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Abstract

Bugs in software are costly and difficult to find and fix.
In recent years, many tools and techniques have been de-
veloped for automatically finding bugs by analyzing source
code or intermediate code statically (at compile time). Dif-
ferent tools and techniques have different tradeoffs, but the
practical impact of these tradeoffs is not well understood. In
this paper, we apply five bug finding tools, specifically Ban-
dera, ESC/Java 2, FindBugs, JLint, and PMD, to a variety
of Java programs. By using a variety of tools, we are able
to cross-check their bug reports and warnings. Our experi-
mental results show that none of the tools strictly subsumes
another, and indeed the tools often find non-overlapping
bugs. We discuss the techniques each of the tools is based
on, and we suggest how particular techniques affect the out-
put of the tools. Finally, we propose a meta-tool that com-
bines the output of the tools together, looking for particular
lines of code, methods, and classes that many tools warn
about.

1 Introduction

In recent years, many tools have been developed for
automatically finding bugs in program source code, using
techniques such as syntactic pattern matching, data flow
analysis, type systems, model checking, and theorem prov-
ing. Many of these tools check for the same kinds of pro-
gramming mistakes, yet to date there has been little direct
comparison between them. In this paper, we perform one
of the first broad comparisons of several Java bug-finding
tools over a wide variety of tasks.

In the course of our experiments, we discovered, some-
what surprisingly, that there is clearly no single “best” bug-
finding tool. Indeed, we found a wide range in the kinds of
bugs found by different tools (Section 2). Even in the cases
when different tools purport to find the same kind of bug,
we found that in fact they often report different instances

∗This research was supported in part by NSF CCF-0346982.

of the bug in different places (Section 4.1). We also found
that many tools produce a large volume of warnings, which
makes it hard to know which to look at first.

Even though the tools do not show much overlap in par-
ticular warnings, we initially thought that they might be cor-
related overall. For example, if one tool issues many warn-
ings for a class, then it might be likely that another tool does
as well. However, our results show that this is not true in
general. There is no correlation of warning counts between
pairs of tools. Additionally, and perhaps surprisingly, warn-
ing counts are not strongly correlated with lines of code.

Given these results, we believe there will always be a
need for many different bug finding tools, and we propose
creating abug finding meta-toolfor automatically combin-
ing and correlating their output (Section 3). Using this tool,
developers can look for code that yields an unusual number
of warnings from many different tools. We explored two
different metrics for using warning counts to rank code as
suspicious, and we discovered that both are correlated for
the highest-ranked code (Section 4.2).

For our study, we selected five well-known, publicly
available bug-finding tools (Section 2.2). Our study focuses
on PMD [18], FindBugs [13], and JLint [16], which use
syntactic bug pattern detection. JLint and FindBugs also
include a dataflow component. Our study also includes
ESC/Java [10], which uses theorem proving, and Bandera
[6], which uses model checking.

We ran the tools on a small suite of variously-sized Java
programs from various domains. It is a basic undecidabil-
ity result that no bug finding tool can always report cor-
rect results. Thus all of the tools must balance finding true
bugs with generatingfalse positives(warnings about correct
code) andfalse negatives(failing to warn about incorrect
code). All of the tools make different tradeoffs, and these
choices are what cause the tools to produce the wide range
of results we observed for our benchmark suite.

The main contributions of this paper are as follows:

• We present what we believe is the first detailed com-
parison of several different bug finding tools for Java
over a variety of checking tasks.



• We show that, even for the same checking task, there
is little overlap in the warnings generated by the tools.
We believe this occurs because all of the tools choose
different tradeoffs between generating false positives
and false negatives.

• We also show that the warning counts from different
tools are not generally correlated. Given this result,
we believe that there will always be a need for multiple
separate tools, and we propose a bug finding meta-tool
for combining the results of different tools together
and cross-referencing their output to prioritize warn-
ings. We show that two different metrics tend to rank
code similarly.

1.1 Threats to Validity

There are a number of potential threats to the validity of
this study. Foremost is simply the limited scope of the study,
both in terms of the test suite size and in terms of the selec-
tion of tools. We believe, however, that we have chosen a
representative set of Java benchmarks and Java bug finding
tools. Additionally, there may be other considerations for
tools for languages such as C and C++, which we have not
studied. However, since many tools for those languages use
the same basic techniques as the tools we studied, we think
that the lessons we learned will be applicable to tools for
those languages as well.

Another potential threat to validity is that we did not ex-
actly categorize every false positive and false negative from
the tools. Doing so would be extremely difficult, given the
large number of warnings from the tools and the fact that
we ourselves did not write the benchmark programs in our
study. Instead, in Section 4.1, we cross-check the results
of the tools with each other in order to get a general sense
of how accurate the warnings are, and in order to under-
stand how the implementation techniques affect the gener-
ated warnings. We leave it as interesting future work to
check for false negatives elsewhere, e.g., in CVS revision
histories or change logs.

A final threat to validity is that what we make no distinc-
tion between the severity of one bug versus another. Quanti-
fying the severity of bugs is a difficult problem, and it is not
the focus of this paper. For example, consider the following
piece of code:

int x = 2, y = 3;
if (x == y)

if (y == 3)
x = 3;

else
x = 4;

In this example, indentation would suggest that theelse
corresponds to the firstif , but the language grammar says

otherwise. The result is most likely a logical error, since
a programmer might believe this code will result inx=4
when it really results inx=2 . Depending on later uses ofx ,
this could be a major error. Used with the right rulesets for
ensuring that allif statements use braces around the body,
PMD will flag this program as suspicious.

