WER goes down from 51.7% to 39.7%, while
for Georgian, the WER goes down from 53.4% to 41.2%.

TABLE V. Comparative dev set WER for language model (LM) from
OpenASR21 build versus LM from LDC build. The 2-stream acoustic models
use 40-dim MFCC features.

Language OpenASR21 build LDC build
Amharic 51.7% 39.7%
Georgian 53.4% 41.2%
Guarani 52.5% 42.8%
Javanese 58.9% 54.0%
Kazakh 55.6% 48.5%

We also used two other sources of publicly available
text, collected for machine translation research. Monolingual
NewsCrawls6 [11] is extracted from online newspapers, and
CommonCrawl7 [12] from web pages. The amount of text in
NewsCrawls (NC) and CommonCrawl (CC) for each language
is shown in Table VI. We also found additional text which
appeared more relevant to our data: 22 million words for
Amharic in DKE8 [13] and 230,000 words in the Hong Kong
Cantonese corpus9 [14].

If we take Amharic as an example, after downloading the
text data from NewsCrawls, there was only a small amount of
preprocessing to do (punctuation marks have their own special
Amharic writing). But as soon as we add any amount of this
new text to the acoustic training text, the perplexity on dev
set goes up: from 296 to 725 if we use only the smallest of
the 3 years of news, using larger texts the perplexity gets even
worse.

To reduce domain mismatch between conversational speech
and the news sources, we used sentence selection [15]. This
method selects a set of sentences from the out-of-domain texts
such that it has a distribution as similar as possible to the
overall in-domain distribution, rather than just match its peak.
We tried sentence selection using the acoustic training text
as the in-domain data and the news text as out-of-domain;
perplexity on dev set is better but still worse than using just
the original acoustic text (315 with our best combination of
sentence selection hyper-parameters).

We get slightly smaller degradations of perplexity when
adding sentences selected with LDC + acoustic training texts.
But still, as soon as we add any amount of NewsCrawls or
DKE texts, the perplexity gets worse. We finally selected 233K
words of text from NewsCrawls and DKE text for Amharic
through sentence selection. This additional text resulted in
WER reduction from 38.46% (using LDC text) to 37.8% (us-
ing LDC + 233k words) after LSTM LM rescoring of decoded
lattices (forward LSTM LM rescoring followed by backward
LSTM LM rescoring). The WER reduction is good enough

6http://data.statmt.org/news-crawl
7http://data.statmt.org/cc-100/
8https://wwwiti.cs.uni-magdeburg.de/iti dke/Datasets
9http://compling.hss.ntu.edu.sg/hkcancor

TABLE VI. Amount of text (millions of words) in NewCrawls (NC) and
CommonCrawl (CC).

Language NC CC
Amharic 8.1 67.4
Cantonese 24.6 0.0
Farsi 61.1 0.0
Georgian 0.0 460.1
Guarani 0.0 1.0
Javanese 0.0 23.4
Kazakh 34.9 471.1
Kurmanji-kurdish 0.0 65.9
Mongolian 0.0 245.9
Pashto 17.9 95.7
Somali 13.2 62.6
Swahili 18.2 272.0
Tagalog 6.1 562.3
Tamil 17.9 580.3
Vietnamese 0.0 875.6

that we used LSTM LM generated from this augmented text
for our final submissions. We also tried sentence selection
with NC+CC text for Amharic. Using 1.18 million words of
text from LDC+NC+CC for training LSTM language models
(LM), the WER went up from 38.0% to 38.1%.

The LSTM language models were trained using the recipe
in Kaldi swbd egs10 with reduced dimensions. Basically, we
used a 2-layer LSTM LM with both the cell dimension and
embedding dimension of 256. When rescoring the lattices
generated by forward LSTM LM with the backward LSTM
LM, the memory used becomes very large and many lattice
rescoring attempts fail. To avoid these failures, we reduced
the ngram order during backward rescoring from 4 to 3. This
change merges histories in the lattice if they share the same
3-gram history and this prevents the lattice from exploding
exponentially. This change avoided memory overflow, and sig-
nificantly reduced the compute times without any significant
impact on WER. It also allowed us to finish all the computing
for decoding the evaluation audio in time.

For other languages, we extracted text from NC and CC
with sentence selection. The amount of text selected from each
and the total amount used for training LSTM language models
appears in Table VII. We rescored the decoded lattices with the
LSTM language models. The results are shown in Table VIII.
For seven languages, plus for the 3 case sensitive scoring
languages, we were able to reduce the word error rates. So
for these languages, we used the LSTM LM language models
from text obtained with NC+CC text after sentence selection.
Note that for all the case sensitive scoring languages, we got
significant reduction in WER.

