

#### Compton Suppressed Gamma Spectroscopy of Spent Fuel Inventories

Abdullah Weiss

NCNR, Reactor Operations and Engineering Group



## Background



- A little about me:
  - Texas A&M University-Kingsville (Junior Fall 2016)
  - Mechanical Engineering major, and Nuclear Engineering minor
- Project Origins:
  - Idaho National Laboratory (ATR)
  - Penn State University

#### Motivation of Project:

- To successfully determine the burnup of highly enriched uranium (HEU) fuel in the Neutron Beam Split-core Reactor (NBSR) at the NCNR.
- Benchmark the power and burnup of the NBSR.

#### INL Study (2013)

- A Feasibility and Optimization Study to Determine Cooling Time and Burnup of Advanced Test Reactor Fuels Using a Nondestructive Technique by Jorge Navarro
- Determined <u>burnup and cooling time</u> of fuel using isotopic γ ray peak area, and <u>peak area ratios</u>.
- Relationship was found between burnup and isotopes including <sup>137</sup>Cs, and the ratios of other isotopes correlated with the cooling time (such as <sup>144</sup>Ce/ <sup>137</sup>Cs).
- Isotope ratios were correlated to <u>cancel</u> <u>out the geometry</u> of the measurement.



## Penn State Study (2014)

Study of Compton Suppression for Use in Spent Nuclear Fuel Assay by Sarah Bender

- A fuel sample from the Penn State Breazeale Reactor was measured using <u>Compton Suppression</u>.
- Used concrete collimator built into the fuel pool to study aged LEU fuel.
- Eight additional photopeaks were unmasked, allowing for <u>identification of</u> <u>more isotopes</u> in the fuel sample.



## Penn State Study (2014)



## **Compton Suppression**

Compton Scattering



How do we apply Compton Suppression?





## **NBSR Fuel**

The Reactor:

- D<sub>2</sub>O Coolant, moderator, and reflector
- 30 fuel elements with 38.5 day fuel cycles
- ~20 MW Thermal Power

The Fuel:

- ▶ 93% U<sub>3</sub>O<sub>8</sub> + Al
- 17 fuel plates per region
- 2 regions per fuel element

**Burnup:** If 10% of an initial isotope underwent fission, the burnup is 10%. In general:  $\frac{MW \cdot d}{Metric Tonne} = \frac{Power \times Time Spent}{Initial Mass of Fuel}$ 

Initial Mass of Fuel



## Challenges

We wanted to measure spectra from different spent fuel elements using a HPGe detector and a BGO detector.

- $\blacktriangleright$  We had to channel a  $\gamma$  beam from the fuel elements to the detectors.
- > The detectors had to be setup in a way that accommodates Compton suppression.
- > It had to be safe: health physics, crane lift, and  $\gamma$  beam control.
- Not a single thing besides the collimator and its peripherals was to touch the water.
- Had to be easy to assemble and disassemble for multiple uses for different γ beam sizes.
- Mechanical issues to be addressed: structure, buoyancy, material selection, manufacturing
- Cost Effectiveness
- Detectors Setup and Calibration
- EVERYTHING MUST WORK!!!!

**Results?** 



## **Radiation Safety**



## **Radiation Safety**

Attenuation Coefficient (µ):

$$D = D_0 e^{-\mu x}$$



Tenth Value Layer (TVL):

 $TVL = \frac{ln(10)}{\mu}$ 

Calculated Results:

|           |      | μ (1/ft) | TVL (ft) |
|-----------|------|----------|----------|
|           | 1048 | 1.8697   | 1.23     |
|           | 1049 | 1.6869   | 1.36     |
|           | 1050 | 1.8735   | 1.23     |
|           | 1051 | 1.8437   | 1.25     |
| $\langle$ | AVG  | 1.81845  | 1.27     |





### Where do we put the detectors?



## Where do we put the detectors?



## Where do we put the detectors?



## The Apparatus



## The Collimator

16



## **Structural Analysis**

There is a risk of dropping detectors in the pool.

17

- Treat system as a structural beam, and find the center of mass for the platform.
- Center of mass was within the safety zone.



## **Buoyancy Analysis**

In order for the collimator to work properly, it must sink in.

Original thought: 2"OD 1.65"ID tubes for collimator

Health Physics Concerns  $\rightarrow$  make Collimator smaller (1"OD, 0.93"ID)

 $F_{B,applied} = \rho_{H_2O} \times g \times V_{df,max} - w_{Col} \approx 5 \ lb$ 

#### 5 lb deficit

But since it's held in place, would it REALLY bend too much?



### **Detector Calibration**

- Done using GENIE-2000
- Energy Calibration using Co-60 and Eu-154 Sources









## **Initial Results**



## **Initial Results**





# Peak Fitting



Peaks were refitted in Hypermet-PC
 Δ<sup>134</sup>Cs/Δ<sup>137</sup>Cs ratio was calculated with the refitted peaks

Pictures Courtesy of Danyal Turkoglu



## Isotope Buildup over fuel life (MCNP)



0 Relative Concentration 7 E-3 9 6+3 0 6+3 0 0+1 0 0+1 0

1



## Burnup of fuel (MCNP depletion study)

8000 7000 6000 (SVD4 2000 4000 3000 2000 1000 0 0.01 0.02 0.03 0.05 0.07 0.09 0.04 0.06 0.08 0.1 0 RATIO (134Cs/137Cs)

Burnup vs Cs Ratio

### BURNUP!!

$$\frac{\Delta^{134}\text{Cs}}{\Delta^{137}\text{Cs}} = \frac{\varepsilon_{134}}{\varepsilon_{137}} \times \frac{CR_{134}}{CR_{137}} \times \frac{\lambda_{137}I_{662}}{\lambda_{134}I_{795}} \times \frac{e^{\lambda_{134}t_{cool}}}{e^{\lambda_{137}t_{cool}}}$$
Experiment Efficiency Count Rate Specific  $\gamma$  emission rate Cooling Time

| Fuel Element      | Isotope Ratio | Burnup (MW-day) | Power* (MW) |
|-------------------|---------------|-----------------|-------------|
| S1025 (July 2015) | 0.0751        | 5329            | 19.8        |
| S1036 (Jan 2016)  | 0.0705        | 5100            | 18.9        |

\*38.5 d cycles assumed (7-cycle fuel)

Calculated error due to background corrected gamma peaks area is +/-0.04 MW

## **Burnup Results**



Burnup vs Ratio

#### Conclusion

- Assembled the entire experiment and proved that it works
- Addressed health physics concerns and completed safety evaluation
- Observed several isotopes from fuel, and was able to determine burnup
- This is the first time this is ever been done

### **Future Work**

- Make a collimator that works better
- Improve stability of apparatus
- Longer count times (overnight)
- Measuring additional elements
- Evolve this experiment into a gamma spectroscopy scanning apparatus

#### Acknowledgements

Thomas Newton Dan Hughes Daniel Flynn James Moody Thomas Johnston Samuel MacDavid William Clow Julie Borchers Paul Brand Attila Halacsy Robert William Gregory Heller David Brown Doug Johnson Don Lopez Joe Dura

And all the SURF directors and the SURF Program

#### <sup>32</sup> Acknowledgements

A special thank you to these individuals:

#### **Daniel Mattes**



#### Danyal Turkoglu



He's a Mechanical Engineer. It automatically makes him awesome

#### Timothy Barvitskie

Guided me through  $\mu$  and TVL calculations (and helped out with Genie...and helped out with other details of the project)



Taught me almost everything I know about detectors





## Acknowledgments

My Mentor:



Bryan Eyers





