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Abstract—We propose a new description of connector
repeatability errors for coaxial one-port devices. Our
approach is based on a stochastic model constructed
as a lumped-element equivalent circuit with randomly
varying frequency-independent parameters. We rep-
resent statistical properties of these parameters with
a covariance matrix which is estimated from a small
number of repeated measurements (typically 16) of a
one-port device under test. We illustrate our approach
by modeling connector repeatability errors for 1.85 mm
coaxial offset shorts. These results show that our model
is capable of reproducing the complicated frequency-
dependent behavior of connector repeatability errors
for coaxial one-port devices with typically only two or
three random parameters.

Index Terms—coaxial connector interface, connector
repeatability errors, stochastic modeling

I. Introduction

CONNECTOR repeatability errors are the primary
source of random errors in power and scattering

parameter measurements in the coaxial environment [1–
5]. Much theoretical and experimental work has been
done to characterize the statistical properties of connector
repeatability errors and thus better predict their impact on
measurement accuracy [1–12]. In this work, we develop a
stochastic model for connector repeatability errors of coax-
ial one-port devices that builds on the measurement-based
approaches of [1, 2, 11]. We construct this model with the
use of a lumped-element equivalent circuit, based on the
model of [11], and by allowing the frequency-independent
parameters of this circuit to randomly vary. Consequently,
we can reproduce the complicated frequency-dependent
behavior of the connector repeatability errors by means of
a small set of frequency-independent random parameters
and a corresponding set of fixed functions which capture
the frequency dependence of these errors. We describe
the statistical properties of these frequency-independent
random parameters with a covariance matrix which is
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estimated from repeated reflection coefficient measure-
ments of the one-port device under test. We further apply
principal component analysis (see [13]) to reduce the
dimensionality of this covariance matrix while capturing
the most important error mechanisms. As a result, we are
able to accurately reproduce the connector repeatability
errors observed in measurements of one-port devices with
typically only two or three randomly varying parameters.

II. Model
Connector repeatability errors often exhibit a “ripple-

type” frequency-dependent behavior [1, 4, 6, 8, 10]. Refer-
ence [1] attempts to quantitatively describe this behavior.
It presents a simple model for connector repeatability
errors based on the connector-interface equivalent circuit
of [2]. This equivalent circuit is formed by a series in-
ductance, a series resistance, and a shunt capacitance
inserted between the device under test (DUT) and the
vector network analyzer (VNA). The elements of this
circuit represent the effects responsible for the connector
repeatability errors, such as the misalignment of the center
and outer conductors (the shunt capacitance) and the
variation of the joint impedance (the series inductance and
the series resistance). Reference [1] proposes then a simple
procedure for the identification of the model parameters,
based on repeated measurement of a highly reflective one-
port device.

The stochastic model for connector repeatability errors
as used here generalizes the approach of [1, 2] and is
based on the general model for VNA random errors of
[11]. This model stems from the observation that in many
cases a single discontinuity cannot explain the observed
ripple behavior in connector repeatability errors. This can
be justified by the fact that some of the discontinuities
responsible for the changes of connector interface electrical
parameters are physically removed from the connector
joint plane. Examples are bending of the center conductor
fingers or flexing of beads that support the center conduc-
tor due to variation of the mechanical strain applied to
the center conductor.

Our model, following that of [11], uses an arbitrary
number of discontinuities located at different distances
from the connector joint plane. This model is schematically
shown in Figure 1. It describes an error due to imperfect
connector repeatability with a set of N + 1 small per-
turbations. These perturbations are inserted at different
fixed distances dn, for n = 0, . . . , N into the linear two-
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Figure 1. Schematic of the model for connector repeatability errors:
(a) overview, (b) single perturbation.

port network representing the connector interface. For the
perturbation P0 which occurs at the connector joint we
assume d0 = 0.

We describe each of the perturbations with a lumped-
element circuit shown in Figure 1b [11]. Compared to
[1, 2], our circuit has an additional transformer which
accounts for changes of the characteristic impedance. Such
changes result, for example, from misalignment of outer
and inner conductors, eccentricity of the inner conductor,
or variation of the connector socket diameter. We further
account for the changes in the skin-depth effect in the
conductors by including additional components in the
series inductance and resistance. Finally, we account also
for the changes of DC resistance by adding an additional
component to the series resistance.

In order to determine the joint contribution of the
perturbations Pn, for n = 0, . . . , N to the error in cor-
rected DUT S-parameter measurements, we assume that
the perturbations are small which allows us to neglect
multiple reflections and superimpose contributions of all
of the perturbations. Consequently, at the frequency fk,
we write the connector repeatability error in the reflection
coefficient measurement as a linear combination [11]:

∆Γk = w
(
d, Γ̊k, fk

)Tp, (1)

where Γ̊k is the true value of the reflection coefficient
of the one-port device under test at the frequency fk,
d is a vector of perturbation distances, p is a vector
comprised of the frequency-independent parameters of the
lumped elements in the perturbations Pn, w

(
d, Γ̊k, fk

)
is a

fixed function capturing the frequency dependence of the
connector repeatability error, and superscript T denotes
the transpose. The function w

(
d, Γ̊k, fk

)
is determined

based on the structure of the model in Figure 1.

