
The Need for Realism when Simulating Network
Congestion

Kevin Mills
NIST

Gaithersburg, MD 20899
kmills@nist.gov

Chris Dabrowski
NIST

Gaithersburg, MD 20899
cdabrowski@nist.gov

ABSTRACT
Many researchers use abstract models to simulate network
congestion, finding patterns that might foreshadow onset of
congestion collapse. We investigate whether such abstract
models yield congestion behaviors sufficiently similar to
more realistic models. Beginning with an abstract model,
we add elements of realism in various combinations,
culminating with a high-fidelity simulation. By comparing
congestion patterns among combinations, we illustrate
congestion spread in abstract models differs from that in
realistic models. We identify critical elements of realism
needed when simulating congestion. We demonstrate a
means to compare congestion patterns among simulations
covering diverse configurations. We hope our contributions
lead to better understanding of the need for realism when
simulating network congestion.

Author Keywords
Congestion; criticality; networks; percolation; simulation

ACM Classification Keywords
I.6.1 SIMULATION AND MODELING: Model Validation
and Analysis

1. INTRODUCTION
The science of complex networks [1] has matured to the
point where one can study mathematical structure for many
classes of probabilistic graphs (e.g., random, scale-free,
small-world), as well as dynamical processes [2] moving
within such graphs. Typically, abstractions are adopted in
order to model real networks using techniques (e.g., graph
theory and percolation theory) available from network
science. Tension arises when such powerful abstractions are
used to study real networks. How can one be sure that
chosen abstractions adequately embody key properties of a
network under study? This question of model validation
motivates the work reported here.

Many researchers [e.g., 3-12] use simulation to investigate
congestion spread in network topologies, often finding
congestion can be modeled as a percolation process on a
graph, spreading slowly under increasing load until a
critical point, after which congestion spreads quickly

throughout the network. The researchers identify various
signals that arise around the critical point. Such signals
could foreshadow onset of widespread congestion. These
developments appear promising as a theoretical basis for
monitoring methods that could be deployed to warn of
impending congestion collapse. Despite showing promise,
questions surround this research, as the models are quite
abstract, bearing little resemblance to communication
networks deployed based on modern technology. We
explore these questions by examining the influence of
realism on congestion spread in network simulations.

We begin with an abstract network simulation from the
literature. We add realism elements in combinations,
culminating with a high-fidelity simulation, also from the
literature. By comparing patterns of congestion among the
combinations, we explore a number of questions. Does
spreading congestion in abstract network models mirror
spreading congestion in realistic models? How do specific
elements of realism influence congestion spread? What
elements of realism are essential to capture in models of
network congestion? What elements are unnecessary? What
measures of congestion can be compared, and how, across
diverse network models?

We make three main contributions. First, we illustrate
congestion spread in abstract models differs significantly
from spread in realistic models. Second, we identify
elements of realism needed when simulating congestion.
Finally, we demonstrate a method to compare congestion
patterns among diverse network simulations.

The remainder of the paper is organized in five sections.
Section 2 reviews some related work where researchers use
abstract models to investigate congestion spread in network
simulations. Section 3 describes the configurable network
simulator used in our experiment. The simulator can be
configured to mirror an abstract model [12], a realistic
model [13], and various intermediate combinations. Section
4 details our experiment design. We present and discuss
results in Sec. 5. We conclude in Sec. 6.

2. RELATED WORK
Reviewing a decade of congestion studies [3-12] reveals
many similarities, and some variations, among the abstract
models used. Below we summarize the models along four
dimensions: topology, traffic sources/sinks, routers and

SpringSim-CNS 2016 April 3-6, Pasadena, CA, USA
All authors of this work are US Government employees who performed
this work as part of their official duties. The work is therefore not subject
to US copyright protection.

congestion measures. Elsewhere [14] we provide more
details about each of the studies.

