COMBINED NANOINDENTATION AND AFAM FOR MECHANICAL CHARACTERIZATION OF ULTRA LOW-K THIN FILMS

<u>André Clausner</u>¹ (andre.clausner@ikts.fraunhofer.de), Ehrenfried Zschech¹, Martin Gall¹, Matthias Kraatz¹, Malgorzata Kopycinska-Mueller¹, Yvonne Standke¹, Uwe Mühle¹, Elham Moayedi¹, Kong Boon Yeap², Khashayar Pakbaz³, and Sukesh Mahajan³

¹ Fraunhofer IKTS-MD, Germany; ² GLOBALFOUNDRIES, USA; ³ SBA Materials, USA

AGENDA

- Introduction, materials
- Nano-indentation of ULK film
- Combined Nano-indentation and AFAM
- Drawing conclusions on the pore topology using mechanical data
- Take home messages

Ultra Low-k nano-porous materials in nano-electronics

- Decreasing on-chip interconnect pitch (including inter-layer dielectrics dimensions) in nano-electronic products → higher signal delay, power loss, …
- Need of dielectric materials with ultra low k-values (ULKs)
- Nano-porous organosilicate glasses (OSGs) for k-values below 3,0

Fabrication of organosilicate glass UKL thin films

(Sol gel process)

Samples of building block in the OSG network [1].

Application: sol-gel processes using spin coating and final curing or CVD deposition.

OSG chemistry can include porogens for insertion of controlled porosity.

Mechanical strength of nano-porous OSG ULKs

Reliability issues caused by crack propagation (CPI, thermo-mech. stresses)

- Gradients in the ULK film can lead to electrical failure even if mean k-value is OK
- > Mechanical characterization of the ULK films is important (E, Gradients)

Motivation: high elastic modulus at a given k-value

- Optimizing the chemical structure and/or the pore topology
- One example: producing an ordered pore structure:

Self assembly sol gel process (SBA materials): Triblock co-polymer, removed by thermal or UV curing.

Sample Target Actual Porosity, p Thickness Elastic Cure process Modulus, E k k (%) (nm) (GPa) 7.3 ± 0.3 SA-OSG6 2.41 2.4 24 693 Thermal UV & Thermal CVD-OSG1 N.A. 25 3.7 ± 0.3 2.4 530

TABLE 1. Sample description and experimental results for SA-OSG and CVD films.

Techniques needed for the measurement of the mechanical properties of nano-porous thin OSG films

→ Nanoindentation and AFAM

Samples: OSG thin film samples from SBA materials

First set of SBA SA-OSG ULKs

Sample	К	Porosity p	Film thickness (nm)
1	3	0,000	582
2	2,88	0,051	607
3	2,87	0,055	553
4	2,39	0,258	564
5	2,27	0,309	512
6	2,25	0,318	491
7	2,19	0,343	490
8	2,05	0,403	492
9	1,92	0,458	490
10	1,91	0,462	470
11	1,82	0,500	504

Second set of SBA SA-OSG ULKs

Sample	k	Porosity p	Film thickness (nm)
1	2	0,4	511,14
2	2,2	0,31	502,38
3	2,3	0,28	468,87
4	2,4	0,23	321,09
5	2,5	0,19	393,14
6	2,6	0,14	219,92
7	3	0	335,93

SBA Spin-on OSG ULKs featuring a selfassembly process of the porogen

Nano-indentation

Hysitron TI-950

Hysitron's Three-Plate Capacitive Transducer

A schematic of the Hysitron nanoindentation system.

Elastic-plastic contact with Berkovich tips

$$S = \frac{dF}{dh} = \beta \frac{2}{\sqrt{\pi}} E^* \sqrt{A_c}$$

- Hardness H
- Elastic modulus E

Hardness H

- Mainly determined by the yield zone
- Local property
- Low Substrate influence

Elastic modulus E

- Mainly determined by the elasic field outside the yield zone
- More a global property
- High subtrate influence

Indentation hardness and modulus of thin films

- Hardness is ruled by the yield zone
- Yield zone should not reach substrate
- Safe contact: h_c < 1/10*h_{film} (Bückle rule)

- For E, 10% rule is **not** appropriate
- Elastic fields outreach much further
- Indentation depths < 1% of h_{film} needed

[7]: Surf. Coat. Tech. 154, 140–151 (2002).

IKTS

💹 Fraunhofer

Indentation hardness H for the first sample set

Hardness gradients vs. porosity p

- Porosity dependent surface gradient
- Harder and maybe denser top layer

Indentation hardness H for the second sample set

Nano-indentation results for the Elastic modulus E

- Forces are too high to significantly surpass substrate influence
- Surface gradient not visible
- Need for a higher resolution E measurement → AFAM

AFAM principle

Contact resonance frequencies of an AFM cantilever

Elastic contact on thin films

- Main aspects for the substrate influence on the E measurements
 - > Tip radius \rightarrow the bigger the tip radius the deeper reaches the elastic field
 - Solution Contact force \rightarrow the bigger the contact force the deeper the elastic field

Low forces and sharp tips for the E-gradient measurements

Combined AFAM and nano-indentation: First sample set

- Surface gradients for the elastic modulus become visible via AFAM!
- > AFAM studies intensified for the second sample set

Combined AFAM and nano-indentation: Second sample set

Surface gradients for the elastic modulus become visible with sharp tips

Film modulus becomes visible for round tips

Surface gradient in the elastic modulus, AFAM results

> AFAM also shows porosity dependent surface gradient

Comparison of AFAM and nano-indentation results

> AFAM shows very comparable results to nano-indentation

OSG pore topology and elastic modulus

OSG pore topology and elastic modulus

Take home messages

AFAM and nano-indentation complement each other well for the mechanical characterization of porous thin films

From mechanical data of porous thin films, conclusions about the pore-topology can be drawn

Thank you for your attention!

You are invited to work with us on challenging topics in a city that is:

- One of most important European Centers of Microelectronics
- a Center of Materials Science and Engineering
- and full of history and culture, with a high quality of life and an excellent surrounding.

