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Abstract—In this paper we use two Recursive Least Squares 
(RLS) estimation methods to solve the cooperative localization 
problem based on Wi-Fi received signal strength measurements 
between pairs of nodes in a network that can establish com-
munication links. A link can be between an anchor node and 
a non-anchor node or between a pair of non-anchor nodes. 
It is the latter piece of information that makes cooperation 
possible and this problem different from multilateration. We 
evaluate the performance of Newton-Raphson and Gauss-Newton 
RLS methods and show that cooperation can offer signifcant 
gains in performance over multilateration, which does not use 
cooperation. 

Index Terms—cooperative localization, multilateraion, least 
squares estimation, received signal strength, Newton-Raphson, 
Gauss-Newton 

I. INTRODUCTION 

Generally speaking, a cooperative localization system [1]-
[2] is one that estimates the locations of a set of entities – 
people and/or objects equipped with localization devices – 
based on not only the information exchanged between these 
entities and an infrastructure in the environment, as is the 
case with “ordinary” localization systems, but also based on 
the information exchanged between the entities themselves. 
Examples of the infrastructure include the constellation of 
GNSS satellites in the sky, the Wi-Fi access points installed 
in a building, and the 3D map of a building used by video 
odometry or LiDAR-based localization techniques. The use 
of cooperation in a localization system makes it possible to 
estimate the locations of some entities that might not be pos-
sible without cooperation and/or to achieve higher localization 
accuracy for all entities than would be possible with the same 
system without cooperation. This comes at the expense of 
higher computational complexity. 

There are different ways of classifying cooperative lo-
calization systems [3]. A major distinction is whether the 
system is centralized or distributed. Centralized algorithms 
may be appropriate for a small set of entities, but they are 
not scalable when the number of entities grows. Distributed 
algorithms are scalable and hence more practical, but they take 
longer to converge to a location solution and they typically 
yield lower localization accuracy than comparable centralized 
algorithms. For every distributed localization algorithm there 
is a centralized counterpart, but the converse is not true. The 
development of centralized algorithms is important because 

they offer a baseline for what can be achieved with distributed 
algorithms. 

The entities in a cooperative localization system form a 
network. Localization can be done based on connectivity alone 
[4–6], ranging among network nodes [5, 7, 8], and measured 
angles [1, 9, 10]. Ranging can be done based on the Received 
Signal Strength (RSS) of a radio frequency (RF) signal [11– 
13] or its Time of Flight (ToF) [14], which requires Time of 
Arrival (ToA) estimation. 

We now turn our attention to localization based on imprecise 
range estimates. A performance comparison of three methods, 
namely trilateration, Newton-Raphson, and Gauss-Newton, for 
localization based on range estimates computed from Wi-Fi 
RSS is presented in [13], but the paper does not address 
cooperation. A sequential form of cooperation is proposed in 
[15], where any sensor node that has range estimates to at 
least three anchor nodes can estimate its own location and turn 
into an auxiliary anchor node. Recursive localization methods 
are used when no further anchor nodes can be added in this 
manner. A distributed Gauss-Newton localization method is 
presented in [11], where it is ensured that the global cost 
function is never increased as the algorithm goes through its 
iterations. A property of the Cayley-Menger determinant is 
used in [16] to formulate sensor node localization as an opti-
mization problem with a set of quadratic equality constraints. 
This property puts a constraint on the distances from a sensor 
node to any collection of 3 (4) anchor nodes in 2D (3D) 
space. A weighted Recursive Least Squares (RLS) localization 
method based on RSS measurements is presented in [12]. 
It consists of using iterative multilateration, multidimensional 
scaling (MDS) [6, 8, 17], and maximum likelihood estimation, 
solved using weighted RLS techniques, one after another. 