VII. COMBINING MULTIPLE DECODES USING ROVER
In the past, we have found that combining multiple ctm

files with ROVER [6] results in a lower WER than combining
two lattices and then doing MBR decoding. So we generated
6 different ctm files11 using two different voice activity de-
tectors (GMM-HMM VAD and TDNN VAD), and three dif-
ferent acoustic models: 40-dimensional MFCC based 2-stream

10https://github.com/kaldi-asr/kaldi/egs/swbd/s5c/local/rnnlm/run tdnn lstm.sh
11ctm files contain time synchronous word sequence of the decoded audio

http://data.statmt.org/news-crawl
https://wwwiti.cs.uni-magdeburg.de/iti_dke/Datasets
 http://compling.hss.ntu.edu.sg/hkcancor


TABLE VII. Number of words (in thousands) selected from each source, and
total used in language model.

Language ASR21 LDC NC CC Total
Amharic 80 238 150 83a 550
Cantonese 123 844 307 20b 1293
Farsi 77 0 124 0 201
Georgian 86 259 0 810 1154
Guarani 85 261 0 115 462
Javanese 85 263 0 317 665
Kazakh 78 235 206 145 665
Kazakh css 83 252 189 130 654
Kurmanji-kurdish 100 285 0 576 960
Mongolian 109 328 0 612 1048
Pashto 123 826 948 728 2625
Somali 104 0 55 53 212
Swahili 82 243 188 135 648
Swahili css 84 253 202 150 690
Tagalog 85 597 347 215 1244
Tagalog css 97 618 353 237 1304
Tamil 93 451 211 104 859
Vietnamese 137 919 0 2510 3566

aFor Amharic, this is selected from the DKE corpus.
bFor Cantonese, this is selected from the Hong Kong Cantonese corpus.

TABLE VIII. Comparison of WER for dev sets for all the languages after
rescoring lattices with LSTM LM trained with LDC text only versus LDC+
(NC+CC text after sentence selection).

Language LSTM LM LSTM LM
LDC text LDC+NC+CC text

Amharic 38.46% 37.8%
Cantonese 46.47% 45.97%
Georgian 40.27% 40.42%

Farsi 52.96% 52.71%
Guarani 41.84% 41.73%
Javanese 52.97% 53.50%
Kazakh 46.78% 46.89%

Kazakh css 54.43% 52.22%
Kurdish-kurmanji 64.88% 64.91%

Mongolian 47.88% 47.73%
Pashto 47.14% 46.98%
Somali 58.65% 58.93%
Swahili 36.06% 35.95%

Swahili css 50.21% 47.55%
tagalog 44.11% 44.61%

tagalog css 47.71% 46.14%
Tamil 60.67% 60.51%

Vietnamese 47.71% 48.21%

TDNN-F, 40-dimensional MFCC + 40-dimensional conformer
based 3-stream acoustic models, and 40-dimensional MFCC
+ 40-dimensional VAD embedding based 3-stream acoustic
models. The 6 decoded ctm files were then combined using
ROVER. The results on the evaluation set for all the languages
are shown in the Table IX. In this Table, the various columns
are explained below:

1) The 2nd column shows the best single decode word error
rate (WER). The best decode is either the TDNN-VAD
based segments with 2-stream TDNN-F with 40-dim
MFCC features, or GMM-HMM based VAD segments
with 2-stream TDNN-F acoustic models with 40-dim
MFCC features (with a 4-gram LM). Since we could
have up to 5 submissions for the eval set for each
language, we used first two submissions to find out

which one in better.
2) Column 3 shows WER after LSTM LM rescoring (both

forward followed by backward LSTM LM rescoring of
decoded lattices). The text used for training the LSTM
LM language models is shown in the last column.
Except for case sensitive scoring of Swahili, we got a
significant reduction in WER for other languages. The
best reduction in WER was 2.5% for Pashto. This was
our 3rd submission.

3) Column 4 shows ROVER of 5 decodes (except for
Farsi): 2 decodes with 2-stream TDNN-F with 40-
dim MFCC features, with TDNN-VAD segments and
with GMM-HMM VAD segments, 2 decodes with 3-
stream TDNN-F with 40-dim MFCC + 40-dim VAD
TDNN embeddings, with TDNN-VAD segments and
with GMM-HMM VAD segments, and 1 decode with
3-stream TDNN-F with 40-dim MFCC + 40-dim con-
former embeddings with eval set segmented with GMM-
HMM based VAD. This was our 4th submission.