Researchers used either deterministic or probabilistic
topologies. The most popular deterministic topology was a
square lattice, either open [6, 11] or folded into a toroid [3-
5, 7, 10]. Rykalova et al. [10] also used a ring. Echenique et
al. [12] used a real topology taken from the Internet
autonomous system map, circa 2001. Arrowsmith et al. [5]
started with a 2D lattice and then generated triangular and
hexagonal depleted lattices by probabilistically removing
links. Other researchers used random processes to generate
topologies: Erdős–Rényi [9], exponential [8], scale-free [8-
9], or small world [9].

Within a topology, researchers used either deterministic or
probabilistic processes to place sources, sinks and routers.
The most popular approach was to allow every node to be a
packet source and sink, as well as router [7-10, 12]. Sarkar
et al. [11] restricted sources and sinks to the network edge,
while Mukherjee and Manna [6] placed sources at the top
edge of a lattice and sinks at the bottom edge. Other
researchers [3-5] assigned nodes to be a source/sink or
router with a biased coin flip. All surveyed studies
generated loads by having sources inject individual packets,
where each packet is destined for a randomly selected sink.
The most popular strategy [3-7, 10-11] was for each source
to generate a packet per time step (p/ts) with a specified
probability. A few studies [8-9, 12] generated a fixed
number of packets/ts and randomly assigned the packets to
sources. One study [8] had a constant density option to
ensure a fixed number of packets remained in transit.

In all models surveyed, router nodes queue packets arriving
from sources and then forward them at an assigned rate to
the next hop along some path toward the sink. Differences
appeared with respect to queue discipline, next-hop
selection and forwarding rate. The most popular [3-7, 9-10,
12] queue discipline was unbounded first-in, first-out
(FIFO) queues. One study [8] used bounded last-in, first-out
(LIFO) queues. One study [11] used bounded FIFO queues,
where the oldest packet was dropped when a packet arrived
at a full queue. Most studies [3-6, 10, 11] selected next hop
based on shortest-path first (SPF) in hops. Ties were broken
either by shortest queue length [3-4, 11], link use [5] or
tossing a fair coin [6, 10]. One study [7] selected next hop
with the choice among three different SPF metrics: hops,
queue length, or their sum. Two studies [9, 12] used SPF
based on a weighted sum of hops and queue length. One
study [8] used guided random walk to select next hops. In
most studies [3-5, 8, 11-12] each router forwards one p/ts.
In two studies [7, 10] each router forwards one p/ts for each
queue. One study [6] has each router forward a batch of
packets at each time step. One study [9] assigns routers
variable forwarding rates using any of three options: (1)
node degree, (2) node betweeness or (3) node betweeness
divided by number of nodes in the topology.

The surveyed research used various measures of network
congestion, and often multiple measures per study.
Congestion measures included: one-way packet latency [3-
4, 6, 8]; packets delivered (i.e., aggregate throughput) [3-5];
queue lengths [4-6, 8]; packets in the network [7, 9-10, 12];
and packet drop rate [11]. Various studies analyzed the
measures as time series, proportions, or variances.

Beyond the differences we identified above, the studies we
surveyed shared many similarities. An abstract model is
developed and then used to explore congestion in various
topologies. Congestion spread is examined through selected
measures. A critical load is identified, after which trajectory
changes distinctly for selected measures. When examined
by engineers, who deploy and manage networks based on
Internet technology, the degree of abstraction is sufficiently
high to call into question the findings. The topologies are
rarely congruent with real Internet topologies [15], various
parameter values are not consistent with real engineering
choices, congestion-control protocols are not modeled and
the distribution of packet injection is unlike patterns that
occur with real users. Does this lack of realism matter? If
so, what realism elements must be present to draw valid
conclusions about congestion spread? We investigate these
questions here.

3. MODELS
We conducted an experiment (see Sec. 4) with a simulation
model we named FxNS (Flexible Network Simulator).
FxNS is based on an abstract model, EGM, developed by
Echenique, Gomez-Gardenes and Moreno [12]. We added a
set of seven realism elements, factored from MesoNet [13].
While many realistic network simulators exist [16], we
chose MesoNet because the model is terse (requiring only
20 parameters) and factors easily, and because the model
scales (simulating up to ½ million nodes engaged in over
125×103 simultaneous flows).