This paper focuses on centralized cooperative localization 
using Wi-Fi RSS in 2D and 3D spaces. We use the commonly 
used power law path loss model for Wi-Fi RSS [10] and 
RLS methods [18] – particularly Newton-Raphson and Gauss-
Newton methods – to solve this problem. The rest of the paper 
is organized as follows. Section II presents the RLS methods 
used in this paper, with cooperation or without. Section III 
goes over the assumptions we use for system modeling and 
presents our simulation results. Finally, Section IV concludes 
the paper. 
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II. RECURSIVE LEAST SQUARES LOCALIZATION 

Consider a network of nodes in D-dimensional space (D = 
2 or 3) with N anchor nodes with known locations and M 
nodes representing the entities whose locations need to be 
estimated. Even though the non-anchor nodes do not have 
to be sensors, we refer to them as sensor nodes hereafter. 
For i = 0, . . . ,M − 1, let ui = (ui,0, . . . , ui,D−1)

T and 
ûi = (ûi,0, . . . , ûi,D−1)

T denote the unknown location of the 
i’th sensor node and an estimate for that location, respectively. 
For j = 0, . . . , N − 1, let xj = (xj,0, . . . , xj,D−1)

T denote 
the known location of the j’th anchor node. Defne the super 

T T )T T T )Tvectors u = (u0 , . . . , u and û = (û0 , . . . , û .M−1 M−1 
The goal in the least-squares formulation of the cooperative 
localization problem based on range estimates (noisy or noise-
free) is to fnd a û that minimizes the cost function 

X X 
J1(û) = [Ri,j −∥ûi −xj ∥]2 + [Qi,j −∥ûi −ûj ∥]2 , 

(i,j)∈A (i,j)∈B 

where ∥.∥ denotes the l2-norm, 

A = {(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1, 

sensor i and anchor j can range to each other}, 
B = {(i, j) : 0 ≤ i < j ≤ M − 1, 

sensors i and j can range to each other}, 

and Ri,j ’s and Qi,j ’s denote the range estimates between pairs 
of nodes in A and B, respectively. Note that not all pairs of 
nodes are able to range to each other because they may be 
out of “communication range”. The question of which pairs 
of nodes can range to each other is addressed in the next 
section. In this paper, we also study the following alternative 
cost function: 

X X 
J2(û) = [R2 ui−xj ∥2]2+ [Q2 ui−ûj ∥2]2 

i,j −∥ˆ i,j −∥ˆ 
(i,j)∈A (i,j)∈B 

Other cost functions have also been proposed [12]. 
The main purpose of this paper is to evaluate and compare 

the performance of two localization systems, one that uses 
cooperation and one that does not. In the latter case we end 
up with the multilateration problem based on range estimates 
from sensor nodes to anchor nodes only [19]. Specifcally, for 
i = 0, . . . ,M − 1, the goal in the multilateration problem is 
to fnd a ûi that minimizes either X 

J1,i(ûi) = [Ri,j − ∥ûi − xj ∥]2 

{j:(i,j)∈A} 

or X 
[R2J2,i(ûi) = i,j − ∥ûi − xj ∥2]2 . 

{j:(i,j)∈A} 

The multilateration problem has to be solved separately for 
each of the M sensor nodes. It is expected that a well-designed 

algorithm for cooperative localization would outperform a 
well-designed algorithm for multilateration. 

In this paper we focus on Newton-Raphson and Gauss-
Newton RLS methods [18] as a means of solving both the 
cooperative localization and multilateration problems. For ex-
ample, for the cooperative localization problem each method 
computes a sequence of estimates for u until a stopping 

(k) (k+1)criterion is satisfed. In this paper, with û and û 
denoting two successive estimates of u, an algorithm stops 

(k+1) − ˆif ∥û u(k)∥ ≤ ϵ or the number of iterations reaches 
a prescribed limit K. The mathematical formulas for the 
recursions used by the two RLS methods can be derived 
by specializing the formulas given in [18] to the two cost 
functions defned above. For the sake of brevity, the formulas 
are not presented here. We just have to remember that there are 
two choices of RLS methods and two choices of cost functions. 
We have studied all four possible combinations. 