The following more blatant error is detected by JLint,
FindBugs, and ESC/Java:

String s = new String("I’m not null...yet");
s = null;
System.out.println(s.length());

This segment of code will obviously cause an exception at
runtime, which is not desirable, but will have the effect of
halting the program as soon as the error occurs (assuming
the exception is not caught). Moreover, if it is on a common
program path, this error will most likely be discovered when
the program is run, and the exception will pinpoint the exact
location of the error.

When asked which is the more severe bug, many pro-
grammers might say that a null dereference is worse than
not using braces in anif statement (which is often not an
error at all). And yet the logical error caused by the lack of
braces might perhaps be much more severe, and harder to
track down, than the null dereference.

These small examples illustrate that for any particular
program bug, the severity of the error cannot be separated
from the context in which the program is used. With this in
mind, in Section 6 we mention a few ways in which user-
specified information about severity might be taken into ac-
count.

2 Background

2.1 A Small Example

The code sample in Figure 1 illustrates the variety and
typical overlap of bugs found by the tools. It also illustrates
the problems associated with false positives and false nega-
tives. The code in Figure 1 compiles with no errors and no
warnings, and though it won’t win any awards for function-
ality, it could easily be passed off as fine. However, four
of the five tools were each able to find at least one bug in
this program. (Bandera wasn’t tested against the code for
reasons explained later.)

PMD discovers that the variabley on line 8 is never
used and generates an “Avoid unused local variables” warn-
ing. FindBugs displays a “Method ignores results of In-
putStream.read()” warning for line 12; this is an error be-
cause the result ofInputStream.read() is the num-
ber of bytes read, and this may be fewer bytes than the pro-
grammer is expecting. FindBugs also displays a “Method



1 import java.io.*;
2 public class Foo{
3 private byte[] b;
4 private int length;
5 Foo(){ length = 40;
6 b = new byte[length]; }
7 public void bar(){
8 int y;
9 try {
10 FileInputStream x =
11 new FileInputStream("z");
12 x.read(b,0,length);
13 x.close();}
14 catch(Exception e){
15 System.out.println("Oopsie");}
16 for(int i = 1; i <= length; i++){
17 if (Integer.toString(50) ==
18 Byte.toString(b[i]))
19 System.out.print(b[i] + " ");
20 }
21 }
22 }

Figure 1. A Sample Java Class

may fail to close stream on exception” warning and a warn-
ing on lines 17-18 for using “==” to compare String objects
(which is incorrect). ESC/Java displays “Warning: Array
index possibly too large” because the comparison on lines
17-18 may access an element outside the bounds of the ar-
ray due to an error in the loop guard on line 16. This, as we
can see, is a valid error. However, ESC/Java also displays
a warning for “Possible null dereference” on line 18, which
is a false positive sinceb is initialized in the constructor.
Finally, JLint displays a “Compare strings as object refer-
ences” warning for the string comparison on lines 17-18.
This is the same error that FindBugs detected, which illus-
trates that there is some overlap between the tools.

This is the sum total of all the errors reported by the
tools. The results for this small example also illustrate sev-
eral cases of false negatives. FindBugs, for instance, also
looks for unused variables, but does not discover that the
variabley on line 8 was never used. As another example,
JLint sometimes warns about indexing out of bounds, but
JLint does not recognize the particular case on line 16. Fur-
ther examples of overlapping warnings between programs,
false positives, and false negatives are all discussed later on
in the paper.

2.2 Java Bug Finding Tools

Figure 2 contains a brief summary of the five tools we
study in this paper, and below we discuss each of them in
more detail.

Name Version Input Interfaces Technology
Bandera 0.3b2 Source CL, GUI Model

(2003) checking
ESC/Java 2.0a7 Source1 CL, GUI Theorem

(2004) proving
FindBugs 0.8.2 Bytecode CL, GUI, Syntax,

(2004) IDE, Ant dataflow
JLint 3.0 Bytecode CL Syntax,

(2004) dataflow
PMD 1.9 Source CL, GUI, Syntax

(2004) Ant, IDE

CL - Command Line
1ESC/Java works primarily with source but may require bytecode or
specification files for supporting types.

Figure 2. Bug Finding Tools and Their Basic
Properties

FindBugs [13] is a bug pattern detector for Java. Find-
Bugs uses a series of ad-hoc techniques designed to balance
precision, efficiency, and usability. One of the main tech-
niques FindBugs uses is to syntactically match source code
to known suspicious programming practice, in a manner
similar to ASTLog [7]. For example, FindBugs checks that
calls towait() , used in multi-threaded Java programs, are
always within a loop—which is the correct usage in most
cases. In some cases, FindBugs also uses dataflow analy-
sis to check for bugs. For example, FindBugs uses a sim-
ple, intraprocedural (within one method) dataflow analysis
to check for null pointer dereferences.

FindBugs can be expanded by writing custom bug detec-
tors in Java. We set FindBugs to report “medium” priority
warnings, which is the recommended setting.

JLint [1, 16], like FindBugs, analyzes Java bytecode, per-
forming syntactic checks and dataflow analysis. JLint also
includes an interprocedural, inter-file component to find
deadlocks by building a lock graph and ensuring that there
are never any cycles in the graph. JLint 3.0, the version we
used, includes the multi-threaded program checking exten-
sions described by Artho [1]. JLint is not easily expandable.