We implemented the realism elements as options within
FxNS. Since each element can be enabled or disabled,
FxNS could support (27 =) 128 combinations. However, as
explained in Sec. 3.3, we respect some dependencies among
realism elements. As a result, FxNS supports only 34
combinations. FxNS can be configured to behave as EGM
(most abstract model), as MesoNet (most realistic model),
and any of the remaining 32 valid combinations
intermediate between EGM and MesoNet. With all realism
elements enabled, we use FxNS to simulate ¼ million
nodes engaged in over 50×103 simultaneous flows. FxNS
should scale up further, to the same order as MesoNet.

In Sec. 3.1 we describe EGM, and give simulation results
demonstrating that FxNS correctly implements EGM. In
Sec. 3.2 we describe MesoNet, and its 20 parameters spread
among five categories. We also define our mapping from
MesoNet parameters to FxNS realism elements. In Sec. 3.3,
we justify dependencies adopted among realism elements
and we describe our numbering convention for the FxNS

combinations used in our experiment. Elsewhere [14] we
provide additional details on these topics.

3.1. Abstract Model
In EGM, p packets are injected at each time step (ts) with
source and destination nodes for each packet chosen
randomly (uniform). Injected packets are placed at the end
of a source’s unbounded FIFO packet queue. After
injection, each node can forward one packet from its queue
to a next node. If the next node is the destination, the packet
is delivered; otherwise the next node is chosen as the
neighboring node i with minimum δi as defined in eq. 1:

 (1)

where i is index of a node’s neighbor, di is minimum hops
to the packet’s destination via i, and ci is queue length of i.
When h = 1 the routing amounts to SPF hops. When h < 1,
routing is congestion aware, as packets may follow routes
longer in hops, but shorter in total queuing delay. The lower
h the more congestion-aware routing becomes.

EGM measures congestion as ρ, the ratio of packet outflow
to inflow as defined in eq. 2:

 (2)

where A is aggregate number of packets queued, t is time, τ
is measurement interval size, and p is packet-injection rate.

Using EGM with an 11 174-node topology, Echenique et al.
[12] explored effects of SPF hops routing vs. congestion-
aware routing as p increases. They found that for routing
via SPF hops ρ undergoes a 2nd order transition as p passes
a critical load, while under various degrees of congestion-
aware routing ρ undergoes a 1st order transition as p passes
critical load. Using our FxNS implementation of EGM, we
replicated these results, as shown in Fig. 1.

Figure 1. FxNS replication of EGM simulation results

3.2. Realistic Model
MesoNet provides a realistic TCP (Transmission Control
Protocol) network model, requiring only 20 parameters
spread across five categories, as shown in Table 1. Mills et
al. [16] used MesoNet to compare congestion-control
algorithms proposed for the Internet.

Category ID Name
Specific

FxNS

Network

x1 topology
18%

NC
x2 propagation delay

14%
DE

x3 network speed VS
x4 buffer provisioning PD

Sources &
Sinks

x5 number sources/sinks
SR x6 source distribution

x7 sink distribution
x8 source/sink speed VS

Users

x9 think time p
x10 patience n/a
x11 web object file sizes FL
x12 larger file sizes

n/a x13 localized congestion
x14 long-lived flows

Congestion
Control

x15 control algorithm
TCP x16 initial cwnd

x17 Initial sst

Simulation
Control

x18 measurement interval fixed
x19 simulation duration fixed
x20 startup pattern p

Table 1. MesoNet Parameters with Mapping to FxNS Elements

MesoNet allows for three-tier topologies of routers: core,
point-of-presence (PoP), and access. In our experiment, we
use an Internet service provider (ISP) topology shown in
Fig. 2, which provides three types of access routers: D-class
(red), F-class (green) and N-class. MesoNet defines speed
relationships among all routers. Changing one parameter
can scale network speed and higher router tiers can support
the maximum input traffic expected from lower tiers.
Sources and sinks can be placed below access routers as a
fourth tier with ¼ million nodes (not shown in Fig. 2).