Just as in any minimization problem dealing with a non-
convex function, there is no guarantee of convergence to a 
global minimum. The situation is even more complicated with 
RLS methods because they attempt to fnd a critical point of 
the function to be minimized. A critical point is where the 
gradient of the function is zero. That point can be a local 
minimum, a local maximum, or a saddle point. There is also 
the possibility that the algorithm may diverge. These are well-
known problems, for which a number of remedies are available 
in the optimization literature [20]. For example, convergence 
to a local minimum can be guaranteed with a gradient descent 
algorithm and an appropriate line search method [21, 22]. 
There are pros and cons to each of these remedies, and that’s 
why there are so many of them out there. Our experience with 
the Newton-Raphson and Gauss-Newton methods was that the 
algorithms rarely diverge or converge to a local maximum or 
a saddle point when the network is well-connected, but the 
possibility of convergence to a local minimum is a concern. 

III. MODELING, SIMULATIONS, AND PERFORMANCE 

The frst issue that needs to be addressed is whether a pair 
of nodes that are at a given distance d can communicate with 
each other. Many papers in the wireless networking literature 
use the so-called unit-disk graph model for connectivity. With 
that model, two nodes can communicate iff their distance is 
less than or equal to a given communication range. That is 
a deterministic model. It is not realistic because two radios 
that are in line of sight of each other can communicate over 
longer distances than two that are not. In this paper we use 
the well-known power law path loss model [10] given by 

PR = P0 − 10α log10 d + X, (1) 

to decide stochastically whether two nodes can communicate. 
In our simulations we know the locations of all nodes, whether 
they are anchor nodes or sensors. Therefore, if the distance 
between a pair of nodes is d, we compute a possible value 
for PR by generating a sample of the zero-mean Gaussian 
random variable X with variance σ2 that represents lognormal 
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Fig. 1. A plot of Wi-Fi RSSI vs. distance in the PerfLoc data 

shadow fading and then compare PR with the known receiver 
sensitivity P . We assume the nodes can establish a link 
and communicate if PR ≥ P . Under these assumptions, the 
probability that two nodes at distance d can communicate is 
given by � � � �β 1 βPC (d) = Q = erfc √ ,

σ 2σ 2 

where β = P − P0 + 10α log10 d. 
The parameters of the power law path loss model are 

computed by a least squares ft of a straight line to a point 
cloud of (d, PR) points in a log-log plot. The points in the 
cloud are obtained via data collection in the feld. For this 
purpose, we used the extensive set of annotated Wi-Fi RSSI 
data NIST collected in conjunction with the PerfLoc Prize 
Competition [23] for development and performance evaluation 
of smartphone indoor localization apps. That data set contains 
both line-of-sight and non-line-of-sight data. Fig. 1 shows the 
collected data in one of the four buildings in which PerfLoc 
data was collected as well as the least squares line ftted to 
the data. 

There is one caveat. The WLAN chipset in the smartphone 
reports Wi-Fi RSSI for “received” packets only. Therefore, 
there is no data for the cases where the RSS was smaller than 
than the Wi-Fi receiver sensitivity. The least squares line ftted 
to the data would have a more negative slope than in the true 
path loss model. We made adjustments to the least squares ft 
line to account for this phenomenon. The resulting parameters 
for the power law path loss model, after this adjustment, turned 
out to be roughly P0 = −30 dBm, α = 3.75, σ = 10 dB, and 
P = −90 dBm. Fig. 2 shows a plot of PC (d) with the selected 
path loss model parameters. 

A pair of nodes at distance d can range to each other only 
if they can communicate. An estimate d̂  for d is obtained by 
plugging PR in (1), without the X term, and solving for the 
distance: 

d̂ = 10(P0−PR)/(10α) 

Using (1), an alternative expression for d̂  that relates it to the 
true distance d is as follows: 

Fig. 2. Probability of link establishment for two nodes at distance d 

d̂ = d × 10−X/(10α) 

Hence, after we have generated a sample for the random 
variable X and decided that the given pair of nodes can 
communicate, we use that sample to generate d̂. 

We assume the sensor and anchor nodes reside in a square 
(cubic) region in the 2D (3D) localization scenarios. Specif-
ically, let CD = [−W/2, W/2]D , with D = 2 or 3, denote 
the deployment region for the nodes. The locations of the M 
sensor nodes are always selected randomly in an i.i.d. fashion 
using a uniform distribution over CD. 