PMD [18], like FindBugs and JLint, performs syntac-
tic checks on program source code, but it does not have
a dataflow component. In addition to some detection of
clearly erroneous code, many of the “bugs” PMD looks
for are stylistic conventions whose violation might be sus-
picious under some circumstances. For example, having
a try statement with an emptycatch block might in-
dicate that the caught error is incorrectly discarded. Be-
cause PMD includes many detectors for bugs that depend



on programming style, PMD includes support for select-
ing which detectors or groups of detectors should be run.
In our experiments, we run PMD with the rulesets recom-
mended by the documentation: unusedcode.xml, basic.xml,
import.xml, and favorites.xml. The number of warnings can
increase or decrease depending on which rulesets are used.
PMD is easily extensible by programmers, who can write
new bug pattern detectors using either Java or XPath.

Bandera [6] is a verification tool based on model check-
ing and abstraction. To use Bandera, the programmer anno-
tates their source code with specifications describing what
should be checked, or no specifications if the programmer
only wants to verify some standard synchronization prop-
erties. In particular, with no annotations Bandera verifies
the absence of deadlocks. Bandera includes optional slicing
and abstraction phases, followed by model checking. Ban-
dera can use a variety of model checkers, including SPIN
[12] and the Java PathFinder [11].

We included Bandera in our study because it uses a com-
pletely different technique than the other tools we looked
at. Unfortunately, Bandera version 0.3b2 does not run on
any realistic Java programs, including our benchmark suite.
The developers of Bandera acknowledge on their web page
that it cannot analyze Java (standard) library calls, and un-
fortunately the Java library is used extensively by all of our
benchmarks. This greatly limits the usability and applica-
bility of Bandera (future successors will address this prob-
lem). We were able to successfully run Bandera and the
other tools on the small example programs supplied with
Bandera. Section 5 discusses the results.

ESC/Java [10], the Extended Static Checking system for
Java, based on theorem proving, performs formal verifica-
tion of properties of Java source code. To use ESC/Java, the
programmer adds preconditions, postconditions, and loop
invariants to source code in the form of special comments.
ESC/Java uses a theorem prover to verify that the program
matches the specifications.

ESC/Java is designed so that it can produce some useful
output even without any specifications, and this is the way
we used it in our study. In this case, ESC/Java looks for er-
rors such as null pointer dereferences, array out-of-bounds
errors, and so on; annotations can be used to remove false
positives or to add additional specifications to be checked.

For our study, we used ESC/Java 2 [5], a successor to the
original ESC/Java project. ESC/Java 2 includes support for
Java 1.4, which is critical to analyzing current applications.
ESC/Java 2 is being actively developed, and all references
to ESC/Java will refer to the ESC/Java 2, rather than the
original ESC/Java.

We included ESC/Java in our set of tools because its ap-
proach to finding bugs is notably different from the other

tools. However, as we will discuss in Section 3, without
annotations ESC/Java produces a multitude of warnings.
Houdini [9] can automatically add ESC/Java annotations
to programs, but it does not work with ESC/Java 2 [4].
Daikon [8] can also be used as an annotation assistant to
ESC/Java, but doing so would require selecting representa-
tive dynamic program executions that sufficiently cover the
program paths, which we did not attempt. Since ESC/Java
really works best with annotations, in this paper we will
mostly use it as a point of comparison and do not include it
in the meta-tool metrics in Section 4.2.

2.3 Taxonomy of Bugs

We classified all of the bugs the tools find into the groups
listed in Figure 3. The first column lists a general class of
bugs, and the second column gives one common example
from that class. The last columns indicate whether each
tool finds bugs in that category, and whether the tools find
the specific example we list. We did not put Bandera in
this table, since without annotations its checks are limited
to synchronization properties.

These classifications are our own, not the ones used in
the literature for any of these tools. With this in mind, no-
tice that the largest overlap is between FindBugs and PMD,
which share 6 categories in common. The “General” cate-
gory is a catch-all for checks that do not fit in the other cat-
egories, so all tools find something in that category. All of
the tools also look for concurrency errors. Overall, there are
many common categories among the tools and many cate-
gories on which the tools differ.

Other fault classifications that have been developed are
not appropriate for our discussion. Two such classifications,
the Orthogonal Defect Classification [3] and the IEEE Stan-
dard Classification for Software Anomalies [14], focus on
the overall software life cycle phases. Both treat faults at
a much higher-level than we do in this paper. For exam-
ple, they have a facility for specifying that a fault is a logic
problem, but do not provide specifications for what the logic
problem leads to or was caused by, such as incorrect syn-
chronization.

3 Experiments

To generate the results in this paper, we wrote a series
of scripts that combine and coordinate the output from the
various tools. Together, these scripts form a preliminary
version of the bug findingmeta-toolthat we mentioned in
the introduction. This meta-tool allows a developer to ex-
amine the output from all the tools in a common format and
find what classes, methods, and lines generate warnings.

As discussed in the introduction, we believe that such a
meta-tool can provide much better bug finding ability than



Bug Category Example ESC/Java FindBugs JLint PMD

General Null dereference
√

*
√

*
√

*
√

Concurrency Possible deadlock
√

*
√ √

*
√

Exceptions Possible unexpected exception
√

*
Array Length may be less than zero

√ √
*

Mathematics Division by zero
√

*
√

Conditional, loop Unreachable code due to constant guard
√ √

*
String Checking equality using == or !=

√ √
*

√

Object overriding Equal objects must have equal hashcodes
√

*
√

*
√

*
I/O stream Stream not closed on all paths

√
*

Unused or duplicate statement Unused local variable
√ √

*
Design Should be a static inner class

√
*

Unnecessary statement Unnecessary return statement
√

*√
- tool checks for bugs in this category * - tool checks for this specific example

Figure 3. The Types of Bugs Each Tool Finds

the tools in isolation. As Figure 3 shows, there is a lot
of variation even in the kinds of bugs found by the tools.
Moreover, as we will discuss in Section 4.1, there are not
many cases where multiple tools warn about the same po-
tential problem. Having a meta-tool means that a developer
need not rely on the output of a single tool. In particular,
the meta-tool can rank classes, methods, and lines by the
number of warnings generated by the various tools. In Sec-
tion 4.2, we will discuss simple metrics for doing so and
examine the results.

