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» A little about me:
» Texas A&M University-Kingsville (Junior Fall 2016)

» Mechanical Engineering major, and Nuclear Engineering minor

» Project Origins:
» Idaho National Laboratory (ATR)

» Penn State University

» Motivation of Project:

» To successfully determine the burnup of highly enriched uranium (HEU)
fuel in the Neutron Beam Split-core Reactor (NBSR) at the NCNR.

» Benchmark the power and burnup of the NBSR.



A Feasibility and Optimization Study to
Determine Cooling Time and Burnup of
Advanced Test Reactor Fuels Using a
Nondestructive Technique by Jorge
Navarro
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INL Study (2013)

Determined burnup and cooling time of
fuel using isotopic y ray peak area, and
peak area ratios.

Relationship was found between burnup
and isotopes including 3’Cs, and the
ratios of other isotopes correlated with
the cooling time (such as '#4Ce/ 137Cs).

Detection System Above Water

.

’

< TETT

Isotope ratios were correlated to cancel
out the geometry of the measurement.




Penn State Study (2014)

Study of Compton Suppression for Use in Spent Nuclear Fuel Assay by Sarah
Bender

» A fuel sample from the Penn State Breazeale Reactor was measured using
Compton Suppression.

» Used concrete collimator built into the fuel pool to study aged LEU fuel.

» Eight additional photopeaks were unmasked, allowing for identification of
more isotopes in the fuel sample.




Penn State Study (2014)
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» Compton Scattering

» How do we apply Compton Suppression?

Detectors Run in Anti-Coincidence

Another Detector

Y

Detector

| am Arthur H.
Compton, and

Compton Suppression | won the

Nobel Prize in
Physics




NBSR Fuel

The Reactor:
» D,0O Coolant, moderator, and reflector

» 30 fuel elements with 38.5 day fuel
cycles

» ~20 MW Thermal Power

The Fuel:

» 93% U;04 + Al

» 17 fuel plates per region
» 2 regions per fuel element
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Burnup:
If 10% of an initial isotope underwent

fission, the burnup is 10%.

In seneral: —MW¢  _ PowerxTime Spent
® * MetricTonne  Initial Mass of Fuel
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Challenges

We wanted to measure spectra from different spent fuel elements using a HPGe
detector and a BGO detector.
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» The detectors had to be setup in a way that accommodates Compton suppression.
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Results?

We had to channel a y beam from the fuel elements to the detectors.

It had to be safe: health physics, crane lift, and y beam control.
Not a single thing besides the collimator and its peripherals was to touch the water.

Had to be easy to assemble and disassemble for multiple uses for different y beam
sizes.

Mechanical issues to be addressed: structure, buoyancy, material selection,
manufacturing

Cost Effectiveness
Detectors Setup and Calibration
EVERYTHING MUST WORK!!!!






Radiation Safety

Questions:
1. How far down should we initially measure?

Dose vs Distance From Source to Detector

1048
y = a1bix .
R2 = 0.9976 Collimator
1049
y = a2b2x
Rz =0.9729

H,O
in the pool
1050

y = a3b3X
R?2 =0.9992

Fuel Element 77 ft

1051
y = a4b4x
R* = 0.9986 | , Necessities:

" s ¥ . 1 19 20 - ,, | 1. Attenuation Coeffluents (|:I).
Vertical Distance (ft) 2. Average Attenuation Coefficient ()
3. Average Tenth Value Layer (TVL)
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Measured by Timothy Barvitskie
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Radiation Safety

Attenuation Coefficient (p):

D=Doe_'ux U=

Tenth Value Layer (TVL):

TVL =

Calculated Results:

b (1/ft) | TVL (ft)
1048 1.8697 1.23
1049 1.6869 1.36
1050 | 1.8735 1.23
1051 1.8437 1.25

p—

< AVG | 1.81845 | 127 >

e—— PRy

THIS IS IMPORTANT!!
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Where do we put the detectors? Catwalk
BGO

1
H

Apparatus Requirements: »/f

» Easy to assemble/disassemble \\

» Mobile
» Stable

Other places that were considered:
» On the side of the pool
» In the pool (under the lid)

They
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Where do we put the detectors?
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Where do we put the detectors?




Where do we put the detectors?




The Apparatus

Polyethylene

8020 Aluminum

6061 Aluminum




The Collimator

.
> 6’(x4)
» 1”70D-0.93"ID

» Connected via Tube Locking
Fittings
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Structural Analysis

» There is a risk of dropping
detectors in the pool.

» Treat system as a structural beam,
and find the center of mass for
the platform.

» Center of mass was within the
safety zone.

WCol

w=1151b

2w <4001b

- A - A W aVYall v at




18

- Detector Setup lies here
Buoyancy Analysis

In order for the collimator to work properly, it must sink in.
Surface of the pool

Surface of the water

Original thought:
270D 1.65”ID tubes for collimator

Health Physics Concerns—> make Collimator smaller (170D, 0.93”ID)

1038WI[[0D W 1T

FB,applied = PH,0 X gX Vdf,max — Wcol ® 51b

5 b deficit

But since it’s held in place, would it REALLY bend too much?




Detector Calibration

\‘._\'.\n")q e
G100/NG

.........

» Done using GENIE-2000
» Energy Calibration using Co-60 and Eu-154 Sources

.3, Department of Commeorce

/ Nlﬂﬁqﬂ Bureau of Standards
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Initial Results

» Collimator was bending in the water.

» Background spectrum was not very
different from fuel spectrum.

» Needed a solution

Counts

Uncalibrated spectrum

Background
Element 1002

_1[]_5 1 1 1 1
0 500 1000 1500 2000




Initial Results

Background Spectrum (24 hour count)
Fuel Spectrum (1 hour count)




Initial Results

Background Spectrum
Fuel Spectrum

A134CS
Burnup can be found using INEZ
137Cg
110Ag 662 keV
657 keV t,=30y 134Cs
t, =249 d \ 795 keV
t1 /2=2.0 y
WMMMWM
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Peak Fitting
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» Peaks were refitted in Hypermet-PC

134
> A13—7$ ratio was calculated with the refitted peaks
A137Cs
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|sotope Buildup
over fuel life
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Experiment efficiency (MCNP) i
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Burnup of fuel (MCNP depletion study)

Burnup vs Cs Ratio
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BURNUP!!

A'4Cs  e135/ CRizs _Mizzlegy €134 teool
= X

ACs e, CRyz7  Asalyos  eM37 teool

S

Experiment Efficiency = Count Rate Specific y emission rate Cooling Time
Fuel Element Burnup (MW-day) Power* (MW)

51025 (July 2015) 0.0751 5329 19.8

S$1036 (Jan 2016) 0.0705 5100 18.9

*38.5 d cycles assumed (7-cycle fuel)
Calculated error due to background corrected gamma peaks area is +/-0:04 MW
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Burnup Results

Burnup vs Ratio
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Conclusion

Assembled the entire experiment and proved that it works

Addressed health physics concerns and completed safety evaluation

Observed several isotopes from fuel, and was able to determine burnup

vV v v Yy

This is the first time this is ever been done

Future Work

Make a collimator that works better
Improve stability of apparatus
Longer count times (overnight)

Measuring additional elements

vV v.v. v Y

Evolve this experiment into a gamma spectroscopy scanning apparatus
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