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ABSTRACT 
Many researchers use abstract models to simulate network 
congestion, finding patterns that might foreshadow onset of 
congestion collapse. We investigate whether such abstract 
models yield congestion behaviors sufficiently similar to 
more realistic models. Beginning with an abstract model, 
we add elements of realism in various combinations, 
culminating with a high-fidelity simulation. By comparing 
congestion patterns among combinations, we illustrate 
congestion spread in abstract models differs from that in 
realistic models. We identify critical elements of realism 
needed when simulating congestion. We demonstrate a 
means to compare congestion patterns among simulations 
covering diverse configurations. We hope our contributions 
lead to better understanding of the need for realism when 
simulating network congestion. 
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1. INTRODUCTION 
The science of complex networks [1] has matured to the 
point where one can study mathematical structure for many 
classes of probabilistic graphs (e.g., random, scale-free, 
small-world), as well as dynamical processes [2] moving 
within such graphs. Typically, abstractions are adopted in 
order to model real networks using techniques (e.g., graph 
theory and percolation theory) available from network 
science. Tension arises when such powerful abstractions are 
used to study real networks. How can one be sure that 
chosen abstractions adequately embody key properties of a 
network under study? This question of model validation 
motivates the work reported here. 

Many researchers [e.g., 3-12] use simulation to investigate 
congestion spread in network topologies, often finding 
congestion can be modeled as a percolation process on a 
graph, spreading slowly under increasing load until a 
critical point, after which congestion spreads quickly 

throughout the network. The researchers identify various 
signals that arise around the critical point. Such signals 
could foreshadow onset of widespread congestion. These 
developments appear promising as a theoretical basis for 
monitoring methods that could be deployed to warn of 
impending congestion collapse. Despite showing promise, 
questions surround this research, as the models are quite 
abstract, bearing little resemblance to communication 
networks deployed based on modern technology. We 
explore these questions by examining the influence of 
realism on congestion spread in network simulations. 

We begin with an abstract network simulation from the 
literature. We add realism elements in combinations, 
culminating with a high-fidelity simulation, also from the 
literature. By comparing patterns of congestion among the 
combinations, we explore a number of questions. Does 
spreading congestion in abstract network models mirror 
spreading congestion in realistic models? How do specific 
elements of realism influence congestion spread? What 
elements of realism are essential to capture in models of 
network congestion? What elements are unnecessary? What 
measures of congestion can be compared, and how, across 
diverse network models? 

We make three main contributions. First, we illustrate 
congestion spread in abstract models differs significantly 
from spread in realistic models. Second, we identify 
elements of realism needed when simulating congestion. 
Finally, we demonstrate a method to compare congestion 
patterns among diverse network simulations. 

The remainder of the paper is organized in five sections. 
Section 2 reviews some related work where researchers use 
abstract models to investigate congestion spread in network 
simulations. Section 3 describes the configurable network 
simulator used in our experiment. The simulator can be 
configured to mirror an abstract model [12], a realistic 
model [13], and various intermediate combinations. Section 
4 details our experiment design. We present and discuss 
results in Sec. 5. We conclude in Sec. 6.  

2. RELATED WORK 
Reviewing a decade of congestion studies [3-12] reveals 
many similarities, and some variations, among the abstract 
models used. Below we summarize the models along four 
dimensions: topology, traffic sources/sinks, routers and 
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congestion measures. Elsewhere [14] we provide more 
details about each of the studies. 

Researchers used either deterministic or probabilistic 
topologies. The most popular deterministic topology was a 
square lattice, either open [6, 11] or folded into a toroid [3-
5, 7, 10]. Rykalova et al. [10] also used a ring. Echenique et 
al. [12] used a real topology taken from the Internet 
autonomous system map, circa 2001. Arrowsmith et al. [5] 
started with a 2D lattice and then generated triangular and 
hexagonal depleted lattices by probabilistically removing 
links. Other researchers used random processes to generate 
topologies: Erdős–Rényi [9], exponential [8], scale-free [8-
9], or small world [9]. 