Of course, rather than having a meta-tool, perhaps the
ideal situation would be a single tool with many different
analyses built-in, and the different analyses could be com-
bined and correlated in the appropriate fashion. However,
as a practical matter, the tools tend to be written by a wide
variety of developers, and so at least for now having a sep-
arate tool to combine their results seems necessary.

The preliminary meta-tool we built for this paper is fairly
simple. Its main tasks are to parse the different textual
output of the various tools (ranging from delimited text to
XML) and map the warnings, which are typically given by
file and line, back to classes and methods. We computed
the rankings in a separate pass. Section 6 discusses some
possible enhancements to our tool.

We selected as a testbed five mid-sized programs com-
piled with Java 1.4. The programs represent a range of
applications, with varying functionality, program size, and
program maturity. The five programs are

Apache Tomcat 5.019Java Servlet and JavaServer Pages
implementation, specifically catalina.jar1

JBoss 3.2.3J2EE application server2

Art of Illusion 1.7 3D modeling and rendering studio3

1http://jakarta.apache.org/tomcat
2http://www.jboss.org
3http://www.artofillusion.org

Azureus 2.0.7 Java Bit Torrent client4

Megamek 0.29Online version of BattleTech game5

Figure 4 lists the size of each benchmark in terms of both
Non Commented Source Statements (NCSS), roughly the
number of ’;’ and ’{’ characters in the program, and the
number of class files. The remaining columns of Figure 4
list the running times and total number of warnings gener-
ated by each tool. Section 4 discusses the results in-depth;
here we give some high-level comments. Bandera is not in-
cluded in this table, since it does not run on any of these
examples. See Section 5.

To compute the running times, we ran all of the programs
from the command line, as the optional GUIs can poten-
tially reduce performance. Execution times were computed
with one run, as performance is not the emphasis of this
study. The tests were performed on a Mac OS X v10.3.3
system with a 1.25 GHz PowerPC G4 processor and 512
MB RAM. Because PMD accepts only one source file at
a time, we used a script to invoke it on every file in each
benchmark. Unfortunately, since PMD is written in Java,
each invocation launches the Java virtual machine sepa-
rately, which significantly reduces PMD’s performance. We
expect that without this overhead, PMD would be approx-
imately 20% faster. Recall that we used ESC/Java without
annotations; we do not know if adding annotations would
affect ESC/Java’s running time, but we suspect it will still
run significantly slower than the other tools. Speaking in
general terms, ESC/Java takes a few hours to run, FindBugs
and PMD take a few minutes, and JLint takes a few seconds.

For each tool, we report the absolute number of warnings
generated, with no normalization or attempt to discount re-
peated warnings about the same error. Thus we are mea-
suring the total volume of information presented to a de-

4http://azureus.sourceforge.net
5http://megamek.sourceforge.net



NCSS Class Time (min:sec.csec) Warning Count
Name (Lines) Files ESC/Java FindBugs JLint PMD ESC/Java FindBugs JLint PMD

Azureus 2.0.7 35,549 1053 211:09.00 01:26.14 00:06.87 19:39.00 5474 360 1584 1371
Art of Illusion 1.7 55,249 676 361:56.00 02:55.02 00:06.32 20:03.00 12813 481 1637 1992
Tomcat 5.019 34,425 290 90:25.00 01:03.62 00:08.71 14:28.00 1241 245 3247 1236
JBoss 3.2.3 8,354 274 84:01.00 00:17.56 00:03.12 09:11.00 1539 79 317 153
Megamek 0.29 37,255 270 23:39.00 02:27.21 00:06.25 11:12.00 6402 223 4353 536

Figure 4. Running Time and Warnings Generated by Each Tool

Figure 5. Histogram for number of warnings
found per class

veloper from each tool. For ESC/Java, the number of gen-
erated warnings is sometimes extremely high. Among the
other tools, JLint tends to report the largest number of warn-
ings, followed by PMD (though for Art of Illusion, PMD
reported more warnings than JLint). FindBugs generally
reports fewer warnings than the other tools. In general, we
found this makes FindBugs easier to use, because there are
fewer results to examine.

Figure 5 shows a histogram of the warning counts per
class. (We do not include classes with no warnings.)
Clearly, in most cases, when the tools find potential bugs,
they only find a few, and the number of classes with mul-
tiple warnings drops off rapidly. For PMD and JLint, there
are quite a few classes that have 19 or more warnings, while
these are rare for FindBugs. For ESC/Java, many classes
have 19 or more warnings.

4 Analysis

4.1 Overlapping Bug Categories

Clearly the tools generate far too many warnings to re-
view all of them manually. In this section, we examine the
effectiveness of the tools on three checking tasks that sev-
eral of the tools share in common: concurrency, null deref-
erence, and array bounds errors. Even for the same task we
found a wide variation in the warnings reported by differ-
ent tools. Figure 6 contains a breakdown of the warning

ESC/ Find
Java Bugs JLint PMD

Concurrency Warnings 126 122 8883 0
Null Dereferencing 9120 18 449 0
Null Assignment 0 0 0 594
Index out of Bounds 1810 0 264 0
Prefer Zero Length Array 0 36 0 0

Figure 6. Warning Counts for the Categories
Discussed in Section 4.1

counts. Even after restricting ourselves to these three cate-
gories, there is still a large number of warnings, and so our
manual examination is limited to several dozen warnings.