III. Statistical properties of the model
parameters

The electrical parameters which undergo random varia-
tions when reconnecting the interface are captured in the
vector p. This vector contains parameters of the lumped
elements in the perturbations Pn. Since the parameters in
the vector p describe the changes, we assume that E (p) =
0, where E (·) denotes the expectation value operator [13].
We further characterize the statistical properties of the
vector p with the covariance matrix

Σp = E
(
ppT

)
. (2)

Under the assumption that the probability distribution
function of the vector p is normal, the covariance matrix
Σp constitutes a complete description of the statistical
properties of the vector p [13].
The assumption of normally-distributed parameters in

the vector p can easily be justified from the physical
point of view. Parameters in the vector p represent the
impact of mechanical changes of the connector interface in
terms of some equivalent electrical parameters. Since these
changes are small, parameters in the vector p are linear
combinations of changes in some geometrical parameters
of the connector interface, such as displacements of the
conductors, bending of the socket fingers, or flexing of the
center conductor beads. We can reasonably assume that all
of those mechanical changes are normally distributed; thus
the vector p also has a normal probability distribution
function.

IV. Estimation of the covariance matrix of the
model parameters

We estimate the covariance matrix of the model param-
eters p based on repeated corrected VNA measurements of
the one-port device under test. Before each measurement,
we reconnect the device under test. For a set of M such
measurements we estimate at each frequency the true
value of the reflection coefficient Γ̊k as the mean value of
all of the measurements, and then estimate the deviation
of each measurement from the mean. We describe the
frequency dependence of each of these deviations with
the model (1) and then, in the nonlinear least-squares
estimation procedure, we determine the estimates d̂n, for
n = 1, . . . , N , of the perturbation locations, and the
estimates p̂m, for m = 1 . . . ,M of the lumped-element
parameters for each connection. We then estimate the
covariance matrix of the model parameters as the sample
covariance of the estimates p̂m, that is [13]

Σ̂p = 1
M − 1

M∑
m=1

p̂mp̂Tm. (3)

We further reduce the dimensionality of this covariance
matrix with the use of the principal component analysis
[13]. We chose the number of principal components so as to
capture 99 % of the total variance captured in the original
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Figure 2. In-phase and quadrature component of the standard deviation of 16 repeated reflection coefficient measurements of a 5.4 mm
long, 1.85 mm coaxial offset short: (a) female, (b) male; measurement (gray) and stochastic model prediction (black).
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Figure 3. In-phase and quadrature component of the standard deviation of 16 repeated reflection coefficient measurements of a 7.6 mm
long, 1.85 mm coaxial offset short: (a) female, (b) male; measurement (gray) and stochastic model prediction (black).

matrix (3). This results typically in two or three principal
components.

V. Experiments
We illustrate our approach by modeling connector re-

peatability errors for 5.4 mm long and 7.6 mm long coaxial
offset-shorts in the 1.85 mm standard. Figures 2 and 3
show the in-phase and quadrature component (see [14])
of the standard deviation of 16 repeated measurements of
the reflection coefficient of the two shorts along with the
standard deviation predicted from our stochastic model.
In both cases, the model we used employed three per-
turbations. We further used two principal components in
the case of the 5.4 mm long short and three principal
components in the case of the 7.6 mm long short. The
agreement between the stochastic model prediction and
measurements for the quadrature (phase) errors is very
good except for a small discrepancy in the frequency range
below 4 GHz. This discrepancy is caused by increased test-
set drift in the frequency range below 4 GHz, phenomenon

we also noticed in other experiments. The agreement for
the in-phase (magnitude) errors is not as good. However,
the in-phase errors are much smaller and, therefore, less
important than the quadrature errors. Consequently, our
stochastic model is capable of adequately representing the
connector repeatability errors as observed in the measure-
ments of the two shorts.

VI. Conclusions
We proposed a new description for the connector re-

peatability errors in coaxial one-port devices. Our ap-
proach employs a stochastic model which is constructed
as a small set of frequency-independent random variables
(typically two or three) and a corresponding set of fixed
frequency-dependent functions. We represent statistical
properties of the frequency-independent parameters with
a covariance matrix which is estimated from a small
number (typically 16) of repeated measurements of the
one-port device under test. We demonstrated our approach
by modeling connector repeatability errors for 1.85 mm



coaxial offset shorts with different lengths. We showed
that our model is capable of reproducing the complicated
frequency-dependent behavior of connector repeatability
errors in the measurements of the two offset shorts.

The stochastic model for the connector repeatability
errors we described has found an application in the
covariance-based uncertainty analysis for VNA measure-
ments [15]. This uncertainty analysis accounts for the
statistical correlations between VNA measurement uncer-
tainties at different frequencies. These correlations are
important in many applications where VNA S-parameter
measurements are used, such as uncertainty analysis of
calibrated time-domain measurements or device modeling
[15]. As the proposed stochastic model describes the con-
nector repeatability errors in terms of some frequency in-
dependent error mechanisms, it is capable of capturing the
statistical correlations between the connector repeatability
errors at different frequencies.
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