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Introduction

Introduction

» cover only parts |, I, and llla (pages 1-9)

» more questions than answers...
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Small Word Networks
Clustering Coefficient
Scale-Free Networks

Key Concepts

Small World Networks

What is a small-world network?

“relatively short” path between any two nodes

"six degrees of separation”

>
>

» distance = the shortest path between two nodes

» diameter of graph = longest distance between any two nodes
>

no hard definition, but diameter similar to random graph
(~InN)
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Key Concepts

Clustering Coefficient

How well do your friends know each other?
» a metric between 0.0 and 1.0

» ratio of edges (E;) over maximum possible (complete
subgraph)

» for each node : C; = E;/ (Z’) = %

N
1
» for graph, take average over nodes C = N Z; G
=

Can be interpreted as

» the probability that two neighbor nodes are connected

(p=G)

Albert & Barabasi A discussion of ‘Statistical Mechanics of Complex Networks’ F



Small Word Networks
Clustering Coefficient
Scale-Free Networks
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Clustering Coefficient Simulations
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Key Concepts

Clustering Coefficient Observations

Metric is convenient to define, but

» C =1 does NOT imply that graph is completely connected

» C =0 does NOT imply that all nodes are isolated

» C is NOT monotonic as more edges are added (!)
Shortcomings

» doesn't understand the notion of “components”

» uses only one “generation” of information

» “all-or-nothing” metric may be too crude (?)

Is this what we really want to measure ...7
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Key Concepts

Weird Clustering Examples

» a collection of isolated 3-cycles has C =1

» a n-dimensional grid has C = 0, although k = 2n
» example of graph where adding more edges lowers C
> take two disconnected subgraphs and bridge them
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Small Word Networks
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Key Concepts

Clustering Examples

Consider a graph with N vertices arranged in
» 1-d ring: k=2, d(G)=N/2, C=0"1
2-d grid: k=4, d(G) = V2N, C =0
» 3-d cube: k=6, d(G) =3 N3, C=0
> ...
» n-d hypercube: k=2n, d(G) =+/nNY" C=0

Is the last considered a small-world network?

v

1This is why Watts-Strogatz used a 1-d ring with 4 nearest neighbors to
bump up C to 3/4.
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Key Concepts

Scale-Free Networks

Degree distributions
» not all nodes have same degree
» distribution function P(k) denotes probability that random
node has k edges

» for random graphs, this is a Poisson distribution with a peak
at (k) with value P((k))

» for some real networks, the tail of P(k) follows a power-law
distribution:

> P(k) ~1/k7 forl<~y<3

» other real networks exhibit exponential tails

» graphs with P(k) different than Poisson distribution are
termed " scale-free”
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Small Word Networks
Clustering Coefficient
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Key Concepts

Issues with Scale-Free Networks

» no hard definition

» why the big fuss? Because physics has properties with
power-law tails... (statistical mechanics)

» where does the cut-off for k take effect...?

» the "tail” has tiny portion of nodes... is it really that relevant?
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Key Concepts

Complex Network Cheat Sheet

Random Graphs “Real” Graphs

small-world YES YES
d(G) ~ In(N) d(G) ~ d(Grandom)
clustering coeff LOW HIGH
(C=p) < 0.01 ~ 1.0
scale-free NO YES
Poisson dist. P(k) ~ 1/k7 forl <~y <3
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Key Concepts

Complex Network Cheat Sheet

Random Graphs “Real” Graphs n-d lattices
structure NO YES (?) YES
small-world YES YES NO (7)

d(G) ~ In(N) d(G) ~ d(Grandom) d(G) ~ N/
clustering coeff LOW HIGH 0.0
(C=p)xo0.01 ~ 1.0 2n neighbors
scale-free NO YES YES
Poisson dist. P(k) ~ 1/kY forl <~y <3 P(2n) = 1, 0 otherwise
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Case Studies

Cases Studied

vV VYV VvV VY VYV VvV VvVYyYy

WWW

Internet

movie actors

science collaboration
STDs

cellular networks
ecological networks
phone call network
citation networks
linguistic networks
power grid and neural nets
protein folding

Albert & Bara
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Case Studies

WWW Studies

> at various levels (internet domain, site level, hyperlinks)
» at the hyperlink level:
> largest network studied (2002)
» directed graph, very unsymmetric (koyr < kin)
» both P,,:(k) and Pi,(k) how power-law tails
> with Your ~ 2.5+ 0.25 and v, = 2.1
» Adamic (1999) computed clustering coefficients by making
each edge bidirectional (!)