Concurrency Errors All of the tools check for at least
one kind of concurrency error. ESC/Java includes support
for automatically checking for race conditions and potential
deadlocks. ESC/Java finds no race conditions, but it issues
126 deadlock warnings for our benchmark suite. After in-
vestigating a handful of these warnings, we found that some
of them appear to be false positives. Further investigation
is difficult, because ESC/Java reportssynchronized
blocks that are involved in potential deadlocks but not the
sets of locks in each particular deadlock.

PMD includes checks for some common bug patterns,
such as the well-known double-checked locking bug in Java
[2]. However, PMD does not issue any such warnings for
our benchmarks. In contrast, both FindBugs and JLint do
report warnings. Like PMD, FindBugs also checks for uses
of double-checked locking. Interestingly, despite PMD re-
porting no such cases, FindBugs finds a total of three uses of
double-checked locking in the benchmark programs. Man-
ual examination of the code shows that, indeed, those three
uses are erroneous. PMD does not report this error because
its checker is fooled by some other code mixed in with the
bug pattern (such as try/catch blocks).

FindBugs also warns about the presence of other concur-
rency bug patterns, such as not putting a monitorwait()
call in a while loop. Examining the results in detail, we
discovered that the warnings FindBugs reports usually cor-
rectly indicate the presence of the bug pattern in the code.



What is less clear is how many of the patterns detected cor-
respond to actual errors. For example, since FindBugs does
not perform interprocedural analysis (it analyzes a single
method at a time), if a method with await() is itself
called in a loop, FindBugs will still report a warning (though
this did not happen in our benchmarks). And, of course, not
all uses ofwait() outside of a loop are incorrect.

On our test suite, JLint generates many warnings about
potential deadlocks. In some cases, JLint produces many
warnings for the same underlying bug. For instance, JLint
checks for deadlock by producing a lock graph and look-
ing for cycles. In several cases in our experiments, JLint
iterates over the lock graph repeatedly, reporting the same
cycle many times. In some cases, the same cycle generated
several hundred warnings. These duplicates, which make
it difficult to use the output of JLint, could be eliminated
by reporting a cycle in the lock graph just once. The sheer
quantity of output from JLint makes it difficult to judge the
rate of false positives for our benchmark suite. In Section 5
we compare finding deadlocks using JLint and Bandera on
smaller programs.

Null Dereferences Among the four tools, ESC/Java,
FindBugs, and JLint check for null dereferences. Surpris-
ingly, there is not a lot of overlap between the warnings
reported by the various tools.

JLint finds many potential null dereferences. In order
to reduce the number of warnings, JLint tries to only iden-
tify inconsistent assumptions about null. For example, JLint
warns if an object is sometimes compared against null be-
fore it is dereferenced and sometimes not. However, we
have found that in a fair number of cases, JLint’s null deref-
erence warnings are false positives. A common example is
when conditional tests imply that an object cannot be null
(e.g., because it was not null previously when the condi-
tion held). In this case, JLint often does not track enough
information about conditionals to suppress the warning. Fi-
nally, in some cases there are warnings about null pointer
dereferences that cannot happen because of deeper program
logic; not many static analyses could handle these cases.
Currently, there is no way to stop these warnings from be-
ing reported (sometimes multiple times).

ESC/Java reports the most null pointer dereferences be-
cause it often assumes objects might be null, since we did
not add any annotations to the contrary. (Interestingly,
ESC/Java does not always report null dereference warnings
in the same places as JLint). The net result is that, while
potentially those places may be null pointer errors, there
are too many warnings to be easily useful by themselves.
Instead, to make the most effective use of these checks, it
seems the programmer should provide annotations. For ex-
ample, in method declarations parameters that are never null
can be marked as such to avoid spurious warnings.

Interestingly, FindBugs discovers a very small set of po-
tential null dereferences compared to both ESC/Java and
JLint. This is because FindBugs uses several heuristics to
avoid reporting null-pointer dereference warnings in certain
cases when its dataflow analysis loses precision.

PMD does not check for null pointer dereferences, but it
does warn about setting certain objects to null. We suspect
this check is not useful for many common coding styles.
ESC/Java also checks for some other uses of null that vi-
olate implicit specifications, e.g., assigning null to a field
assumed not to be null. In a few cases, we found that PMD
and ESC/Java null warnings coincide with each other. For
example, in several cases PMD reported an object being set
to null, and just a few lines later ESC/Java issued a warning
about assigning null to another object.

Array Bounds Errors In Java, indexing outside the
bounds of an array results is a run-time exception. While
a bounds error in Java may not be the catastrophic error
that it can be for C and C++ (where bounds errors over-
write unexpected parts of memory), they still indicate a bug
in the program. Two of the tools we examined, JLint and
ESC/Java, include checks for array bounds errors—either
creating an array with a negative size, or accessing an array
with an index that is negative or greater than the size of the
array.

Like null dereference warnings, JLint and ESC/Java do
not always report the same warnings in the same places.
ESC/Java mainly reports warnings because parameters that
are later used in array accesses may not be within range (an-
notations would help with this). JLint has several false pos-
itives and some false negatives in this category, apparently
because it does not track certain information interprocedu-
rally in its dataflow analysis. For example, code such as this
appeared in our benchmarks:

public class Foo {
static Integer[] ary = new Integer[2];

public static void assign() {
Object o0 = ary[ary.length];
Object o1 = ary[ary.length-1];

}
}

In this case, JLint signals a warning that the array index
might be out of bounds for the access too1 (because it
thinks the length of the array might be 0), but clearly that
is not possible here. On the other hand, there are no warn-
ings for the access too0 , even though it will always be out
of bounds no matter what size the array is.