4) Column 5 shows WER after ROVER of 6 decodes:
5 decodes from column 4 plus the decode with 3-
stream TDNN-F with 40-dim MFCC + 40-dim con-
former embeddings with segments from TDNN-VAD.
Except for case sensitive scoring of Kazakh, we got over
1.0% reduction in WER with ROVER. The best WER
reduction was 2.2% for Swahili case sensitive scoring.
This was our 5th submission.

5) Column 6 is the best WER in the leaderboard for the
eval set, while column 7 is CRIM’s rank among all
participants, and column 8 is the text used for language
modeling as described in the language modeling section.
CRIM came 2nd in Tamil, 3rd in Farsi and Javanese, and
4th in 7 other languages.

6) For Farsi, the decodes with 2-stream TDNN-F with 40-
dim MFCC features failed. Basically, 9 audio files had
empty segments, so the scoring server did not accept the
submission. However, decodes with 3-stream acoustic
models with 40-dim MFCC + 40-dim VAD embeddings,
and with 40-dim MFCC + 40-dim conformer embed-
dings did not have any empty decodes and they were
accepted by the scoring server. The best decode was
with 40-dim MFCC + 40-dim VAD embeddings with
TDNN-VAD segments. The ROVER of 5 in column 4
actually corresponds to ROVER of 4 ctm files for Farsi.

VIII. RESOURCES NEEDED

The compute server at CRIM is linux based and has 3 sets
of 8 machines bought at different times. One set of machines
has Intel(R) Core(TM) i9-7980XE CPU @ 2.60GHz, and 128
GBytes of memory. Each of these machines has two GTX
1080 Ti GPUs. The LF-MMI ASR training algorithms used
4 GPUs in parallel and the total elapsed times (by adding up
elapsed times for all the processes) are shown in Table X for
training with the 40-dimensional MFCC features. The Table
also shows the total elapsed times for discriminative training
that follows the LF-MMI training. Except for Amharic, the



TABLE IX. Comparison of WER for eval sets for all the languages after
final submission.

Lang best LSTM rover rover best rank text
decode LM 5 6 WER CRIM src

amh 46.1 44.1 43.3 43.1 39.9 4 nc+dke
cant 45.9 44.1 42.8 42.8 37.6 5 nc+cc
farsi 80.4 79.3 68.0 3 nc+cc
georg 46.1 44.6 43.1 42.55 39.2 4 ldc
guar 49.1 47.7 46.3 46.0 42.6 5 nc+cc
java 55.1 53.7 52.3 52.0 48.1 3 ldc
kaz 59.3 57.8 57.4 56.9 50.0 5 ldc

kaz css 61.1 59.0 58.8 58.6 49.8 3 nc+cc
kurm 69.3 67.2 66.0 65.7 61.7 4 ldc
mong 49.8 47.8 46.7 46.0 41.0 7 nc+cc
pashto 51.6 49.1 47.7 47.2 43.2 4 nc+cc
somali 62.4 61.0 59.8 59.2 55.6 5 ASR21

swa 38.3 36.4 35.2 35.0 32.4 4 nc+cc
swa css 51.0 50.7 49.0 48.5 43.5 3 nc+cc

tag 47.4 45.2 43.6 43.2 40.4 4 ldc
tag css 55.8 54.8 53.7 53.2 46.2 3 nc+cc
tamil 67.1 65.0 64.0 63.8 62.3 2 nc+cc
viet 47.6 46.1 44.4 44.0 40.3 4 ldc

TABLE X. Total elapsed times in hours for LF-MMI training of the 2-stream
TDNN-F models with 40-dim MFCCs followed by discriminative training of
the trained LF-MMI models.

Language LF-MMI Discriminative
Amharic 15.6 388.9 (4.6+320+0.3+64)
Cantonese 380 (336+ 1+ 143)
Farsi 141.4 (49+0.4+ 92)

LF-MMI training logs were deleted, so we cannot give those
training times.

The LF-MMI training for Amharic took 15.6 hours, and
the discriminative training on top of LF-MMI training took
388.9 hours: 4.6 hours for discriminative training from gener-
ated degs (discriminative egs) files, 320 hours for computing
alignments for the training audio from LF-MMI models (we
used 60 parallel jobs with a maximum elapsed time of 8 hours
for the longest job), 0.3 hours for computing the discriminative
egs files, and 64 hours for computing the denominator lattices
(20 jobs were run in parallel). Some of the corresponding times
are shown for Cantonese and Farsi also. The alignments for
Farsi took only 49 hours compared to 320 hours for Amharic
and 336 hours for Cantonese. The longest alignment for Farsi
took 1.2 hours.

