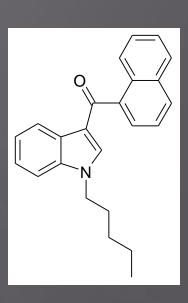
COLOR TESTS AND ANALYTICAL DIFFICULTIES WITH EMERGING DRUGS OF ABUSE


Jeremiah Morris

Johnson County Sheriff's Office Criminalistics Laboratory

Synthetic cannabinoids

Presumptive tests - failures

- Nothing suitable published so far
- No color with Duquenois-Levine
- Structural interferences
 - para-Dimethylaminobenzaldehyde reagent (Ehrlich's)
 - Test with glutaconic aldehyde
- Vegetation interferences
 - Fast Blue B and 2B reagents
 - Sulfuric based color tests
 - UV fluorescence of indole nucleus
 - Color test for aromatic carbonyls

Presumptive test – success!

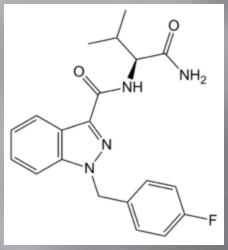
Most cannabinoids react with Liebermann's

Reference	Cannabinoid Chemical Class	Source	Color
JWH-307	Naphthoylpyrrole	Reference Collection	Dark Yellow
AB-001	Adamantoyl indole	Reference Collection	Dark Yellow
CB-13	Dinaphthlyene methanone	Reference Collection	Dark Green
JTE-907	1,2-Dihydroquinoline-3-	Reference Collection	Black (Bubbling)
	carboxamide		
UR-144	Tetramethylcyclopropanoylindole	Reference Collection	Dark Red
URB597	FAAH inhibitor	Reference Collection	Yellow-Brown
URB602	FAAH inhibitor	Reference Collection	Dark Brown
URB754	FAAH inhibitor	Reference Collection	Light Brown
AM-1248	Adamantoyl indole	Reference Collection	Dark Yellow
AB-034	Tetramethylcyclopropanoylindole	Reference Collection	Red-Orange>Dark Red
A-796, 260	Tetramethylcyclopropanoylindole	Reference Collection	Red-Orange>Dark Red
A-834-735	Tetramethylcyclopropanoylindole	Reference Collection	Red-Orange>Dark Red
FUR-144	Tetramethylcyclopropanoylindole	Reference Collection	Dark Red
AKB48	Adamantyl amidoindazole	Reference Collection	No color change
JWH-073	Naphthoylindole	Cayman Chemical	Yellow-Brown
JWH-018	Naphthoylindole	Cayman Chemical	Yellow-Brown
JWH-200	Naphthoylindole	Cayman Chemical	Dark Yellow-Brown
AM-2201	Naphthoylindole	Cayman Chemical	Yellow-Brown
JWH-203	Phenylacetylindole	Cayman Chemical	Yellow-Orange
RCS-4-C4 homolog	Benzoylindole	Cayman Chemical	Brown
AM694	Benzoylindole	Cayman Chemical	Dark-Yellow
MAM2201	Naphthoylindole	Cayman Chemical	Green-Brown
AM2233	Benzoylindole	Cayman Chemical	Yellow
STS-135	Adamanty lamidoindole	Reference Collection	Brown

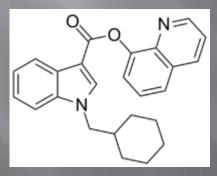
Extraction procedure

 A small amount of vegetative sample was added to a clear test tube followed by enough methylene chloride-acetonitrile solution to fully immerse the sample. The tube was then shaken quickly and the liquid was immediately pipetted off of the sample and into another clear test tube. Several drops of Liebermann's reagent were then added to the liquid and mixed thoroughly. Samples containing synthetic cannabinoids formed a yellow, yelloworange, orange, to orange-red color. A negative result was indicated by no color change or a white color. A blank was also prepared for side-by-side comparisons of the blank and the samples.