We examined two deployment strategies for the N anchor 
nodes. They can be placed according to a square (cubic) lattice 
with spacing ∆ laid over CD or randomly. We assume that W 
is an integer multiple of ∆, and we let n = W/∆ denote 
the number of anchor nodes along each dimension. Therefore, 

Dwith the frst choice, there will be N = n anchor nodes. 
In addition, we examined two ways of selecting the starting 
point for the RLS method under consideration, with or without 
cooperation. One is to use a random starting point and the 
other is to do an exhaustive search over a fne square or cubic 
lattice with spacing δ laid over CD to fnd a lattice point 
at which the cost function of choice for the multilateration 
problem is minimized and then use that as the starting point. 
Clearly, M such searches need to be done. An exhaustive 
grid search over [−W/2, W/2]M ×D with J1 or J2 would 
not be practical due to its prohibitively high computational 
complexity. There are four possible combinations depending 
on which choices are made vis-a-vis the two issues described 
above. We found that the combination of lattice deployment 
of anchor nodes and random starting points for RLS methods 
consistently outperformed the other three combinations in 
terms of localization accuracy. We were surprised that a 
random starting point turned out to be better than one obtained 
through a grid search. All the performance results presented 
hereafter were obtained using the winning combination. 

We carried out simulations with these choice of parameters, 
D = 2, W = 60 m, δ = 1 m, M ∈ {10, 15, 20, 30}, 
n ∈ {4, 5, 6, 8}, ϵ = 0.01, and K = 100, to evaluate the per-
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formance of several localization methods using cost functions I 
and II. We use the acronyms GS = Grid Search, NR = Newton-
Raphson, GN = Gauss-Newton, WOC = WithOut Cooperation, 
and WC = With Cooperation to name different methods. GS-I 
and GS-II minimize J1,i’s and J2,i’s, respectively. The cost 
for any method is computed by plugging the û found by that 
method into the expression for J1 or J2. Likewise, we compute 
the cost for the “Genie Solution”, which is the cost if we plug 
u in the expression for J1 or J2. 

Table I shows the performance obtained with M = 20 and 
n = 4 using L = 10, 000 randomly selected sets of locations 
for M sensor nodes. The anchor node density is one every 
∆ = 15 m of distance, which corresponds to one in every 
225 m2 of area. This is the same density as what we have in 
our building at NIST. We make the following observations: 

TABLE I 
PERFORMANCE OF VARIOUS LOCALIZATION METHODS WITH 

D = 2, W = 60, δ = 1, M = 20, AND n = 4 

Localization 
Method 

Mean 
Localization 
Error (in m) 

Relative Cost 
Change wrt 

Genie Solution 

Mean 
Number of 

Iterations 
GS-I 11.90 -37.33% 
NR-I-WOC 12.11 -36.58% 6.51 
NR-I-WC 11.27 -37.93% 55.03 
GN-I-WOC 11.99 -37.17% 8.41 
GN-I-WC 10.42 -46.13% 37.82 
GS-II 15.13 -66.70% 
NR-II-WOC 15.14 -66.71% 5.42 
NR-II-WC 13.20 -70.69% 14.34 
GN-II-WOC 15.14 -66.71% 7.31 
GN-II-WC 13.20 -70.70% 25.74 

• Cost function II results in considerably higher mean 
localization error than cost function I across the board. 

• RLS methods without cooperation achieve practically the 
same mean localization error in a few iterations as grid 
search methods. 

• Cooperation results in lower mean localization error than 
not cooperating. 

• GN methods achieve slightly lower mean localization 
errors than NR methods, particularly with cooperation. 

• The relative change in cost with respect to the Genie 
Solution is in the same range for a given cost function. 
The relative change is always negative, which implies that 
there is no hope that any method would result in û ≈ u. 
However, this does not mean there does not exist a û 
that achieves a lower cost and would even yield a lower 
mean localization error. It makes one wonder whether 
there exists a better cost function to minimize. 