FindBugs and PMD do not check for array bounds er-
rors, though FindBugs does warn about returning null from



Correlation
Tools coefficient
JLint vs PMD 0.15
JLint vs FindBugs 0.33
FindBugs vs PMD 0.31

Figure 7. Correlation among Warnings from
Pairs of Tools

a method that returns an array (it may be better to use a
0-length array).

4.2 Cross-Tool Buggy Code Correlations

When initially hypothesizing about the relationship
among the tools, we conjectured that warnings among the
different tools were correlated, and that the meta-tool would
show that more warnings from one tool would correspond
to more warnings from other tools. However, we found
that this is not necessarily the case. Figure 7 gives the cor-
relation coefficients for the number of warnings found by
pairs of tools per class. As these results indicate, the large
number of warnings reported by some tools are sometimes
simply anomalous, and there does not seem to be any gen-
eral correlation between the total number of warnings one
tools generates and the total number of warnings another
tool generates for any given class.

We also wanted to check whether the number of warn-
ings reported is simply a function of the number of lines
of code. Figure 8 gives correlation coefficients and scatter
plots showing, for each Java source file (which may include
several inner classes), the NCSS count versus the number of
warnings. For JLint, we have removed from the chart five
source files that had over 500 warnings each, since adding
these makes it hard to see the other data points. As these
plots show, there does not seem to be any general corre-
lation between lines of code and number of warnings pro-
duced by any of the tools. JLint has the strongest correlation
of the three, but it is still weak.

4.2.1 Two Simple Metrics for Isolating Buggy Code

Given that the tools’ warnings are not generally correlated,
we hypothesize that combining the results of multiple tools
together can identify potentially troublesome areas in the
code that might be missed when using the tools in isola-
tion. Since we do not have exhaustive information about
the severity of faults identified by the warnings and rates
of false positives and false negatives, we cannot form any
strong conclusions about the benefit of our metrics. Thus in
this section we perform only a preliminary investigation.

We studied two metrics for ranking code. As mentioned
in Section 2.2, we do not include ESC/Java in this discus-
sion.

For the first metric, we started with the number of warn-
ings per class file from each tool. (The same metric can
also be used per method, per lexical scope, or per line.)
For a particular benchmark and a particular tool, we linearly
scaled the per-class warning counts to range between 0 and
1, with 1 being the maximum number of per-class warning
counts reported by the tool over all our benchmarks.

Formally, letn be the total number of classes, and let
Xi be the number of warnings reported by toolX for class
numberi, wherei ∈ 1..n. Then we computed a normalized
warning count

X ′
i = Xi/

n
max
i=1

Xi

Then for class numberi, we summed the normalized
warning counts from each tool to compute our first metric,
thenormalized warning total:

Total i = FindBugsi + JLint i + PMD i

In order to avoid affecting the scaling for JLint, we re-
duced its warning count for the class with the highest num-
ber of errors from 1979 to 200, and for the next four highest
classes to 199 through 196, respectively (to maintain their
ranking)

With this first metric, the warning counts could be biased
by repeated warnings about the same underlying bug. In or-
der to compensate for this possibility, we developed a sec-
ond metric, theunique warning total, that counts only the
first instance of each type of warning message generated by
a tool. For example, no matter how many null pointer deref-
erences FindBugs reports in a class, we only count this as 0
(if none were found) or 1 (if one or more were found). In
this metric, we sum the number of unique warnings from all
the tools.

4.2.2 Results

We applied these metrics to our benchmark suite, ranking
the classes according to their normalized and unique warn-
ing totals. As it turns out, these two metrics are fairly well
correlated, especially for the classes that are ranked highest
by both metrics. Figure 9 shows the relationship between
the normalized warning count and the number of unique
warnings per class. The correlation coefficient for this rela-
tionship is 0.758. Of course, it is not surprising that these
metrics are correlated, because they are clearly not indepen-
dent (in particular, if one is non-zero then the other must be
as well). However, a simple examination of certain classes
shows that the high correlation coefficient between the two
is not obvious. For instance, the class catalina.context has a
warning count of 0 for FindBugs and JLint, but PMD gen-
erates 132 warnings. (As it turns out, PMD’s warnings are



Figure 8. Comparison of Number of Warnings versus NCSS

Figure 9. Normalized Warnings versus the
Unique Warnings per Class

uninteresting). This class ranks 11th in normalized warning
total, but 587th in unique warning total (all 132 warnings
are the same kind). Thus just because a class generates a
large number of warnings does not necessarily mean that it
generates a large breath of warnings.

We manually examined the warnings for the top five
classes for both metrics, listed in Figure 10. For these
classes, Figure 10 shows the size of the class, in terms of
NCSS and number of methods, the normalized warning to-
tal and rank, the total number of warnings found by each of
the tools, and the number of unique warnings and rank. In
this table, T-n denotes a class rankedn, which is tied with
at least one other class in the ranking.

Recall that the goal of our metrics is to identify code
that might be missed when using the tools in isolation. In
this table, the top two classes in both metrics are the same,
catalina.core.StandardContext and megamek.server.Server,
and both also have the most warnings of any class from, re-
spectively, FindBugs and JLint. Thus these classes, as well
as artofillusion.object.TriangleMesh (with the most warn-
ings from PMD), can be identified as highly suspicious by
a single tool.

On the other hand, azureus2.ui.swt.MainWindow could
be overlooked when considering only one tool at a time.
It is ranked in the top 10 for both of our metrics, but it is
4th for FindBugs in isolation, 13th for JLint, and 30th for
PMD. As another example, catalina.core.StandardWrapper
(4th for the unique warning metric), is ranked 45th for Find-

Bugs, 11th for JLint, and 349th for PMD—thus if we were
only using a single tool, we would be unlikely to examine
the warnings for it immediately.