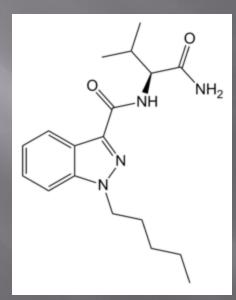
Results of commercial products

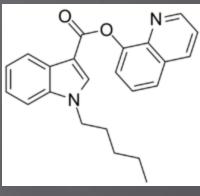

Product Name	Cannabinoids Present	Color
Green Buddha	AM-2201, JWH-122, AM-2233	Yellow-Orange
Zombie Matter	Fluoro UR-144	Yellow-Orange
Space Monkey	AM-2201, JWH-122	Yellow
К4	Fluoro UR-144	Orange
Juicy Chong	AM-2201	Light Yellow
Cherry Cheech	AM-2201	Light Yellow
Hindu Magic	AM-2201	Light Yellow
Ultra Cloud 10	Fluoro-amphetamine, AM-2201	Yellow-Green
Happy Hour	None	White
Wicked X	None	Clear
Canna Boost	No Cannabinoids, Yohimbine	Light Orange
Bang!	JWH-250, JWH-081	Yellow-Orange
Devilz Lettuce	None	White-Yellow
Mary Jane Private	UR-144, JWH-122	Orange
Mary Jane Watermelon	UR-144	Orange
Impact Cotton Candy	AM-2201	Yellow
Impact Blueberry	UR-144	Orange
Mind Wave Blueberry	UR-144	Orange
Marijuana	None	Dark Brown
Salvia	None	Light Brown
Mary Jane Kratom	None	Brown (Bubbling)
White Rabbit KratomMaeng Da	None	Blue>Brown (Bubbling)

Other comments about presumptive testing


 AKB48 (an adamantyl indazole carboxy amide) does not produce a color with Liebermann's

 Other positive reactions reported with Meyer's and other general alkaloid reagents


What about these cannabinoids?


AB-FUBINACA

BB-22

AB-PINACA

PB-22

Substituted cathinones

Unsubstituted

3- or 4-methyl

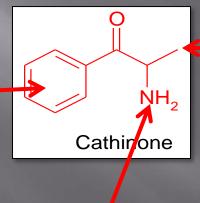
3- or 4-halo (F, Cl, Br,

or I)

3- or 4-ethyl

3- or 4-hydroxy

3- or 4-methoxy


3,4-methylenedioxy

3,4-dimethyl

3,4-dihalo (F, Cl, Br,

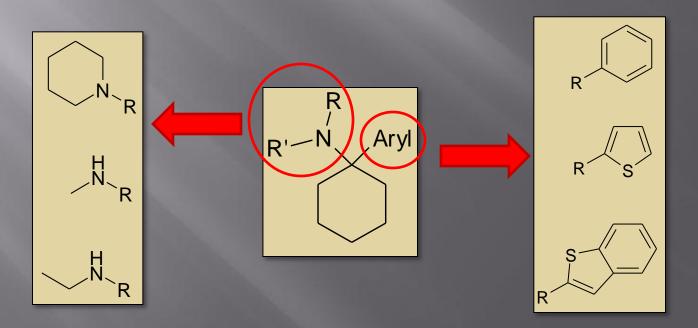
or I)

Replace phenyl with naphthyl

Propyl Butyl Pentyl Hexyl

Unsubstituted
N-methyl
N-ethyl
N,N-dimethyl
Pyrrolidine
Phthalamido
N-benzyl

Grand total of 672 possible combinations


Presumptive tests

Compound	Marquis	Liebermann's	Mecke	Froedhe	CoSCN (n)	Na nitro	Modified CoSCN
4-Me-PPP		Orange			Blue	Slow blue	
Brephedrone		Yellow				Blue	Purple
4-MEC		Orange			Blue	Blue	Purple
Pentedrone		Yellow			Blue	Blue	Light purple/blue
4-methyl buphedrone		Yellow			Blue	Blue	Blue
Buphedrone		Yellow				Blue	
Butylone	Yellow	Yellow→ brown	Yellow→ orange	Yellow → green	Blue	Blue	Purple
3, 4-DMMC	Green particles (?)	Orange		Light brown	Blue	Blue	
Naphyrone	Green	Brown	Brown- orange	Orange			
Benzedrone		Orange					