Figure 2. Three-tier 218-router topology – 16 core (A-P), 32 PoP
(A1-P2) and 170 access (A1a-P2g)

FxNS maps router typing to realism element NC (node
classes), which ensures that sources and sinks are placed only
at the network edge. FxNS maps router speed scaling to

realism element VS (variable speeds). MesoNet allows
sources and sinks to connect to the network at two different
speeds: fast and normal. FxNS also maps these interface
speeds to realism element VS. In MesoNet links between
core routers have intrinsic propagation delays matched to
geographic placement and physics. FxNS maps these to
realism element DE (propagation delays). These intrinsic
propagation delays were used to compute SPF routes for the
network core. MesoNet also includes various buffer
provisioning algorithms. FxNS uses only one (estimated
round-trip time multiplied by router forwarding speed) and
maps this to realism element PD (packet dropping).

MesoNet allows the number of sources and sinks to be scaled
and also allows probabilistic placement of sources and sinks
under various types of access router. MesoNet ensures there
are four times as many sinks as sources. FxNS adopts these
procedures and maps them to realism element SR (sources
and receivers).

MesoNet provides a rich array of user parameters, but FxNS
maps only two. First, MesoNet users have think time
between initiating data transfers. FxNS replaces think time
with packet-injection rate, p. Second, MesoNet allows users
to randomly select the file size for each data transfer. FxNS
maps this parameter to the FL (flows) realism element, which
creates sets of packets transferred in a related stream.
MesoNet allows users to exhibit limited patience when
waiting for data transfers to complete, but in FxNS all users
have infinite patience. MesoNet allows probabilistic selection
of various larger file sizes and spatiotemporal congestion.
FxNS does not implement these features.

MesoNet allows probabilistic assignment of congestion-
control algorithm to individual sources/sinks. In FxNS only
TCP (transmission control protocol) is used. MesoNet also
allows specification of initial cwnd (congestion window) and
sst (slow-start threshold). FxNS maps these parameters to
realism element TCP.

Finally, MesoNet offers a set of three simulation control
parameters. FxNS uses measurement interval size and
duration (in measurement intervals) to bound simulation
length. MesoNet also allows individual traffic sources to start
in a specified pattern. FxNS subsumes this under packet-
injection rate.

To verify FxNS correctly implements MesoNet realism
elements, we conducted comparative simulations, running
MesoNet and FxNS (with all realism elements enabled) for
600 000 ts using identical parameter values. As shown
elsewhere [14], we compared model output for seven
essential MesoNet responses [17].

3.3. Combination Models
While FxNS can enable and disable the seven realism
elements shown in Table 1, some dependencies exist, as
shown in Fig. 3. Starting with all realism elements disabled
(EGM), one can easily enable packet dropping (PD) and

node classes (NC). Variable speeds (VS) require routers to
be classified by type. Similarly, propagation delays (DE)
appear on core network links, which can be identified only
through router types. While sources/sinks (SR) might be
included as a second tier under a flat topology, i.e., without
node classes, we decided to restrict them to a fourth tier
under access routers. We took this decision for
convenience, allowing us to eliminate 24 combinations that
would otherwise need to be simulated. We imagined
influence of sources/sinks could be discerned even with this
restriction. Enabling flows (FL) means packets are injected
as a stream between source and sink, thus FL requires SR.
Finally, TCP regulates packet-transmission rate only on
flows.

Figure 3. Dependencies among FxNS realism elements

Seq Cmb TCP FL SR DE VS NC PD

1 c0 0 0 0 0 0 0 0

2 c1 0 0 0 0 0 0 1

3 c2 0 0 0 0 0 1 0

. . .

32 c123 1 1 1 1 0 1 1

33 c126 1 1 1 1 1 1 0

34 c127 1 1 1 1 1 1 1

Table 2. Elided list of valid FxNS combinations

We identify FxNS combinations by number, based on
binary encoding, as shown in Table 2. Each realism element
is assigned a position in a seven-bit vector, from most (bit 7
- TCP) to least (bit 1 - PD) significant. When a selected
factor is enabled its bit position is set to one, and set to zero
when disabled. The resultant bit vector can be converted to
a decimal value: the combination (Cmb) number. The most
abstract combination is c0 and the most realistic is c127.
Each combination is also assigned a sequence (Seq) number
(1-34). Both numbers are used in discussing results.