In general, the normalized warning total measures the
number of tools that find an unusually high number of warn-
ings. The metric is still susceptible, however, to cases where
a single tool produces a multitude of spurious warnings.
For example, megamek.server.Server has hundreds of null
dereference warnings from JLint, many likely false posi-
tives, which is why it is ranked second in this metric. In the
case of artofillusion.object.TriangleMesh, 102 out of 140 of
the warnings from PMD are for not using brackets in afor
statement—which it probably not a mistake at all.

On the other hand, the unique warning total measures
the breadth of warnings found by the tools. This metric
compensates for cascading warnings of the same kind, but
it can be fooled by redundancy among the different tools.
For example, if by luck a null deference error is caught by
two separate tools, then the warning for that error will be
counted twice. This has a large affect on the unique warn-
ing counts, because they are in general small. An improved
metric could solve this problem by counting uniqueness of
errors across all tools (which requires identifying duplicate
messages across tools, a non-obvious task for some warn-
ings that are close but not identical).

We think that both metrics provide a useful gauge that
allows programmers to go beyond finding individual bugs
with individual tools. Instead, these metrics can be used
to find code with an unusually high number and breadth of
warnings from many tools—and our results show that both
seem to be correlated for the highest-ranked classes.

5 Bandera

Bandera cannot analyze any of our benchmarks from
Section 3, because it cannot analyze the Java library. In
order to compare Bandera to the other tools, we used the
small examples supplied with Bandera as a test suite, since
we knew that Bandera could analyze them.

This test suite from Bandera includes 16 programs rang-
ing from 100-300 lines, 8 of which contain a real deadlock.
None of the programs include specifications—without spec-
ifications, Bandera will automatically check for deadlock.



Total Warnings Normalized Unique Warnings
Name NCSS Mthds FB JL PMD Total i Rank FB JL PMD Total Rank

catalina.core.StandardContext 1863 255 ∗34 791 37 2.25 1 9 10 5 24 1
megamek.server.Server 4363 198 6 ∗1979 42 1.48 2 6 10 4 20 2
azureus2.ui.swt.MainWindow 1517 87 11 90 30 0.99 9 5 8 4 17 3
catalina.core.StandardWrapper 513 75 10 50 8 0.60 19 6 6 3 15 4
catalina.core.StandardHost 279 55 4 97 3 0.62 17 10 3 1 14 5
catalina.core.ContainerBase 518 70 14 849 3 1.42 3 3 7 3 13 T-8
artofillusion.object.TriangleMesh 2213 59 5 42 ∗140 1.36 4 3 7 3 13 T-8
megamek.common.Compute 2250 109 0 1076 23 1.16 5 0 7 3 10 T-22

* - Class with highest number of warnings from this tool

Figure 10. Classes Ranked Highly by Metrics

For this test suite, Bandera finds all 8 deadlocks and pro-
duces no messages concerning the other 8 programs.

In comparison, FindBugs and PMD do not issue any
warnings that would indicate a deadlock. PMD reports
19 warnings, but only about null assignments and miss-
ing braces around loop bodies, which in this case has
no effect on synchronization. FindBugs issues 5 warn-
ings, 4 of which were about package protections and the
other of which warned about usingnotify() instead of
notifyAll() (the use ofnotify() is correct).

On the other hand, ESC/Java reports 79 warnings, 30 of
which are for potential deadlocks in 9 of the programs. One
of the 9 programs did not have deadlock. JLint finds po-
tential synchronization bugs in 5 of the 8 programs Bandera
verified to have a deadlock error. JLint issues three differ-
ent kinds of concurrency warnings for these programs: a
warning for changing a lock variable that has been used in
synchronization, a warning for requesting locks that would
lead to a lock cycle, and a warning for improper use of mon-
itor objects. In all, JLint reported 34 potential concurrency
bugs over 5 programs.

Compared to JLint, Bandera has the advantage that it can
produce counterexamples. Because it is based on model
checking technology, when Bandera finds a potential dead-
lock it can produce a full program trace documenting the
sequence of operations leading up to the error and a graph-
ical representation of the lock graph with a deadlock. Non-
model checking tools such as JLint often are not as well
geared to generating counterexample traces.

6 Usability Issues and Improvements to the
Meta-Tool

In the course of our experiments, we encountered a num-
ber of issues in applying the tools to our benchmark suite.
Some of these issues must be dealt with within a tool, and
some of the issues can be addressed by improving our pro-
posed meta-tool.

In a number of cases, we had difficulty using certain ver-

sions of the tools because they were not compatible with
the latest version of Java. As mentioned earlier, when we
initially experimented with ESC/Java, we downloaded ver-
sion 0.7 and discovered that it was not compatible with Java
1.4. Fortunately ESC/Java 2, which has new developers, is
compatible, so we were able to use that version for our ex-
periments. But we are still unable to use some important
other relations of ESC/Java such as Houdini, which is not
compatible with ESC/Java 2. We had similar problems with
an older version of JLint, which also did not handle Java
1.4. The lesson for users is probably to rely only on tools
under active development, and the lesson for tool builders
is to keep up with the latest language features lest a tool be-
come unusable. This may especially be an issue with the
upcoming Java 1.5, which includes source-level extensions
such as generics.