Note – all produce either no color or just blue specks with *acidified* CoSCN

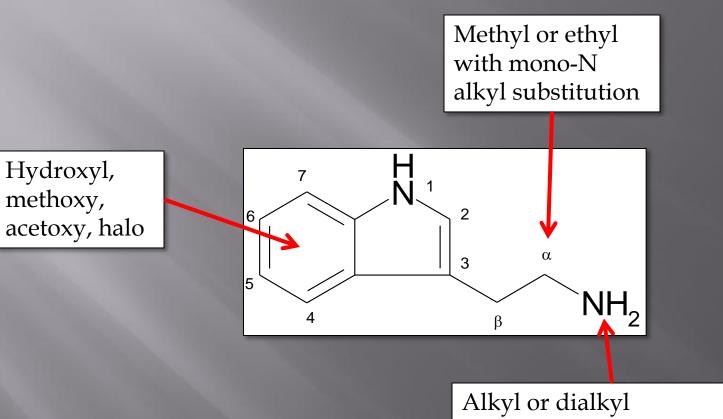
Arylcyclohexylamines

- Comprise the most common class of dissociatives
 - Complex pharmacology
 - CNS appears dose dependent and spans entire range

Presumptive tests

Compound	Marquis	Liebermann's	Mecke	Froedhe	CoSCN (n)	Na nitro	Modified CoSCN
4-MeO-PCP	Slow red	Brown	Yellow→ green→ red	Light yellow	Blue		
Methoxetamine	Slow pink	Orange- brown	Yellow→ green→ red	Yellow-green	Blue		
Ethketamine		Pale yellow			Blue		Lavender ppt
3-НО-РСЕ	Brown	Dark brown	Brown	Black	Weak blue		

Tryptamines


- Class of highly potent hallucinogens
 - Present in a diverse group of botanical materials
 - All contain substituted indole compound

Variations on a tryptamine theme

Alkyl or dialkyl substitution (methyl, ethyl, propyl, isopropyl, allyl

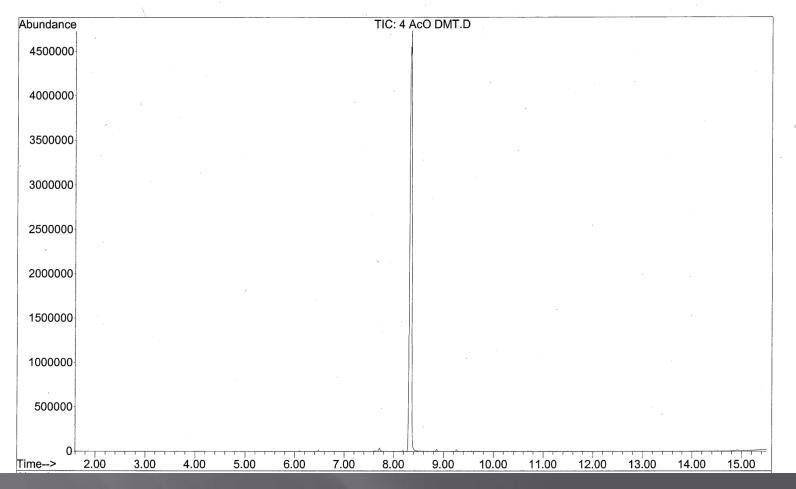
Presumptive tests

Compound	Marquis	Liebermann's	Mecke	Froedhe	CoSCN (n)	Na nitro	PDMB
5-MeO-DALT	Olive → black	Dark brown/black	Olive → brown	Yellow			Purple
4-methyl-aET	Light brown	Brown	Brown				Purple
4-AcO-DALT	Yellow→ brown	Black	Black	Yellow→ green	Blue		Purple
4-HO-MET	Yellow→ brown	Black	Black	Yellow→ green	Blue		Purple
4-HO-MIPT	Yellow→ brown	Black	Black	Yellow→ green	Blue		Purple
4-AcO-DET	Yellow→ brown	Black	Black	Yellow→ green	Blue		Purple

Issues with acetoxy compounds

- Vendors beginning to sell acetoxy tryptamines
 - 4-AcO-DMT (acetylated psilocin)
 - 5-AcO-DALT
- A number of reports about 4-AcO-DMT being unstable and converting into psilocin
 - As solid (slightly over a few months)
 - In solution (within a day)
 - During acid-base extractions
- This is a concern because psilocin is controlled while 4-AcO-DMT is not.