4. EXPERIMENT DESIGN
We designed an experiment to explore influence of realism
on congestion spread in a network simulated with FxNS.
We identify fixed input parameters used in all simulations.
We define parameters we vary. We define four responses
measured for all simulations.

4.1. Fixed Input Parameters
We used the same 218-router topology (recall Fig. 2) in all
simulations. We used Dijkstra’s SPF algorithm to compute
next hops for core routers based on propagation delays.
Routing to/from core nodes consists of single paths with
obvious next hops. Note that propagation delays are used to
compute SPF next hops in the core regardless of whether
DE is enabled or disabled.

We execute each simulation for a target of 200 000 ts.
Individual simulations can self-adapt to execute fewer ts in
order to limit memory usage when PD is disabled. No
simulation executed fewer than 41 400 ts.

4.2. Variable Input Parameters
We varied only two parameters: (1) combination and (2)
packet-injection rate p. For each combination, FxNS
simulates a set of enabled/disabled realism elements (recall
Table 2). Table 3 gives parameter values assigned to each
element when enabled and disabled.

For each combination simulated, we varied p up to 2500.
When extreme congestion appears at successive values of p,
simulation of a combination could self-terminate. This
saves computation time because once a combination
demonstrates extreme congestion for several increasing
values of p then the combination will continue to exhibit
congestion as p increases. In no case did a simulation
terminate a combination before p passed 790.

4.3. Responses
We chose responses that could be usefully compared across
all simulated combinations: most abstract to realistic. We
determined that all combinations shared two measurable
concepts: graphs and packets. Using these we measure:
congestion spread (χ), network connectivity (α) and
effectiveness (π) and efficiency (δ) of packet delivery. All
responses fall in the interval [0...1]. We measure each
response for each combination at each packet-injection rate.
We define these responses precisely elsewhere [14]. Here
we give intuitive definitions.

Each of our simulated topologies is a graph of nodes
connected by links, where the entire graph GN contains |GN|
nodes. We label a node congested whenever queued packets
exceed 70 % of 250×router forwarding speed. When fewer
packets are queued, we label a node uncongested. We label
any uncongested node as cutoff when it links only to
congested neighbors. After labeling, we compute connected
subgraphs of nodes that are either congested or cutoff. We
label the largest such subgraph Gχ. We use χ=|Gχ|/|GN| as a

measure of congestion spread. We also compute connected
subgraphs of nodes that are uncongested. We label the
largest such subgraph Gα. We use α=|Gα|/|GN| as a measure
of network connectivity.

 Enabled Disabled

PD buffers = 250×router speed buffers = ∞

NC

3-tier 218-node topology
as in Fig. 2 with routers
labeled as core, PoP, D-
class, F-class or N-class

flat 218-node
topology as in
Fig. 2 but with
routers unlabeled

VS

core 80 p/ts; PoP 10 p/ts;
D-class 10 p/ts; F-class 2
p/ts; N-class 1 p/ts; fast
source/sink 2 p/ts; normal
source/sink 0.2 p/ts

all routers and
sources/sinks 9
p/ts

DE core links have
propagation delays

no propagation
delays

SR
51 588 sources & 206 352
sinks deployed uniformly
below access routers

no sources or
sinks deployed

FL

transfers are packet
streams: sized randomly
from Pareto distribution
(mean 350, shape 1.5) -
streams set up with TCP
connection procedures

transfers are
individual packets

TCP

packet transmission
regulated by TCP
congestion-control
including slow-start (initial
cwnd = 2 sst = 230/2) and
congestion avoidance

packet
transmissions not
regulated by
congestion-
control

Table 3. Parameter values for each FxNS realism element

Packets injected into the network can be queued, dropped or
delivered. We define effectiveness of packet delivery (π) as
the ratio of delivered packets to injected packets. For each
delivered packet we record the latency between injection
and delivery times. We average these latencies over all
delivered packets, and then normalize the average to fall
between 0 (minimum delay) and 1 (maximum delay),
yielding efficiency (δ) of packet delivery.

