## Construction and Molecular Dynamics of a Nanodisc for Membrane Protein Simulation

Ryan Franklin

Mentored by Joseph Curtis







(Figure 4) http://www.silhouettegraphics.net/man-running-silhouette/

## Prions

- Misfolded proteins can be toxic, or in some cases may behave like a disease
- These harmful misfolded proteins are prions
- Prions are associated with various diseases, such as mad cow disease (infectious and fatal neurodegenerative disease)



Figure 5. http://srxawordonhealth.com/tag/misfolded-proteins/

Figure 6. http://truthfrequencyradio.com/neurosurgery-patients-exposed-to-human-mad-cow-disease-in-n-h/

## **Understanding Prions**

• To prevent and study these harmful prions, the structure of properly folded proteins must be determined



### Overview

- Proteins are often insoluble in water, making crystallization and structure determination difficult
- Ongoing research to correlate structure to function
- Nanodiscs are used to stabilize several varieties of membrane proteins
  - Transmembrane proteins
  - G-protein coupled receptors
  - Cytochromes
  - Blood clotting cofactors



(Figure 5) Timothy H. Bayburt, Stephen G. Sligar, Membrane protein assembly into Nanodiscs, FEBS Letters, Volume 584, Issue 9, 3 May 2010, Pages 1721-1727, ISSN 0014-5793



transmembrane protein



#### Overview

- Membrane proteins denature when removed from their native environment
- Proteins must retain structural integrity for experimental studies to have biological significance
- Small-angle neutron scattering (SANS) and contrast variation are used to determine shape/structure
- Computer-generated molecular dynamics simulations are used to validate experimental results





Figure 2. http://chronopause.com/chronopause.com/index.php/2011/02/23/does-personal-identity-survive-cryopreservation/

example MD simulation



(Figure 3) Small-Angle Neutron Scattering Study of Protein Crowding in Liquid and Solid Phases: Lysozyme in Aqueous Solution, Frozen Solution, and Carbohydrate Powders Joseph E. Curtis, Hirsh Nanda, Sheila Khodadadi, Marcus Cicerone, Hyo Jin Lee, Arnold McAuley, and Susan Krueger

**GHRNS** 

The Journal of Physical Chemistry B 2012 116 (32), 9653-9667



## **Contrast Variation**

#### **Example for Visible Light**



# **Contrast Variation**



# **Contrast Variation**



## Contrast Variation and MSP

- Small-angle neutron scattering (SANS) interacts directly with the nucleus of the atoms being studied
- Hydrogen and deuterium coherent scattering lengths
- Contrast variation substitutes deuterium for hydrogen to change the scattering length density and differentiate two or more structures





side view

Styrene/maleic acid polymer (SMA) scattering length densities match DMPC lipid, leaving a clearly defined protein



Dafforn, T. Nano Res. 2014, 8, 774-789.



### Overview

- We created a model of a nanodisc wrapped by SMA polymer
  - Force field parameters for SMA did not exist, so we created them
  - Validated our parameters by studying lone polymers
  - Constructed models of lipid systems to study interaction with SMA polymer
  - Calculated SANS profiles for SMA nanodiscs



## Force Field Parameterization

- CGENFF
  - Developed through collaboration and funded by the NSF
  - Generated a parameter file from a given starting structure through analogy with known structures
  - Provided a strong starting point for quantum mechanical validation of the parameterization (ongoing)



0 Ө R 0



Styrene .mol2 structure

Carboxylate structure

Maleic acid .mol2 structure



## Constructing SMA Polymer

- Internal coordinates written based on minimized structures to define the individual styrene/maleic acid residues
- Python script defined the sequence and modified dihedrals between residues to construct a pre-wrapped starting structure
- Five trimers: SSS (35%), MSS/SSM (54%), MSM (11%), and SMS (Never MM)



.mol2 trimer constructed in maestro



A THE REAL PARTY AND A THE REA

minimized trimer

30 residue styrene based polymer





## Lipid Rod

- We created a lipid rod from the small DMPC block
- This enabled us to analyze the polymer interaction with the bilayer
- Simulation cell wrapped to create the properties of a rod while retaining short computation time







## Bilayer Interaction with Pure Styrene Polymer

0.2 ns NPT run

- Initial simulations of the small block used pure styrene polymers to confirm intercalation with the lipid tails
- Small box model was limited by harmonic constraints on the lipids
- Pure styrene residue chain strongly interacts since it is not amphipathic yet







#### 0.2 ns random composition orientation







#### **CHRNS**

## Constructing the Lipid Bilayer

- Following design process from the small block we made the full nanodisc bilayer
- The solvent (water) no longer interfered, so harmonic constraints were removed
- Packing density and dimensions match
  <u>experimental results</u>



![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

## Wrapped Nanodiscs

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

MSP wrapped nanodisc

SMA wrapped nanodisc (in progress)

## Ongoing Work

- Various known proteins need to be simulated with our nanodisc
- Theoretical scattering profiles and contrast variation from the sample proteins should match known
- Quantum mechanical refinement of parameterization
- Validate the structure of the lipid by comparing the thickness of the bilayer and the surface per lipid head group
- Continue with the lipid rod/polymer interaction computational experiments

![](_page_36_Picture_6.jpeg)

![](_page_37_Picture_0.jpeg)

DMR-0944772

![](_page_37_Picture_2.jpeg)

Dr. Joseph Curtis Dr. Julie Borchers Dr. Susan Krueger

www.ccpsas.org

![](_page_37_Picture_5.jpeg)

![](_page_37_Picture_6.jpeg)

![](_page_37_Picture_7.jpeg)

Supported via CCP-SAS a joint EPSRC (EP/K039121/1) and NSF (CHE-1265821) grant