Initial analysis


File :C:\MSDChem\1\DATA\MFRC screen data\4 AcO DMT.D

Operator

Acquired : 21 May 2012 14:21 using AcqMethod TEMPRO.M

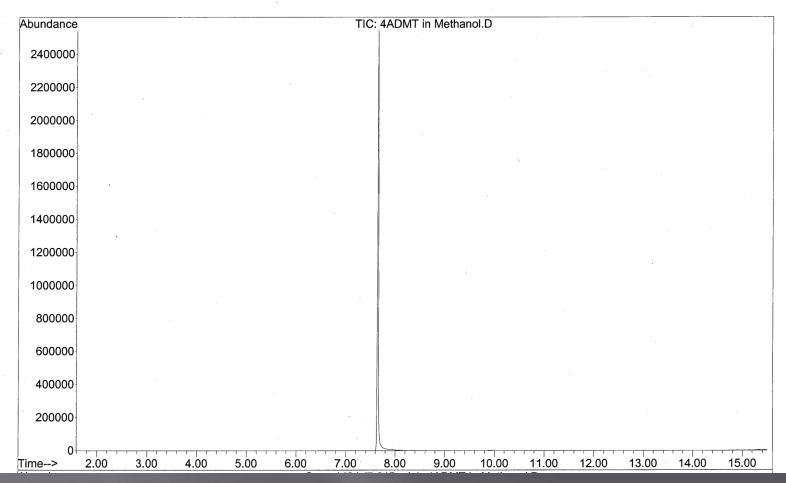
Instrument: HP1

Sample Name: 4-acetoxy-dimethyltryptamine
Misc Info : 4-AcO-DMT, lot# MFRC-2012-A44

One month later

File :C:\MSDChem\1\DATA\MFRC OFFICIAL DATA\4ADMT in Methanol.D

Operator


Acquired : 16 Jun 2012 00:21

using AcqMethod TEMPRO.M

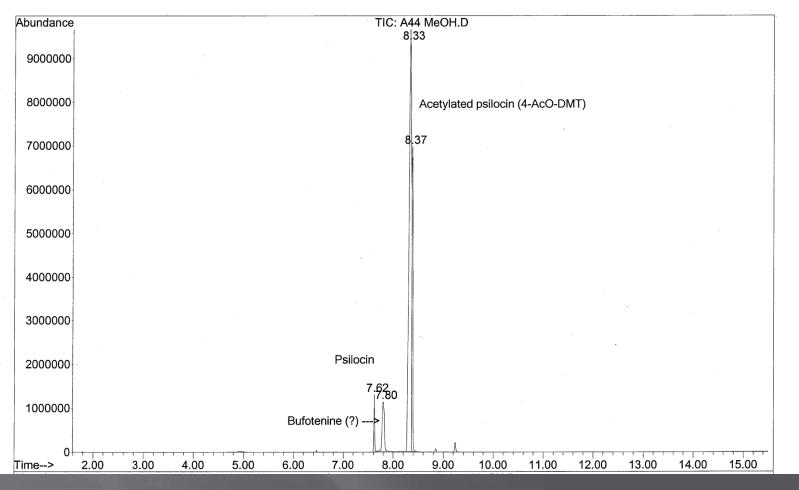
Instrument: HP1

Sample Name: 4-Aco-DMT A44

Misc Info : Lot# MFRC-2012-A44, in basic Methanol

Two months later

File :C:\MSDChem\1\DATA\080712\A44 MeOH.D


Operator :

Acquired: 7 Aug 2012 16:21 using AcqMethod TEMPRO.M

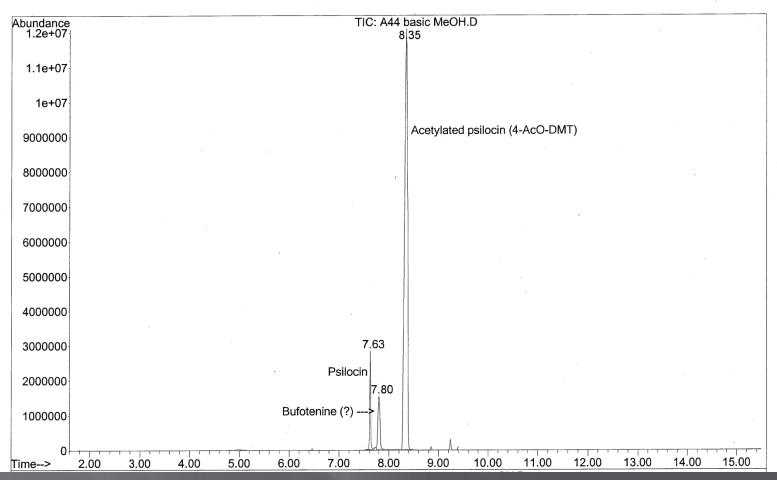
Instrument: HP1

Sample Name: A44

Misc Info :