5. RESULTS AND DISCUSSION
For each combination simulated, we plotted each response
(y-axis) vs. packet-injection rate (x-axis). Here we give
plots for only the most abstract (c0) and realistic (c127)
combinations, as discussed in Sec. 5.1. For each response,
we also treat each of the 34 plots, one for each combination,
as a 250-element vector and then cluster vectors to assess
influence of each realism element on each response. We
discuss the clusters in Secs. 5.2 to 5.5, drawing on insights

from the related x-y plots and multidimensional interactive
visualization of FxNS simulation data [18]. All x-y and
cluster plots are also available in an enlarged format [19].

5.1. Most Abstract vs. Most Realistic
Figure 4 contains four subplots comparing congestion
behavior between the most abstract (c0) and realistic (c127)
combinations. For combination c0, congestion spreads
quickly with increasing packet-injection rate, encompassing
all nodes by the time p reaches 500. For c127, congestion
spread remains low over the entire range of packet-injection
rates, even out to p = 2500 (not shown). This difference has
two main causes. First, all nodes in c0 operate at the same
speed. Core nodes become overwhelmed with congestion,
which then spreads to the network edge. In c127, routers are
engineered with varying, hierarchical speeds, so higher tiers
can handle packet inflow rate from lower tiers. Second, c0
does not monitor and adapt to congestion, while c127
implements TCP, which measures congestion and adapts
packet inflow-rate accordingly.

Figure 4. Comparing c0 vs. c127 for each response

Network connectivity breaks down quickly for both c0 and
c127, reaching a low level as p passes 500. There are two
main differences: c127 decays more slowly than c0 and
c127 asymptotes with higher network connectivity. For c0
connectivity drops to zero after p passes 500. Combination
c127 decays more slowly because TCP adapts packet
injection based on measured congestion and c127
asymptotes with higher connectivity because variable router
speeds restrict congestion to the network edge. The network
core remains uncongested and intact. Connectivity breaks
down completely for c0 because the core becomes
congested and then congestion spreads to the edge,
consuming all nodes.

For c0 proportion of packets delivered drops steeply,
reaching nearly zero as p passes 1000. For c127 proportion
of packets delivered drops modestly with increasing p,
stabilizing near 80 %. This large difference arises from a
combination of two factors: packet dropping and TCP.
Combination c0 does not discard packets and does not
adapt packet injection based on measured congestion. With

increasing p, this causes a growing backlog of packets in all
routers. Combination c127 discards packets when router
buffers fill and adapts packet injection based on measured
congestion. So undelivered packets for c127 encompass
only discards, and rate adaptation limits their number.

For c127 latency of delivered packets remains low even as
p increases beyond 2000. This occurs because packet
dropping limits router queue sizes, so delivered packets are
not long delayed. Without packet dropping, packet latency
for c0 climbs steeply with increasing p, reaching an apex
before decaying gradually. Delays climb because packet
queues become jammed. Delays decay gradually because
latencies are recorded only for delivered packets. At high p,
c0 delivers relatively few packets, and those packets
necessarily transit routes where queues are not jammed.
Even with this decay, packet latency for c0 remains
significantly above delay for c127.

5.2. Congestion Spread
Figure 5 shows hierarchical clustering for χ among all 34
combinations. Combination sequence numbers appear on
the x-axis. The y-axis reports squared Euclidean distance.
The plot indicates two main groups, separated by a large
distance. The left-hand group contains combinations with
VS or TCP or both enabled. These combinations show little
congestion spread. Combinations in the right-hand group
have VS and TCP disabled. These combinations show
congestion spreading throughout the network.

