

Constructing a Reinforcement Learning Environment for Determining a UB Matrix

Cynthia Liu Mentor: William Ratcliff

In Layman's Terms

- NCNR uses machines (gonoimeters) to analyze crystals
 - Neutron diffraction
- Crystals have UB matrix describes crystal structure and orientation
- Reinforcement learning learn by trying
- "Letting the gonoimeters learn how to best find a UB matrix by trying"

Importance

- Reinforcement learning applications:
 - General, self-teaching AI
 - Personalization
- UB Matrix problem:
 - Logic behind the "best" measurements?
 - Most efficient way of handling incorrect initial measurements?
- Neutrons are difficult to make
 - Want fewer measurements, same results

http://blogthinkbig.com/google-wants-to-create-the-ultimate-personal-assistant/

Background - Crystallography

- Crystal is repeating, ordered arrangement of atoms
 - Smallest component is unit cell
- Crystallography structure and properties of crystals

https://alienspacesciencenews.wordpress.com/2013/06/12/line-22f1fa19c3m1b7c8e13c9c6c2-tetrahedron-crystal-miller-matrix-core-ufo-5g-wow-seti/

Background - Crystallography

- Crystal coordinate systems
- Axes a, b, c
- Angles α, β, γ

- Fixed on instrument axis
- Angles 2θ, χ, φ

https://en.wikipedia.org/wiki/Lattice_c onstant

https://www.quia.com/jg/2506550list.html

http://journals.iucr.org/q/issues/1967/04/00/a05492/a0549 2.pdf

Background - Crystallography

http://i.istockimg.c om/file_thumbview _approve/81543089 /5/stock-illustration-81543089-cubeball-and-stickmodel-drawing.jpg

http://chem.suwon.ac.kr/~jwchoi/biophy2.htm

https://commons.wikimedia.org/wiki/File:Miller_Indic es_Cubes2.svg

Background - Reinforcement Learning

Environment: Tic-tac-toe

Background - Reinforcement Learning

- Actor-critic model
 - Actor: "Policy" for choosing actions; strategy
 - Critic: Evaluates quality of choice
 - Value function Q
- Actor and critic improve by minimizing loss and maximizing reward

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node66.h tml

Rllab on Cartpole

My Work

The problem, progress, and more

The Problem

https://commons.wikimedia.org/wiki/File:Miller_Indices_Cubes2.sv g http://www.freestockphotos.biz/stockphoto/16032

The Problem

- 3D action space (X, φ , 2 θ)
 - X, φ are continuous, 2θ is discrete
- State: current UB and "guessed" initial indices
 - Program changes guesses if loss too high
 - Terminates when results match prediction for 3 measurements
- Reward:
 - Peak exists most important
 - Distance from predicted angles is loss
- Observation: Structure factor

UBEnv and Box2d_env_ub

- Box2d_env_ub
 - Original version for training in general 2D physics environment
 - Modified parameters, stepping, movement caused by action
- UBEnv
 - More environment-specific
 - Computes M, N, UB's, more

Environment Function	Completed
Added	<pre>Init_UB, calc_M, calc_N, calc_expected, calc_loss, add_ub, setup_spaces</pre>
Overrides	init, reset, compute_reward, is_current_done forward_dynamic s, get_raw_obs, step

UBSpace

- New action type: discrete AND continuous
 - Discrete is mapped continuous
- Extra dimension for choice
- Most important, least code
 - Methods used in NormalizedEnv, which updates estimates
 - UBEnv and Box2d_env_ub depend on space

Ongoing and Future Work

- Current:
 - Incorporate first two measurements as part of training
 - What is realistic training data? Automation
- Future:
 - Extracting data from machine
 - Training, implementation!

Acknowledgements

- Many, many thanks to:
 - Dr. William Ratcliff
 - Mr. Paul Kienzle
 - Dr. Julie Borchers
 - Ms. Yamali Hernandez