Basic methanol

File :C:\MSDChem\1\DATA\080712\A44 basic MeOH.D


Operator :

Acquired: 7 Aug 2012 16:41 using AcqMethod TEMPRO.M

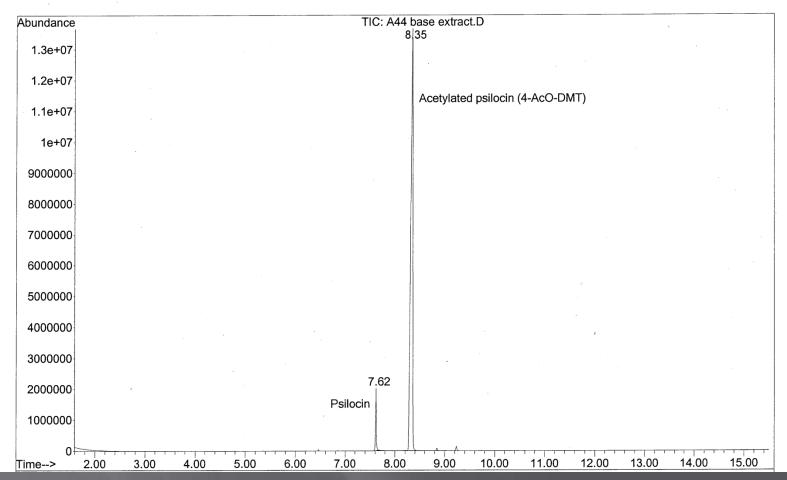
Instrument: HP1

Sample Name: A44

Misc Info :

Basic extract

File :C:\MSDChem\1\DATA\080712\A44 base extract.D


Operator :

Acquired: 7 Aug 2012 17:00 using AcqMethod TEMPRO.M

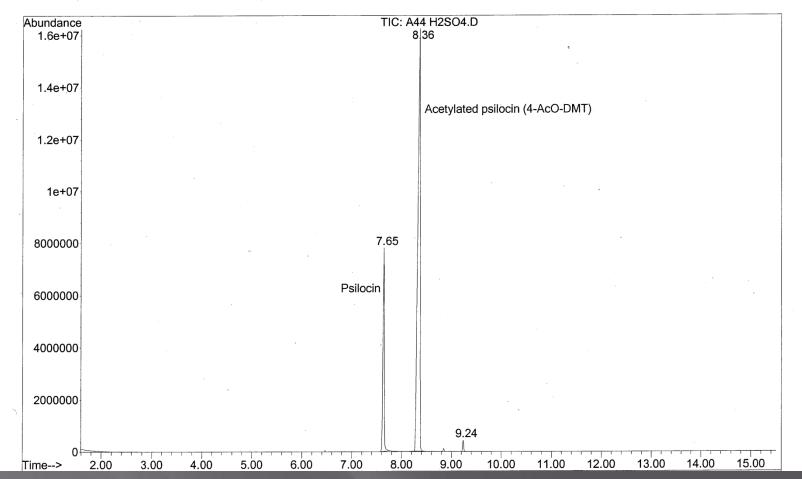
Instrument: HP1

Sample Name: A44

Misc Info : Vial Number: 24

Acid/base extract (H₂SO₄)

File :C:\MSDChem\1\DATA\080712\A44 H2SO4.D


Operator :