Within a topology, researchers used either deterministic or 
probabilistic processes to place sources, sinks and routers. 
The most popular approach was to allow every node to be a 
packet source and sink, as well as router [7-10, 12]. Sarkar 
et al. [11] restricted sources and sinks to the network edge, 
while Mukherjee and Manna [6] placed sources at the top 
edge of a lattice and sinks at the bottom edge. Other 
researchers [3-5] assigned nodes to be a source/sink or 
router with a biased coin flip. All surveyed studies 
generated loads by having sources inject individual packets, 
where each packet is destined for a randomly selected sink. 
The most popular strategy [3-7, 10-11] was for each source 
to generate a packet per time step (p/ts) with a specified 
probability. A few studies [8-9, 12] generated a fixed 
number of packets/ts and randomly assigned the packets to 
sources. One study [8] had a constant density option to 
ensure a fixed number of packets remained in transit. 

In all models surveyed, router nodes queue packets arriving 
from sources and then forward them at an assigned rate to 
the next hop along some path toward the sink. Differences 
appeared with respect to queue discipline, next-hop 
selection and forwarding rate. The most popular [3-7, 9-10, 
12] queue discipline was unbounded first-in, first-out 
(FIFO) queues. One study [8] used bounded last-in, first-out 
(LIFO) queues. One study [11] used bounded FIFO queues, 
where the oldest packet was dropped when a packet arrived 
at a full queue. Most studies [3-6, 10, 11] selected next hop 
based on shortest-path first (SPF) in hops. Ties were broken 
either by shortest queue length [3-4, 11], link use [5] or 
tossing a fair coin [6, 10]. One study [7] selected next hop 
with the choice among three different SPF metrics: hops, 
queue length, or their sum. Two studies [9, 12] used SPF 
based on a weighted sum of hops and queue length. One 
study [8] used guided random walk to select next hops. In 
most studies [3-5, 8, 11-12] each router forwards one p/ts. 
In two studies [7, 10] each router forwards one p/ts for each 
queue. One study [6] has each router forward a batch of 
packets at each time step. One study [9] assigns routers 
variable forwarding rates using any of three options: (1) 
node degree, (2) node betweeness or (3) node betweeness 
divided by number of nodes in the topology. 

The surveyed research used various measures of network 
congestion, and often multiple measures per study. 
Congestion measures included: one-way packet latency [3-
4, 6, 8]; packets delivered (i.e., aggregate throughput) [3-5]; 
queue lengths [4-6, 8]; packets in the network [7, 9-10, 12]; 
and packet drop rate [11]. Various studies analyzed the 
measures as time series, proportions, or variances. 

Beyond the differences we identified above, the studies we 
surveyed shared many similarities. An abstract model is 
developed and then used to explore congestion in various 
topologies. Congestion spread is examined through selected 
measures. A critical load is identified, after which trajectory 
changes distinctly for selected measures. When examined 
by engineers, who deploy and manage networks based on 
Internet technology, the degree of abstraction is sufficiently 
high to call into question the findings. The topologies are 
rarely congruent with real Internet topologies [15], various 
parameter values are not consistent with real engineering 
choices, congestion-control protocols are not modeled and 
the distribution of packet injection is unlike patterns that 
occur with real users. Does this lack of realism matter? If 
so, what realism elements must be present to draw valid 
conclusions about congestion spread? We investigate these 
questions here. 

3. MODELS 
We conducted an experiment (see Sec. 4) with a simulation 
model we named FxNS (Flexible Network Simulator). 
FxNS is based on an abstract model, EGM, developed by 
Echenique, Gomez-Gardenes and Moreno [12]. We added a 
set of seven realism elements, factored from MesoNet [13]. 
While many realistic network simulators exist [16], we 
chose MesoNet because the model is terse (requiring only 
20 parameters) and factors easily, and because the model 
scales (simulating up to ½ million nodes engaged in over 
125×103 simultaneous flows).  

We implemented the realism elements as options within 
FxNS. Since each element can be enabled or disabled, 
FxNS could support (27 =) 128 combinations. However, as 
explained in Sec. 3.3, we respect some dependencies among 
realism elements. As a result, FxNS supports only 34 
combinations. FxNS can be configured to behave as EGM 
(most abstract model), as MesoNet (most realistic model), 
and any of the remaining 32 valid combinations 
intermediate between EGM and MesoNet. With all realism 
elements enabled, we use FxNS to simulate ¼ million 
nodes engaged in over 50×103 simultaneous flows. FxNS 
should scale up further, to the same order as MesoNet. 

