

Correlating Gramicidin Ion-Channel Formation to Artificial Membrane Dynamics Temiloluwa Okusolubo

University of Maryland, Baltimore County, Department of Biological Sciences

UNDERSITY IN MARYLAND

Mentors: Dr. Michihiro Nagao and Dr. Elizabeth Kelley

Lipid Membranes

Cell membranes contain an equal ratio of proteins to lipids. Lipid-lipid ratios are rigidly maintained.

Lipid and protein composition determines membrane structure and dynamics.

Cell function and disease have a direct link to nanoscale membrane dynamics and macroscopic structure

Gramicidin

Beaven et al. Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation Gramicidin channels provide a unique combination of advantages that sets them apart from other channels.

- Structure of the bilayer-spanning channel is known
- It's ion permeability is well known and can be modified
- Lipid-protein interaction is universal in nature.

Lipid-Protein Vesicles Were Made via Extrusion

https://www.wur.nl/en/show/MSc-Cell-membranes-breaking-the-barrier-using-nanoparticles-1.htm https://en.wikipedia.org/wiki/Lipid_bilayer#/media/File:Phospholipids_aqueous_solution_structures.svg

https://avantilipids.com/divisions/equipment-products

Density

Partial specific volume (v_s) was determined from measurements taken of the lipid solution density by the following equation:

$$v_{s} = \frac{1}{\rho_{0}} (1 - \frac{\rho_{s} - \rho_{0}}{c})$$

Volume per lipid molecule (V_L) was determined from measurements taken of the lipid solution density by the following equation:

DLPC

Ē

DMPC

Ę

https://phys.libretexts.org/LibreTexts/University_of_California_Davis/UCD%3A_Biophysics_241_-_Membrane_Biology/Membrane_Phases/The_Gel_Phase

Gramicidin Conformation in 1,2-dilauroyl-snglycero-3-phosphocholine (DLPC)

Circular Dichroism: Gramicidin β-helical Structure

Dynamic Light Scattering (DLS)

A technique used to measure the hydrodynamic radius of nanoparticles suspended in solution.

Particle size can be determined by measuring the random changes in the intensity of light scattered from a suspension or solution.

Used to determine the size of our artificial membranes

Change in DLPC Sample Radii Over Time

Ţ

Small Angle Neutron Scattering (SANS)

Information about membrane structure is gleaned from contrast between deuterated lipid tails and solvent compared to head groups.

Y.A. Hassan, E.E. Dominguez-Ontiveros / Nuclear Engineering and Design 238 (2008) 3080–3085

Raw SANS Data for Deuterated DLPC Samples (20°C)

https://ac.els-cdn.com/S0005273607001848/1-s2.0-S0005273607001848-main.pdf?_tid=b0f57ec4-9014-4a1f-9c21dbea993914cf&acdnat=1533184309_7906058a99389690d5d5c648b174e460

Ē

https://upload.wikimedia.org/wikipedia/commons/c/c6/Phospholipids_aqueous_solution_structures.svg

Ę

Neutron Spin Echo (NSE)

- Takes advantage of a neutrons Larmor Precession
- Differences in precession are analyzed
- Basic information about the structure and dynamics of the matter

RELAXATION RATE

Collective height fluctuations can be used to quantify membrane elastic bending modulus from NSE experiments with the following equation:

NSE Results are Similar to Previously Conducted Experiments

Contrasting Trends

Ę

FUTURE WORK

We can solve for the Area Compressibility Modulus (K_A) with the Thin Sheet Theory:

$$K_{A} = \frac{\beta K}{d_{t}^{2}}$$

Where:

 $\mathbf{K}_{\mathbf{A}}$ = area compressibility modulus $\boldsymbol{\beta}$ = coupling constant between membrane leaflets

- **K** = bending modulus
- $d_t = membrane \ thickness$

ACKNOWLEDGEMENTS

- Dr. Michihiro Nagao and Dr. Elizabeth Kelley
- Dr. Michael Zhang
- Dr. Joseph Dura and Dr. Julie Borchers
- NIST SURF director Dr. Brandi Toliver
- NCNR staff
- My fellow SURFers
- Center for High Resolution Neutron Scattering

This investigation was sponsored by NIH/NIGMS MARC U*STAR T34 HHS 00001 National Research Service Award to UMBC

FUTURE WORK

We can solve for the Area Compressibility Modulus ($\rm K_A$) in two ways:

Thin Sheet Theory

 $\mathbf{K}_{\mathbf{A}} = \frac{\beta K}{d_t^2}$

Statistical Mechanics $K_{A} = \frac{k_{B}T}{\sigma_{A}^{2}A_{0}}$

Which can be combined as :

$$K = \frac{k_B T}{\beta \sigma_A^2} \frac{d_t^2}{A_0}$$

Where:

 $d_t = membrane thickness$ $A_0 = lipid head area$ $= \frac{V_L}{d_t}$ $\beta = coupling \ constant$ between membrane leaflets $k_B = Boltzmann \ Constant$ $\sigma_A = fractional area change$ $K = bending \ modulus$