In our opinion, tools that provide graphical user inter-
faces (GUIs) or plugins for a variety of integrated develop-
ment environments have a clear advantage over those tools
that provide only textual output. A well-designed GUI can
group classes of bugs together and hyperlink warnings to
source code. Although we did not use them directly in our
study, in our initial phase of learning to use the tools we
found GUIs invaluable. Unfortunately, GUIs conflict some-
what with having a meta-tool, since they make it much more
difficult for a meta-tool to extract the analysis results. Thus
probably the best compromise is to provide both structural
text output (for processing by the meta-tool) and a GUI. We
leave as future work the development of a generic, easy-to-
use GUI for the meta-tool itself.

Also, while developers want to find as many bugs as pos-
sible, it is important not to overwhelm the developer with
too much output. In particular, one critical ability is to
avoid cascading errors. For example, in some cases JLint
repeatedly warns about dereferencing a variable that may
be null, but it would be sufficient to warn only at the first
dereference. These cases may be possible to eliminate with
the meta tool. Or, better yet, the tool could be modified
so that once a warning about a null pointer is issued, the



pointer would subsequently be assumed not to be null (or
whatever the most optimistic assumption is) to suppress fur-
ther warnings. Similarly, sometimes JLint produces a large
number of potential deadlock warnings, even reporting the
same warning multiple times on the same line. In this case,
the meta-cool could easily filter redundant error messages
and reduce them to a single warning. In general, the meta-
tool could allow the user to select between full output from
each of the tools and output limited to unique warnings.

As mentioned throughout this paper, false positives are
an issue with all of the tools. ESC/Java is the one tool
that supports user-supplied annotations to eliminate spuri-
ous warnings. We could incorporate a poor-man’s version
of this annotation facility into the meta-tool by allowing the
user to suppress certain warnings at particular locations in
the source code. This would allow the user to prune the
output of tools to reduce false positives. In general such a
facility must be used extremely carefully, since it is likely
that subsequent code modifications might render the sup-
pression of warnings confusing or even incorrect.

A meta-tool could also interpret the output of the tools
in complex ways. In particular, it could use a warning from
one tool to decide whether another tool’s warning has a
greater probability of being valid. For example, in one case
we encountered, a PMD-generated warning about a null as-
signment coincided with a JLint warning for the same po-
tential bug. After a manual check of the bug, we found that
both tools were correct in their assessment.

Finally, as discussed in Section 1.1, it is impossible to
generally classify the severity of a warning without know-
ing the context in which the application is used. However,
it might be possible for developers to classify bug sever-
ity for their own programs. Initially, warnings would be
weighed evenly, and a developer could change the weights
so that different bugs were weighed more or less in the
meta-tool’s rankings. For example, warnings that in the past
have lead to severe errors might be good candidates for in-
creased weight. Weights could also be used to adjust for
false positive rates. If a particular bug checker is known
to report many false positives for a particular application,
those warnings can be assigned a lower weight.

7 Related Work

Artho [1] compares several dynamic and static tools for
finding errors in multi-threaded programs. Artho compares
the tools on several small core programs extracted from a
variety of Java applications. Artho then proposes extensions
to JLint, included in the version we tested in this paper,
to greatly improve its ability to check for multi-threaded
programming bugs, and gives results for running JLint on
several large applications. The focus of this paper, in con-
trast, is on looking at a wider variety of bugs across several

benchmarks and proposing a meta-tool to examine the cor-
relations.

Z-ranking [17] is a technique for ranking the output of
static analysis tools so warnings that are more important
will tend to be ranked more highly. As our results sug-
gest, having such a facility in the tools we studied would
be extremely useful. Z-ranking is intended to rank the out-
put of a particular bug checker. In our paper, however, we
look at correlating warnings across tools and across differ-
ent checkers.

In general, since many of these Java bug finding tools
have only been developed within the last few years, there
has not been much work comparing them. One article on a
developer web log by Jelliffe [15] briefly describes experi-
ence using JLint, FindBugs, PMD, and CheckStyle (a tool
we did not study; it checks adherence to a coding style). In
his opinion, JLint and FindBugs find different kinds of bugs,
and both are very useful on existing code, while PMD and
CheckStyle are more useful if you incorporate their rules
into projects from the start.

8 Conclusion

We have examined the results of applying five bug-
finding tools to a variety of Java programs. Although there
is some overlap between the kinds of bugs found by the
tools, mostly their warnings are distinct. Our experiments
do, however, suggest that many tools reporting an unusual
number of warnings for a class is correlated with a large
breadth of unique warnings, and we propose a meta-tool to
allow developers to identify these classes.

As we ran the tools and examined the output, there
seemed to be a few things that would be beneficial in gen-
eral. The main difficulty in using the tools is simply the
quantity of output. In our opinion, the programmer should
have the ability to add an annotation or a special comment
into the code to suppress warnings that are false positives,
even though this might lead to potential future problems
(due to changes in assumptions). Such a mechanism seems
necessary to help reduce the sheer output of the tools. In
Section 6 we proposed adding this as a feature of the meta-
tool.

In this paper we have focused on comparing the output
of different tools. An interesting area of future work is to
gather extensive information about the actual faults in pro-
grams, which would enable us to precisely identify false
positives and false negatives. This information could be
used to determine how accurately each tool predicts faults in
our benchmarks. We could also test whether the two metrics
we proposed for combining warnings from multiple tools
are better or worse predictors of faults than the individual
tools.

Finally, recall that all of the tools we used are in some



ways unsound. Thus the absence of warnings from a tool
does not imply the absence of errors. This is certainly a
necessary tradeoff, because as we just argued, the number
of warnings produced by a tool can be daunting and stand
in the way of its use. As we saw in Section 3, without user
annotations a tool like ESC/Java that is still unsound yet
much closer to verification produces even more warnings
than JLint, PMD, and FindBugs. Ultimately, we believe
there is still a wide area of open research in understanding
the right tradeoffs to make in bug finding tools.
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