Acquired: 7 Aug 2012 17:20 using AcqMethod TEMPRO.M

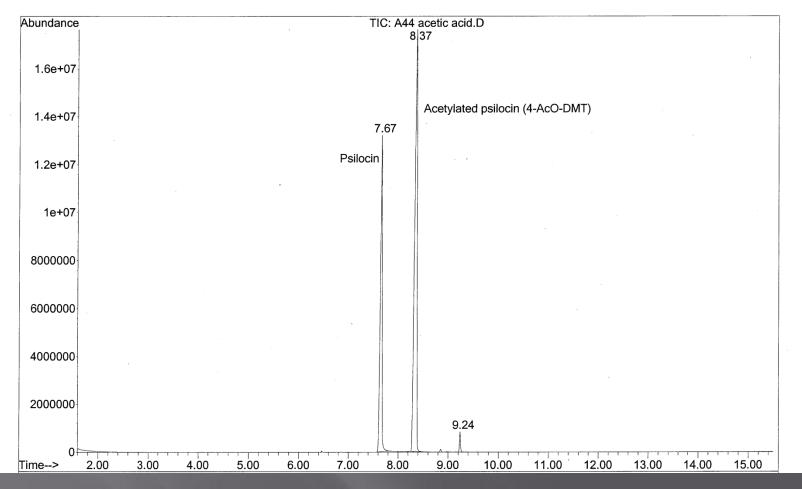
Instrument: HP1

Sample Name: A44

Misc Info : 0.1 N H2SO4 then base extract

Acid/base extract (acetic acid)

File :C:\MSDChem\1\DATA\080712\A44 acetic acid.D

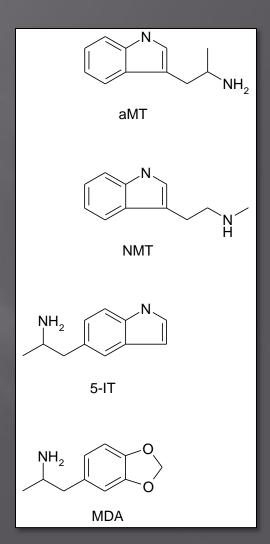

Operator

Acquired: 7 Aug 2012 17:40 using AcqMethod TEMPRO.M

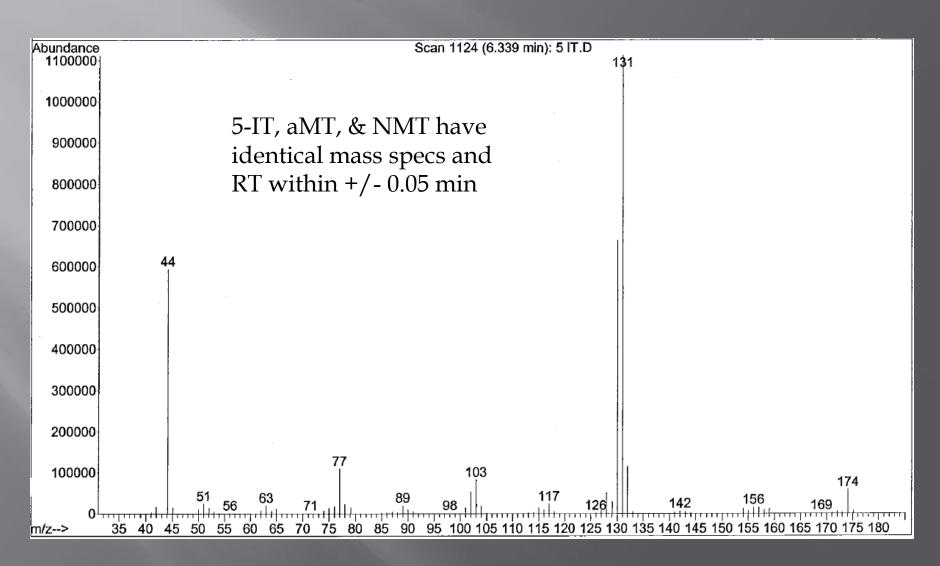
Instrument: HP1

Sample Name: A44

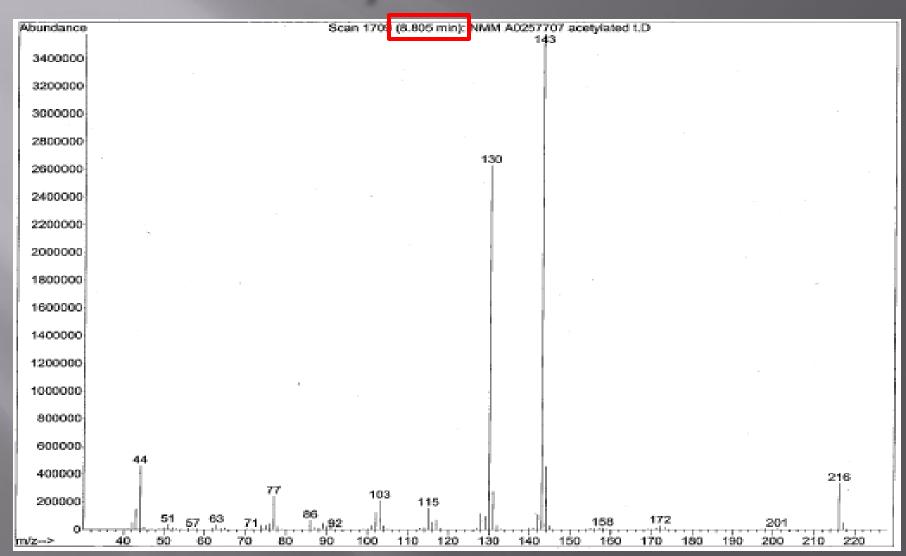
Misc Info : 10% acetic acid then base extract