• It is hard to get much useful information from the results 
on the mean number of iterations, because each iteration 
of a WOC method involves inverting a D × D matrix, 
while each iteration of a WC method involves inverting 
a (D × M ) × (D × M) matrix. In addition, each iteration 
of an NR method requires more computations than each 
iteration of a corresponding GN method. 

Fig. 3. Mean localization error for GN-I RLS method w/ or w/o cooperation 

The trends observed in Table I were also seen with other 
choices of M and n. Since the lowest mean localization error 
is achieved with the Gauss-Newton RLS method with cost 
function I and using cooperation, the results presented from 
this point on are for that system. Of course, comparisons will 
be made with the GN-I-WOC method to assess the gain in 
performance due to cooperation. 

Figure 3 plots mean localization error for systems with 
or without cooperation for n ∈ {4, 5, 6, 8} and M ∈ 
{10, 15, 20, 30}. The curves for systems that do not use coop-
eration are right on top of each other. This should not come 
as a surprise because the performance of a system without 
cooperation is independent of M . Basically, we are dealing 
with the multilateration problem, which does not exploit sensor 
to sensor range information and estimates the location of 
each sensor independent of the other ones. Yet, the fact that 
these curves are for all practical purposes identical gives us 
confdence that our simulations are correct and maybe – maybe 
– they are fnding the global minima of J1,i’s. We make two 
other observations. First, the mean localization error of all 
systems, with or without cooperation, decreases with n, i.e. as 
the anchor node density in the building is increased. Second, 
the gap between the identical curves at the top of the fgure and 
the other four curves increases with M . This is better seen in 
Fig. 4, which plots the cooperation gain defned as the decrease 
in mean localization error as one goes from a system without 
cooperation to one with. The cooperation gain is increasing 
with M , as more sensor to sensor range information becomes 
available, but it is decreasing with n beyond n = 5. As anchor 
node density is increased, cooperation can only help so much. 

Figure 5 is a plot of the Cumulative Distribution Function 
(CDF) of localization error for the Gauss-Newton RLS method 
with cooperation and cost function I. It shows once again that 
the performance improves with M because a larger M leads 
to more cooperation. 

IV. CONCLUSIONS 

In this paper, we tackled the cooperative localization prob-
lem based on imprecise range estimates between network 
nodes using the Newton-Raphson and Gauss-Newton RLS 
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Fig. 4. Cooperation gain as a function of n and M 

Fig. 5. Cumulative Distribution function of localization error for various 
values of M and n = 4 

methods. The range estimates are between sensor nodes and 
anchor nodes, with known locations, as well as between pairs 
of sensor nodes. The latter peer-to-peer range estimates are 
the ones that make cooperation possible. 

The setting for our simulations is a Wi-Fi network, even 
though the methods developed in this paper are equally appli-
cable if the network nodes use Zigbee radios, Bluetooth Low 
Energy, or some other wireless technology. We chose to work 
with Wi-Fi because we have access to a large annotated set 
of Wi-Fi RSSI data at NIST. We used that data to develop a 
model for connectivity among network nodes – who can talk to 
who – as well as a relationship between imprecise, multipath-
affected range estimates between pairs of connected nodes and 
their true distances. 

It should not come as a surprise that cooperation results 
in a lower localization error than not using cooperation. We 
quantifed this improvement in localization accuracy. We did 
this by comparing the use of RLS methods for solving the 
multilateration problem, which use range estimates between 
sensor nodes and anchor nodes only, and using those methods 
for solving the cooperative localization problem. We found 
that the improvement in localization accuracy, or decrease in 
mean localization error, can be as much as 25%. We expect 

even larger improvements when the number of sensor nodes 
increases, but the computational complexity of the centralized 
algorithms we used may become the bottle neck. 

We plan to develop distributed cooperative localization 
methods and compare our work to existing methods that were 
mentioned in Section I. Comparisons to other methods and 
papers pose a challenge, because they use different models for 
range error and connectivity. We were fortunate to be able to 
use the invaluable PerfLoc data [23] as a basis for developing 
our models. We also believe that development of cooperative 
localization methods based on UWB ranging merits attention, 
and we expect the cooperation gain to be higher in that setting. 
We plan to look at that problem as well. 
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