In Sec. 3.1 we describe EGM, and give simulation results 
demonstrating that FxNS correctly implements EGM. In 
Sec. 3.2 we describe MesoNet, and its 20 parameters spread 
among five categories. We also define our mapping from 
MesoNet parameters to FxNS realism elements. In Sec. 3.3, 
we justify dependencies adopted among realism elements 
and we describe our numbering convention for the FxNS 



combinations used in our experiment. Elsewhere [14] we 
provide additional details on these topics. 

3.1. Abstract Model 
In EGM, p packets are injected at each time step (ts) with 
source and destination nodes for each packet chosen 
randomly (uniform). Injected packets are placed at the end 
of a source’s unbounded FIFO packet queue. After 
injection, each node can forward one packet from its queue 
to a next node. If the next node is the destination, the packet 
is delivered; otherwise the next node is chosen as the 
neighboring node i with minimum δi as defined in eq. 1: 

                                                                                      (1)                                                               

where i is index of a node’s neighbor, di is minimum hops 
to the packet’s destination via i, and ci is queue length of i. 
When h = 1 the routing amounts to SPF hops. When h < 1, 
routing is congestion aware, as packets may follow routes 
longer in hops, but shorter in total queuing delay. The lower 
h the more congestion-aware routing becomes. 

EGM measures congestion as ρ, the ratio of packet outflow 
to inflow as defined in eq. 2: 

                                                                         (2) 

                                                                                                                                                                           
where A is aggregate number of packets queued, t is time, τ 
is measurement interval size, and p is packet-injection rate. 

Using EGM with an 11 174-node topology, Echenique et al. 
[12] explored effects of SPF hops routing vs. congestion-
aware routing as p increases. They found that for routing 
via SPF hops ρ undergoes a 2nd order transition as p passes 
a critical load, while under various degrees of congestion-
aware routing ρ undergoes a 1st order transition as p passes 
critical load. Using our FxNS implementation of EGM, we 
replicated these results, as shown in Fig. 1. 

 

 

 

 

 

 

 

 

Figure 1. FxNS replication of EGM simulation results 

3.2. Realistic Model 
MesoNet provides a realistic TCP (Transmission Control 
Protocol) network model, requiring only 20 parameters 
spread across five categories, as shown in Table 1. Mills et 
al. [16] used MesoNet to compare congestion-control 
algorithms proposed for the Internet. 

Category ID Name  
Specific  

FxNS 

Network 

x1 topology 
18% 

NC 
x2 propagation delay 

14% 
DE 

x3 network speed VS 
x4 buffer provisioning PD 

Sources & 
Sinks 

x5 number sources/sinks 
SR x6 source distribution 

x7 sink distribution 
x8 source/sink speed VS 

Users 

x9 think time p 
x10 patience n/a 
x11 web object file sizes FL 
x12 larger file sizes 

n/a x13 localized congestion 
x14 long-lived flows 

Congestion 
Control 

x15 control algorithm 
TCP x16 initial cwnd 

x17 Initial sst 

Simulation 
Control 

x18 measurement interval fixed 
x19 simulation duration fixed 
x20 startup pattern p 

Table 1. MesoNet Parameters with Mapping to FxNS Elements 

MesoNet allows for three-tier topologies of routers: core, 
point-of-presence (PoP), and access. In our experiment, we 
use an Internet service provider (ISP) topology shown in 
Fig. 2, which provides three types of access routers: D-class 
(red), F-class (green) and N-class. MesoNet defines speed 
relationships among all routers. Changing one parameter 
can scale network speed and higher router tiers can support 
the maximum input traffic expected from lower tiers. 
Sources and sinks can be placed below access routers as a 
fourth tier with ¼ million nodes (not shown in Fig. 2). 

 

 

 

 

 

 

 

 

 

Figure 2. Three-tier 218-router topology – 16 core (A-P), 32 PoP 
(A1-P2) and 170 access (A1a-P2g) 

FxNS maps router typing to realism element NC (node 
classes), which ensures that sources and sinks are placed only 
at the network edge. FxNS maps router speed scaling to 



realism element VS (variable speeds). MesoNet allows 
sources and sinks to connect to the network at two different 
speeds: fast and normal. FxNS also maps these interface 
speeds to realism element VS. In MesoNet links between 
core routers have intrinsic propagation delays matched to 
geographic placement and physics. FxNS maps these to 
realism element DE (propagation delays). These intrinsic 
propagation delays were used to compute SPF routes for the 
network core. MesoNet also includes various buffer 
provisioning algorithms. FxNS uses only one (estimated 
round-trip time multiplied by router forwarding speed) and 
maps this to realism element PD (packet dropping). 