Figure 5. Clustering of congestion spread (χ)

5.3. Connectivity Breakdown
Figure 6 shows clustering for α. Note that distances among
clusters in Fig. 6 are smaller than those in Fig. 5. This
means connectivity breakdown is more similar among the
combinations than is congestion spread. Breakdown in
connectivity occurs when subgraphs of the topology are
disconnected (due to congestion). As load increases
connectivity breaks down even when congestion does not
necessarily spread widely. Among combinations with VS
disabled, the leftmost subgroup (sequence numbers 12, 15,

11, 3, 7, 8 and 16) in Fig. 6 has NC enabled. Our x-y plots
show [19] these combinations reach complete breakdown
sooner than others with VS disabled. With NC enabled,
packet injection occurs at the network edge, thus packets
flow in concentrated fashion to and through the network
core. This differs from combinations c0 and c1 (sequence
numbers 1 and 2), where packet injection can occur at any
node, thus packet flow is more diffuse. Most configurations
with VS disabled lost connectivity quickly and completely.
Combinations with VS enabled and TCP disabled may
experience complete connectivity breakdown, but the
process requires higher packet-injection rates because more
pressure must be applied from the edge before the core can
congest. With both TCP and VS enabled, congestion stays
at the edge.

Figure 6. Clustering of breakdown in connectivity (α)

5.4. Packets Delivered
Figure 7 shows clustering for π. The plot indicates two
main groups, separated by a large distance. The leftmost
group contains combinations with TCP disabled, while the
rightmost contains combinations with TCP enabled. The
rate adaptation of TCP improves significantly the likelihood
that an injected packet will reach the intended destination.
Disabling TCP increases likelihood that an injected packet
will be queued or discarded.

With TCP enabled, PD has a secondary influence on packet
delivery. Disabling PD ensures that injected packets will be
delivered eventually. But buildup of queues delays delivery,
leading to timeouts and lower throughputs, as TCP reduces
packet-injection rate. Enabling PD means some packets will
be discarded, but TCP does not need to reduce injection rate
as much. So throughputs remain higher, but likelihood of
packet delivery decreases.

With TCP disabled, VS has secondary influence on packet
delivery. Absence of VS allows queues to build widely
among routers throughout a network. So, packets are more
likely to be queued or discarded (depending on PD), and
packet delivery approaches zero. With VS enabled packet
queues build at the network edge. This reduces the number

of routers where packets will be dropped or queued. In such
cases, packet delivery approaches zero at a slower rate.

Figure 7. Clustering of packet delivery effectiveness (π)

5.5. Packet Latency
Figure 8 shows clustering for δ. We label the plot to show
common factors in various groups and subgroups. With PD
enabled, delivered packets experience little queuing delay,
thus one-way latency is low. With PD disabled, packet
queues become large with load, thus average one-way
latency increases. With PD disabled, enabling TCP allows
rate adaptation, thus buildup of large queues is less likely.
This reduces delays for delivered packets. Enabling VS
restricts large queues to routers at the network edge, which
means that delivered packets have fewer large queues to
transit. Disabling VS allows packet queues to form at any
network router, which means delivered packets will have to
transit through more large queues.

Figure 8. Clustering of packet delivery efficiency (δ)

5.6. Overall Findings
Realistic and abstract network models exhibit very different
congestion behaviors. VS among router tiers, engineered to
ensure adequate throughput, are very important to model.
TCP, which detects congestion and adapts packet-injection

rate, is very important to model. PD from finite FIFO
buffers is important to model for accurate measures of
packet latency. Propagation delay (DE) is not important to
model in networks spanning the continental US, but would
be important in networks (e.g., interplanetary) where
propagation delays may exceed queuing delays. A decade
of studies [e.g., 3-12] used models too abstract to simulate
realistic congestion in networks based on Internet
technology. The validity of findings from such studies
appears suspect.

6. CONCLUSION
We began with an abstract network simulation from the
literature. We added realism elements in combinations,
culminating with a high-fidelity simulation, also from the
literature. By comparing patterns of congestion among the
combinations, we showed that congestion spread in abstract
models differs from congestion spread in realistic models.
We described the influence of specific realism elements on
congestion spread. We found that variable router speeds,
the transmission-control protocol, and finite first-in, first-
out buffers are important to model. We also found that
propagation delay appears unimportant to model, when a
simulated topology spans only the US. Finally, we
demonstrated use of cluster analyses among response
vectors to compare congestion spread, breakdown in
connectivity and effectiveness and efficiency of packet
delivery among a diverse set of network models.