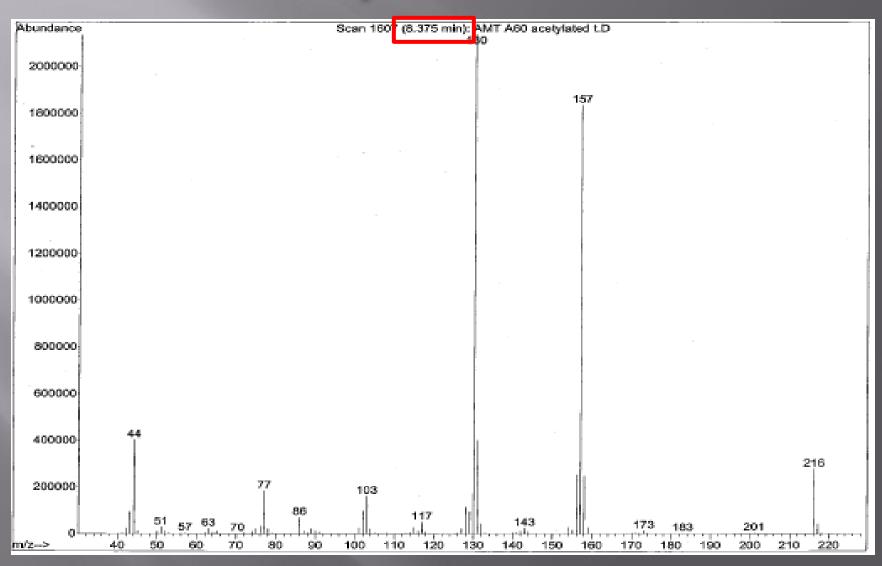


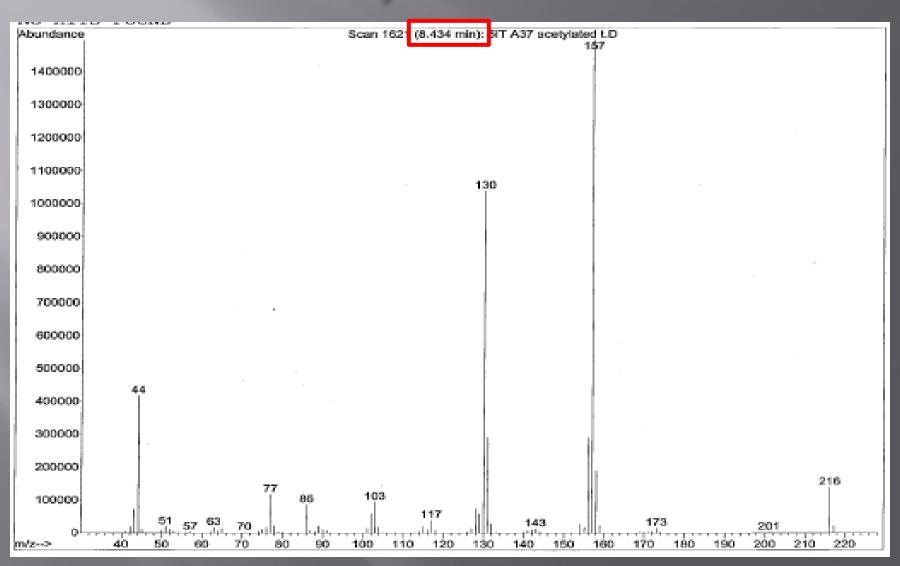
Recommendations


- Remember, these are just my thoughts!
- If your 4-AcO-DMT sample has low levels of psilocin you don't know if it was there originally (degradation over time)
- All psilocin/4-AcO-DMT mixtures should be reanalyzes using either methanol extract or basic methanol extract to exclude extraction degradation
- Be extremely cautious about reporting out psilocin in these cases