MesoNet allows the number of sources and sinks to be scaled 
and also allows probabilistic placement of sources and sinks 
under various types of access router. MesoNet ensures there 
are four times as many sinks as sources. FxNS adopts these 
procedures and maps them to realism element SR (sources 
and receivers). 

MesoNet provides a rich array of user parameters, but FxNS 
maps only two. First, MesoNet users have think time 
between initiating data transfers. FxNS replaces think time 
with packet-injection rate, p. Second, MesoNet allows users 
to randomly select the file size for each data transfer. FxNS 
maps this parameter to the FL (flows) realism element, which 
creates sets of packets transferred in a related stream. 
MesoNet allows users to exhibit limited patience when 
waiting for data transfers to complete, but in FxNS all users 
have infinite patience. MesoNet allows probabilistic selection 
of various larger file sizes and spatiotemporal congestion. 
FxNS does not implement these features. 

MesoNet allows probabilistic assignment of congestion-
control algorithm to individual sources/sinks. In FxNS only 
TCP (transmission control protocol) is used. MesoNet also 
allows specification of initial cwnd (congestion window) and 
sst (slow-start threshold). FxNS maps these parameters to 
realism element TCP. 

Finally, MesoNet offers a set of three simulation control 
parameters. FxNS uses measurement interval size and 
duration (in measurement intervals) to bound simulation 
length. MesoNet also allows individual traffic sources to start 
in a specified pattern. FxNS subsumes this under packet-
injection rate. 

To verify FxNS correctly implements MesoNet realism 
elements, we conducted comparative simulations, running 
MesoNet and FxNS (with all realism elements enabled) for 
600 000 ts using identical parameter values. As shown 
elsewhere [14], we compared model output for seven 
essential MesoNet responses [17].   

3.3.  Combination Models 
While FxNS can enable and disable the seven realism 
elements shown in Table 1, some dependencies exist, as 
shown in Fig. 3. Starting with all realism elements disabled 
(EGM), one can easily enable packet dropping (PD) and 

node classes (NC). Variable speeds (VS) require routers to 
be classified by type. Similarly, propagation delays (DE) 
appear on core network links, which can be identified only 
through router types. While sources/sinks (SR) might be 
included as a second tier under a flat topology, i.e., without 
node classes, we decided to restrict them to a fourth tier 
under access routers. We took this decision for 
convenience, allowing us to eliminate 24 combinations that 
would otherwise need to be simulated. We imagined 
influence of sources/sinks could be discerned even with this 
restriction. Enabling flows (FL) means packets are injected 
as a stream between source and sink, thus FL requires SR. 
Finally, TCP regulates packet-transmission rate only on 
flows. 

 

 

 

 

 

 

 

 

Figure 3. Dependencies among FxNS realism elements 

Seq Cmb TCP FL SR DE VS NC PD 

1 c0 0 0 0 0 0 0 0 

2 c1 0 0 0 0 0 0 1 

3 c2 0 0 0 0 0 1 0 

. . . 

32 c123 1 1 1 1 0 1 1 

33 c126 1 1 1 1 1 1 0 

34 c127 1 1 1 1 1 1 1 

Table 2. Elided list of valid FxNS combinations 

We identify FxNS combinations by number, based on 
binary encoding, as shown in Table 2. Each realism element 
is assigned a position in a seven-bit vector, from most (bit 7 
- TCP) to least (bit 1 - PD) significant. When a selected 
factor is enabled its bit position is set to one, and set to zero 
when disabled. The resultant bit vector can be converted to 
a decimal value: the combination (Cmb) number. The most 
abstract combination is c0 and the most realistic is c127. 
Each combination is also assigned a sequence (Seq) number 
(1-34). Both numbers are used in discussing results. 



4. EXPERIMENT DESIGN 
We designed an experiment to explore influence of realism 
on congestion spread in a network simulated with FxNS. 
We identify fixed input parameters used in all simulations. 
We define parameters we vary. We define four responses 
measured for all simulations. 