We envision two directions for future work. First, we need
to verify our findings for a variety of topologies, including
interconnected networks. Second, we should explore
whether random failures in the core, coupled with alternate
routing, could cause cascading congestion. If so, we can
seek precursor signals arising around the critical point.
Such signals, if found, might provide warning of failure-
induced congestion collapse.

ACKNOWLEDGMENTS
We appreciate financial support and encouragement by our
laboratory management. We benefited from the review of
our colleagues Guo Yang, Phil Gough, and Sandy Ressler,
and also from anonymous, external reviewers.

REFERENCES
1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and

Hwang, D.-U. Complex networks: structure and
dynamics, Physics Reports, 424 (2006), 175-308.

2. Stauffer, D. and Aharony, A. Introduction to percolation
theory: revised second edition. Taylor & Francis, 1994.

3. Solé, R. and Valverde, S. Information transfer and phase
transitions in a model of internet traffic, Physica A, 289
(2001), 595-605.

4. Woolf, M., Arrowsmith, D., Mondragon, R. and Pitts, J.
Optimization and phase transitions in a chaotic model of
data traffic, Phys Rev E, 66 (2002), 046106.

5. Arrowsmith, D., Mondragon, R., Pitts, J. and Woolf, M.
Phase transitions in packet traffic on regular networks,
ISSN 1103-467X, Institut Mittag-Leffler, 2004.

6. Mukherjee, G. and Manna, S. Phase transition in a
directed traffic flow network, Phys Rev E, 71, 6 (2005),
066108.

7. Lawniczak, A., Lio, P., Xie, S. and Xu, J. Study of
packet traffic fluctuations near phase transition point
from free flow to congestion in data network model, in
Canadian Conference on Electrical and Computer
Engineering, (2007), 360-363.

8. Tadic, B., Rodgers, G. and Thurner, S. Transport on
complex networks: flow, jamming and optimization,
International Journal of Bifurcation and Chaos, 17, 7,
(2007), 2363-2385.

9. Wang, D., Cai, N., Jing, Y. and Zhang, S. Phase
transition in complex networks, American Control
Conference, (2009), 3310-3313.

10. Rykalova, Y., Levitan, L. and Browe, R. Critical
phenomena in discrete-time interconnection networks,
Physica A, 389 (2010), 5259-5278.

11. Sarkar, S., Mukherjee, K., Ray, A., Srivastav, A. and
Wettergren, T. Statistical mechanics-inspired modeling
of heterogeneous packet transmission in communication
networks, IEEE Trans on Syst, Man, and Cybernetics—
Part B: Cybernetics, 42, 4 (2012), 1083-1094.

12. Echenique, P., Gomez-Gardenes, J. and Moreno, Y.
Dynamics of jamming transitions in complex networks,
Europhys Lett, 71, 2 (2005), 325.

13. Mills, K., Schwartz, E. and Yuan, J. How to model a
TCP/IP network using only 20 parameters, Winter
Simulation Conference, (2010), 849-860.

14. Dabrowski, C. and Mills, K. The Influence of Realism
on Congestion in Network Simulations, NIST Technical
Note 1905, January 2016, 62 pages.
doi:10.6028/NIST.TN.1905. As of 5 Feb 2016.

15. Doyle, J., Alderson, D., Li, L., Low, S., Rougan, M.,
Shalunov, S., Tanaka, R. and Willinger, W. The “robust
yet fragile” nature of the internet, National Academy of
Sciences, 102, 41 (2005), 14497-14502.

16. Mills, K., Filliben, J., Cho, D., Schwartz, E. and Genin,
D. Study of proposed internet congestion control
algorithms, NIST SP 500-282, 2010.

17. Mills, K. and Filliben, J. Comparison of two dimension-
reduction methods for network simulation models,
Journal of Research of the National Institute of
Standards and Technology, 116, 5 (2011), 771-783.

18. Gough, P., Multidimensional Interactive Visualization
of FxNS Simulation Data.
http://tinyurl.com/payglq6. As of 22 Oct 2015.

19. Dabrowski, C. and Mills, K. FxNS graphs enlarged.
http://tinyurl.com/poylful. As of 15 Oct 2015.