The decoding elapsed times are shown in the Table XI. The
actual elapsed wall time is much smaller, as the decoding was
run on 20 CPUs. No GPU was used for decoding.

Note that the third column includes the times for both

TABLE XI. Total elapsed times in hours for decoding of the eval sets for
single decode, LSTM LM decode, rover of 5, and ROVER of 6 as submitted
for evaluation.

Language Best LSTM rover rover
decode LM 5 6

Amharic 4.8 14.5 65.7 76.5
Cantonese 4.8 12.1 75.0 95.9
Farsi 5.3
Georgian 3.9 11.75 65.7 78.5
Guarani 4.3 11.75 64.1 75.9
Javanese 7.2 33.4 115.6 141.0

forward and backward rescoring of decoded lattices, and the
two rescores take a significant amount of time. The ROVER
of 4 and 5 decodes is much longer as it includes LSTM LM
rescoring for all 5 or 6 decodes. So if we multiply line 3 times
by 5 or 6, we will get the approximate times for ROVER of
5 or 6 decodes. Since the decodes use 20 CPUs in parallel,
the elapsed wall clock times are significantly shorter. The
decoding times are also affected by the voice activity detector
(VAD). For example, the GMM-HMM based VAD is much
more aggressive than the TDNN based VAD, so the decode
times with GMM-HMM VAD based segments is about half
that for TDNN VAD based segments.

The LSTM LM backward rescoring takes around 100 giga-
bytes of memory. The rest of the decodes use much smaller
memory, in the order of a few gigabytes.

Training the Conformer model used for embeddings took 8
hours 20 minutes of elapsed GPU time on average for each
language; extraction of the embeddings took a total of 40
minutes for all languages.

IX. CONCLUSION

CRIM participated in all the 15 low resource languages
and the three languages with case sensitive scoring in the
OpenASR21 Challenge for the constrained condition. For
acoustic modeling, we developed both hybrid DNN-HMM
systems and a conformer based system. We used three different
multi-stream acoustic models for decoding: one based on
MFCC features alone, a second acoustic model based on
combined MFCC and conformer embeddings as input, and
third one as combined MFCC and VAD embeddings from a
DNN-based voice activity detector (VAD) as input. The big
improvement in acoustic modeling was the use of 2-stream
CNN based TDNN-F system with 5 CNN layers followed by
two streams of 12 TDNN-F layers instead of the traditional
single-stream TDNN-F system with 17 TDNN-F layers. In one
experiment this 2-stream architecture reduced the WER from
57.5% to 51.9% for Amharic development set.

In the final submission, we used two different voice activ-
ity detectors for segmenting the development and evaluation
audio: one based on a GMM-HMM system, and another one
based on a TDNN system. The TDNN-based VAD gave lower
WER for 12 of the 18 languages, while the GMM-HMM based
VAD gave lower WER for the other languages. Also GMM-
HMM VAD is much more aggressive than the TDNN-based
VAD (shorter segments). The decoded outputs from the two
VAD’s when combined probably contributed significantly to
the reduction in WER.

The biggest reduction in WER probably came from using
a much larger language model training text from LDC builds
and the larger lexicon in this LDC build. In one experiment,
the WER for Amharic dev set went down from 51.7% (with
OpenASR21 build) to 39.7% with LDC build.

We found significant amount of text over the internet for
each language. However, if we use this text for language
modeling without any sentence selection, then the WER goes
up. So we had to be very aggressive in sentence selection so



that the extracted text actually led to a small reduction in word
error rate (WER) for many languages.

Combining multiple decodes using ROVER also led to sig-
nificant reduction in WER, as much as 2.1% for Vietnamese.
The systems being combined were quite diverse: using con-
former embeddings in two systems and VAD embeddings in
two other systems.

All the above improvements led to CRIM ranking second
in Tamil, third in Farsi and Javanese, and fourth in seven
other languages for the constrained condition on the eval set
leaderboard.

ACKNOWLEDGMENTS

The authors would like to thank Ministry of Economy
and Innovation (MEI) of the Government of Quebec for the
continued support.

REFERENCES

[1] K. Peterson, A. Tong, and Y. Yu, “OpenASR20: An Open Challenge for
Automatic Speech Recognition of Conversational Telephone Speech in
Low-Resource Languages,” in Proc. Interspeech, 2021, pp. 4324–4328.
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