4.1. Fixed Input Parameters 
We used the same 218-router topology (recall Fig. 2) in all 
simulations. We used Dijkstra’s SPF algorithm to compute 
next hops for core routers based on propagation delays. 
Routing to/from core nodes consists of single paths with 
obvious next hops. Note that propagation delays are used to 
compute SPF next hops in the core regardless of whether 
DE is enabled or disabled. 

We execute each simulation for a target of 200 000 ts. 
Individual simulations can self-adapt to execute fewer ts in 
order to limit memory usage when PD is disabled. No 
simulation executed fewer than 41 400 ts. 

4.2. Variable Input Parameters 
We varied only two parameters: (1) combination and (2) 
packet-injection rate p. For each combination, FxNS 
simulates a set of enabled/disabled realism elements (recall 
Table 2). Table 3 gives parameter values assigned to each 
element when enabled and disabled. 

For each combination simulated, we varied p up to 2500. 
When extreme congestion appears at successive values of p, 
simulation of a combination could self-terminate. This 
saves computation time because once a combination 
demonstrates extreme congestion for several increasing 
values of p then the combination will continue to exhibit 
congestion as p increases. In no case did a simulation 
terminate a combination before p passed 790. 

4.3. Responses 
We chose responses that could be usefully compared across 
all simulated combinations: most abstract to realistic. We 
determined that all combinations shared two measurable 
concepts: graphs and packets. Using these we measure: 
congestion spread (χ), network connectivity (α) and 
effectiveness (π) and efficiency (δ) of packet delivery. All 
responses fall in the interval [0...1]. We measure each 
response for each combination at each packet-injection rate. 
We define these responses precisely elsewhere [14]. Here 
we give intuitive definitions. 

Each of our simulated topologies is a graph of nodes 
connected by links, where the entire graph GN contains |GN| 
nodes. We label a node congested whenever queued packets 
exceed 70 % of 250×router forwarding speed. When fewer 
packets are queued, we label a node uncongested. We label 
any uncongested node as cutoff when it links only to 
congested neighbors. After labeling, we compute connected 
subgraphs of nodes that are either congested or cutoff. We 
label the largest such subgraph Gχ. We use χ=|Gχ|/|GN| as a 

measure of congestion spread. We also compute connected 
subgraphs of nodes that are uncongested. We label the 
largest such subgraph Gα. We use α=|Gα|/|GN| as a measure 
of network connectivity. 

 Enabled Disabled 

PD buffers = 250×router speed buffers = ∞ 

NC 

3-tier 218-node topology 
as in Fig. 2 with routers 
labeled as core, PoP, D-
class, F-class or N-class 

flat 218-node 
topology as in 
Fig. 2 but with 
routers unlabeled 

VS 

core 80 p/ts; PoP 10 p/ts; 
D-class 10 p/ts; F-class 2 
p/ts; N-class 1 p/ts; fast 
source/sink 2 p/ts; normal 
source/sink 0.2 p/ts   

all routers and 
sources/sinks 9 
p/ts 

DE core links have 
propagation delays  

no propagation 
delays 

SR 
51 588 sources & 206 352 
sinks deployed uniformly 
below access routers 

no sources or 
sinks deployed 

FL 

transfers are packet 
streams: sized randomly 
from Pareto distribution 
(mean 350, shape 1.5) - 
streams set up with TCP 
connection procedures 

transfers are 
individual packets 

TCP 

packet transmission 
regulated by TCP 
congestion-control 
including slow-start (initial 
cwnd = 2 sst = 230/2) and 
congestion avoidance 

packet 
transmissions not 
regulated by 
congestion-
control 

Table 3. Parameter values for each FxNS realism element 

Packets injected into the network can be queued, dropped or 
delivered. We define effectiveness of packet delivery (π) as 
the ratio of delivered packets to injected packets. For each 
delivered packet we record the latency between injection 
and delivery times. We average these latencies over all 
delivered packets, and then normalize the average to fall 
between 0 (minimum delay) and 1 (maximum delay), 
yielding efficiency (δ) of packet delivery. 