5-IT


- 5-(2-Aminopropyl)indole
 - 5-IT
 - Only recently hit markets in Europe
 - Positional isomer of alphamethyltryptamine (aMT) and Nmethyltryptamine (NMT)
 - 5-IT and aMT often sold by same vendors
- This is a problem


GC/MS results


Acetylated NMT

Acetylated aMT

Acetylated 5-IT

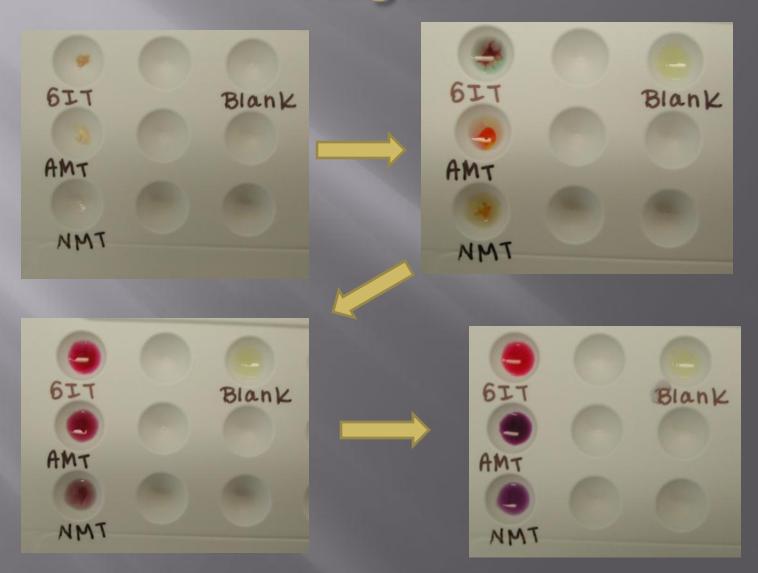
Where we stand

- All three have identical MS and indistinguishable retention times as parent compounds
- NMT separates out from aMT and 5-IT when acetylated
- aMT and 5-IT have indistinguishable RTs but slightly different mass specs
- Is this enough?

Other options

• FTIR

- All three easily differentiated
- Sample purity is critical


• TLC

- Some Rf differences with Clarke's TA solvent (10 cm plate)
- What about 20 cm plate?

Color tests

Compound	Marquis	Liebermann	Mecke's	Froehde's	PDMB	Cinnamoyl
аМТ	Yellow- brown	Black	Brown	Yellow	Purple	Red → purple
5-IT	Dark red	Dark brown	Brown	Red brown	Red	Red

p-Dimethylaminocinnamaldehyde reagent

What does this mean?

- NMT easily excluded with aceytlation
- 5-IT verses aMT? → Your call
 - If pure enough for IR, you're golden
 - Are aceytlated derivatives different enough?
 - Are color test differences enough?
- You must carefully consider what you can actually report out with possible aMT sample

Presumptive color tests (misc)

Compound	Marquis	Liebermann	Mecke's	Froedhe's	CoSCN	Na Nitro
5-APB	Black	Black	Black	Dark purple		
6-APB	Purple	Dark purple	Purple	Purple		
Camfetamine	Orange → red	Dark red	Yellow	Tan→ dark yellow	Blue	Blue
Methiopropamine	Dark brown	Dark brown	Black	Light brown		Blue
MDAI	Orange	Green→ black	Green	Green→ black		
5-IAI	Brown	Dark brown	Brown	Orange		
Allylescaline	Dark red	Brown-black	Yellow→ brown (fast)	Green→ black (fast)		Green particles
2C-T-2		Red	Orange→ red→ purple	Orange → purple		Green specks
2C-P	Yellow	Green	Green	Green		
β-methoxy-2C-D	Purple	Green	Brown → green	Red		

Acknowledgements

- Special thanks to:
 - Malinda Spangler
 - Bethany Poyner
 - Jason Stenzel
 - Elizabeth Kiely
- This work was funded by subcontract SC-12-370 through Ames Laboratory and the Midwest Forensic Resource Center

Questions?