» Faloutsos (1999): an edge is drawn between two domains if
there is a least one route that connects them ()
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Case Studies

Movie Actor Collaboration Network

Hooray for IMDb.com!
» Size: half a million actors (!) in 2000
» two actors have an edge if they worked together on a film

» model does not take into account weighted edges (such as #
of films worked on together)

» average distance is close to that of random graph
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Case Studies

Observations of Table |

» key values:
> size (N)
> average degree ((k))
» average distance (¢)

> C> Crand
> L~ lrand
Things to look at:
» scatter plot of C vs. how "dense” the graph is ((k)/N)
» scatter plot of density vs. £/l .ng
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Case Studies

Observations of Table Il

> i, = 2.1 is quite popular...
» 1 <y < 3 for both v, and yout
» k (cut-off) seems pretty high, compared to (k)

> {power is NOt as good an estimator as £y5ng ...
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Erdos-Rényi model

Random Graph Theory

Random Graph Models

Erdos-Rényi (1959)
» N nodes, n edges, chosen randomly from (g’) possiblities

Binomial Model

» N nodes, every edge has p probability
» actual # of edges is a random variable

» Poisson distribution with expected value p( <g/))

» with p=n/ <g’) this is similar to Erdos-Rényi, but is it the

same?
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Erdos-Rényi model

Random Graph Theory

Graph Enumeration

An undirected graph with N vertices,
> has M = (g) = N(N —1)/2 possible edges

N(N—1)
» # of graphs with exactly n edges, is < 2 ) = HUGE!
n
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Erdos-Rényi model

Random Graph Theory

Graph Enumeration

An undirected graph with N vertices,

> has M = (g) = N(N —1)/2 possible edges

N(N—1)
» # of graphs with exactly n edges, is < 2 ) = HUGE!
n

Given

M
> <n> = n!(ICI/Iin)!

» Stirling’s approximation: In n! ~ n(Inn — 1), for large N
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Erdos-Rényi model

Random Graph Theory

Graph Enumeration Examples

Name Vertices (k) # graphs

10 1 3 x 10°

100 1 ~ 10211

1,000 1 ~ 103132

10,000 1 ~ 1041332

math authors 70,975 3.9  ~ 101,200,000

movie actors 225226 61 ~ 1(0°0,000,000

If every atom in the universe (~ 1080) was a Petaflop computer, computing since the begining of time (13 billion

0100

years ago) you would just need 1 such universes to enumerate the (100, (1)) case...
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Erdos-Rényi model
Random Graph Theory

Do we really know the landscape?

HELP!
» we are looking at only tiny microcosm of graph space for
simulations
how robust are our conclusions?
importance sampling (?)

concern with 1-d parameterization ala Watts-Strogatz...

vV v vy

what if we made random changes to a "real” network? How
long before it starts losing its "realness”?

» would any of these metrics help...?
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Conclusions

Conclusions and Discussion

> is “small-world” really relevant...? (social networks rarely
interact beyond three links...)
» not clear if current metrics really capture the right thing...
» given (N, C, (k),~,£) what can one say about a network?

» introduce new(?) metrics that better recognize components
and structure

» cluster coefficient should be extended for weighted,
bidirectional graphs

» power-tail distribution model needs high cut-off values for k
» what percentage of the available nodes is this?
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Conclusions

Conclusions ...?

Why is this so hard...?

» because we are trying to theoritize arbitrary structure ...
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