5. RESULTS AND DISCUSSION 
For each combination simulated, we plotted each response 
(y-axis) vs. packet-injection rate (x-axis). Here we give 
plots for only the most abstract (c0) and realistic (c127) 
combinations, as discussed in Sec. 5.1. For each response, 
we also treat each of the 34 plots, one for each combination, 
as a 250-element vector and then cluster vectors to assess 
influence of each realism element on each response. We 
discuss the clusters in Secs. 5.2 to 5.5, drawing on insights 



from the related x-y plots and multidimensional interactive 
visualization of FxNS simulation data [18]. All x-y and 
cluster plots are also available in an enlarged format [19]. 

5.1. Most Abstract vs. Most Realistic 
Figure 4 contains four subplots comparing congestion 
behavior between the most abstract (c0) and realistic (c127) 
combinations. For combination c0, congestion spreads 
quickly with increasing packet-injection rate, encompassing 
all nodes by the time p reaches 500. For c127, congestion 
spread remains low over the entire range of packet-injection 
rates, even out to p = 2500 (not shown). This difference has 
two main causes. First, all nodes in c0 operate at the same 
speed. Core nodes become overwhelmed with congestion, 
which then spreads to the network edge. In c127, routers are 
engineered with varying, hierarchical speeds, so higher tiers 
can handle packet inflow rate from lower tiers. Second, c0 
does not monitor and adapt to congestion, while c127 
implements TCP, which measures congestion and adapts 
packet inflow-rate accordingly. 

Figure 4. Comparing c0 vs. c127 for each response 

Network connectivity breaks down quickly for both c0 and 
c127, reaching a low level as p passes 500. There are two 
main differences: c127 decays more slowly than c0 and 
c127 asymptotes with higher network connectivity. For c0 
connectivity drops to zero after p passes 500. Combination 
c127 decays more slowly because TCP adapts packet 
injection based on measured congestion and c127 
asymptotes with higher connectivity because variable router 
speeds restrict congestion to the network edge. The network 
core remains uncongested and intact. Connectivity breaks 
down completely for c0 because the core becomes 
congested and then congestion spreads to the edge, 
consuming all nodes. 

For c0 proportion of packets delivered drops steeply, 
reaching nearly zero as p passes 1000. For c127 proportion 
of packets delivered drops modestly with increasing p, 
stabilizing near 80 %. This large difference arises from a 
combination of two factors: packet dropping and TCP. 
Combination c0 does not discard packets and does not 
adapt packet injection based on measured congestion. With 

increasing p, this causes a growing backlog of packets in all 
routers. Combination c127 discards packets when router 
buffers fill and adapts packet injection based on measured 
congestion. So undelivered packets for c127 encompass 
only discards, and rate adaptation limits their number. 

For c127 latency of delivered packets remains low even as 
p increases beyond 2000. This occurs because packet 
dropping limits router queue sizes, so delivered packets are 
not long delayed. Without packet dropping, packet latency 
for c0 climbs steeply with increasing p, reaching an apex 
before decaying gradually. Delays climb because packet 
queues become jammed. Delays decay gradually because 
latencies are recorded only for delivered packets. At high p, 
c0 delivers relatively few packets, and those packets 
necessarily transit routes where queues are not jammed. 
Even with this decay, packet latency for c0 remains 
significantly above delay for c127. 

5.2. Congestion Spread 
Figure 5 shows hierarchical clustering for χ among all 34 
combinations. Combination sequence numbers appear on 
the x-axis. The y-axis reports squared Euclidean distance. 
The plot indicates two main groups, separated by a large 
distance. The left-hand group contains combinations with 
VS or TCP or both enabled. These combinations show little 
congestion spread. Combinations in the right-hand group 
have VS and TCP disabled. These combinations show 
congestion spreading throughout the network. 

 
Figure 5. Clustering of congestion spread (χ) 

5.3. Connectivity Breakdown 
Figure 6 shows clustering for α. Note that distances among 
clusters in Fig. 6 are smaller than those in Fig. 5. This 
means connectivity breakdown is more similar among the 
combinations than is congestion spread. Breakdown in 
connectivity occurs when subgraphs of the topology are 
disconnected (due to congestion). As load increases 
connectivity breaks down even when congestion does not 
necessarily spread widely. Among combinations with VS 
disabled, the leftmost subgroup (sequence numbers 12, 15, 



11, 3, 7, 8 and 16) in Fig. 6 has NC enabled. Our x-y plots 
show [19] these combinations reach complete breakdown 
sooner than others with VS disabled. With NC enabled, 
packet injection occurs at the network edge, thus packets 
flow in concentrated fashion to and through the network 
core. This differs from combinations c0 and c1 (sequence 
numbers 1 and 2), where packet injection can occur at any 
node, thus packet flow is more diffuse. Most configurations 
with VS disabled lost connectivity quickly and completely. 
Combinations with VS enabled and TCP disabled may 
experience complete connectivity breakdown, but the 
process requires higher packet-injection rates because more 
pressure must be applied from the edge before the core can 
congest. With both TCP and VS enabled, congestion stays 
at the edge. 

 
Figure 6. Clustering of breakdown in connectivity (α) 

5.4. Packets Delivered 
Figure 7 shows clustering for π. The plot indicates two 
main groups, separated by a large distance. The leftmost 
group contains combinations with TCP disabled, while the 
rightmost contains combinations with TCP enabled. The 
rate adaptation of TCP improves significantly the likelihood 
that an injected packet will reach the intended destination. 
Disabling TCP increases likelihood that an injected packet 
will be queued or discarded. 

With TCP enabled, PD has a secondary influence on packet 
delivery. Disabling PD ensures that injected packets will be 
delivered eventually. But buildup of queues delays delivery, 
leading to timeouts and lower throughputs, as TCP reduces 
packet-injection rate. Enabling PD means some packets will 
be discarded, but TCP does not need to reduce injection rate 
as much. So throughputs remain higher, but likelihood of 
packet delivery decreases. 

With TCP disabled, VS has secondary influence on packet 
delivery. Absence of VS allows queues to build widely 
among routers throughout a network. So, packets are more 
likely to be queued or discarded (depending on PD), and 
packet delivery approaches zero. With VS enabled packet 
queues build at the network edge. This reduces the number 

of routers where packets will be dropped or queued. In such 
cases, packet delivery approaches zero at a slower rate. 

 
Figure 7. Clustering of packet delivery effectiveness (π) 

5.5. Packet Latency 
Figure 8 shows clustering for δ. We label the plot to show 
common factors in various groups and subgroups. With PD 
enabled, delivered packets experience little queuing delay, 
thus one-way latency is low. With PD disabled, packet 
queues become large with load, thus average one-way 
latency increases. With PD disabled, enabling TCP allows 
rate adaptation, thus buildup of large queues is less likely. 
This reduces delays for delivered packets. Enabling VS 
restricts large queues to routers at the network edge, which 
means that delivered packets have fewer large queues to 
transit. Disabling VS allows packet queues to form at any 
network router, which means delivered packets will have to 
transit through more large queues.  

 
Figure 8. Clustering of packet delivery efficiency (δ) 

5.6. Overall Findings 
Realistic and abstract network models exhibit very different 
congestion behaviors. VS among router tiers, engineered to 
ensure adequate throughput, are very important to model. 
TCP, which detects congestion and adapts packet-injection 



rate, is very important to model. PD from finite FIFO 
buffers is important to model for accurate measures of 
packet latency. Propagation delay (DE) is not important to 
model in networks spanning the continental US, but would 
be important in networks (e.g., interplanetary) where 
propagation delays may exceed queuing delays. A decade 
of studies [e.g., 3-12] used models too abstract to simulate 
realistic congestion in networks based on Internet 
technology. The validity of findings from such studies 
appears suspect.  

6. CONCLUSION 
We began with an abstract network simulation from the 
literature. We added realism elements in combinations, 
culminating with a high-fidelity simulation, also from the 
literature. By comparing patterns of congestion among the 
combinations, we showed that congestion spread in abstract 
models differs from congestion spread in realistic models. 
We described the influence of specific realism elements on 
congestion spread. We found that variable router speeds, 
the transmission-control protocol, and finite first-in, first-
out buffers are important to model. We also found that 
propagation delay appears unimportant to model, when a 
simulated topology spans only the US. Finally, we 
demonstrated use of cluster analyses among response 
vectors to compare congestion spread, breakdown in 
connectivity and effectiveness and efficiency of packet 
delivery among a diverse set of network models. 

We envision two directions for future work. First, we need 
to verify our findings for a variety of topologies, including 
interconnected networks. Second, we should explore 
whether random failures in the core, coupled with alternate 
routing, could cause cascading congestion. If so, we can 
seek precursor signals arising around the critical point. 
Such signals, if found, might provide warning of failure-
induced congestion collapse. 
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