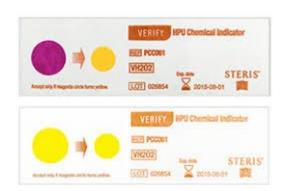
Pusiness activity of company and s

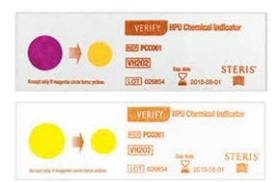
600 / 640


TECHNOLOGIES

TECHNOLOGY SAVING LIFE AND MONEY

Dosimeter technology background

- Been around since 1800s
- Different types:
 - Radiometer
 - Chemical indicators
 - Biological indicators
 - Etc.
- Used in research, industry, healthcare,
- etc.

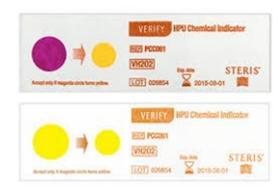


Why use a chemical colour changing dosimeter with UV in healthcare?

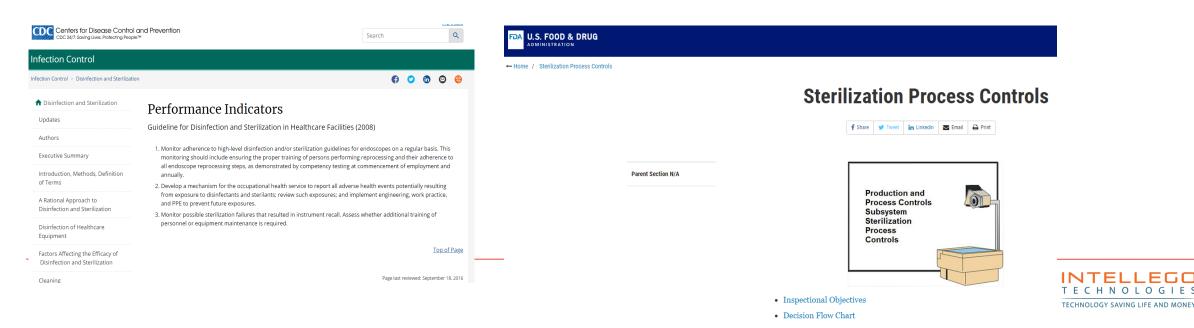
- Colour changing dosimeters already being used in healthcare:
 - Autoclaves
 - Steam
 - Heat
 - Etc.

US market research (110 hospitals):

> 73% says they would use a dosimeter (some hospitals did not use UV and/or does not plan to use it)


Machine specific for largest actors in industry – on average 80% said they would use the indicators

With 2 of the top 5 companies – 100% of the hospitals said they would use a dosimeter


Colour changing colour indicator most popular way to continuesly measure UVC for every cycle

What part does a colour changing dosimeter have in a standard for UVC disinfection?

- Reference to other standards:
 - Colour changing dosimeter already used in healthcare
 - Recommended by CDC and FDA
- Easy way to monitor UVC exposure for every UVC cycle

Colour changing dosimeter wont replace radiometer, microbiology testing

Colour changing chemical indicators development - UVC

- Start with what the market wants (Ips, EVS, etc):
 - Reliable
 - Easy to use
- Photochromic ink
 - Chemical reaction leading to colour change
- Major development points:
 - Wavelength specificity visible light
 - Stability
 - Repeatability
 - Angles vertical vs horizontal
 - Temperature, humidity
 - Safety

How can a colour changing indicators help?

- Increase understanding for UVC
- Help to identify shadowed areas
 - 30-50% of surfaces in shadowed areas during cycle*
- Areas further away
- Decrease disinfection time with up to 75%
- Potential to increase disinfection levels

^{*}John M. Boyce, MD;1,2 Patricia A. Farrel, MT et.al, "Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device", infection control & hospital epidemiology june 2016, vol. 37, no. 6

Marie Lindblad, Fredrik Huss, MD et.al, "Ultraviolet-C decontamination of a hospital room: Amount of UV light needed", JBUR 5947 No. of Pages

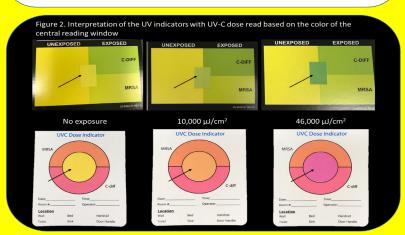
Does it work?

Ultraviolet-C (UV-C) monitoring made ridiculously simple: UV-C dose indicators for convenient measurement of UV-C dosing

Contact: Jennifer.Cadnum@VA.gov

Poster #1215

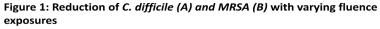
Jennifer L. Cadnum, BS¹; Annette L. Jencson, CIC²; Sarah Redmond, MD³; Thriveen Sankar Chittoor Mana, MS³

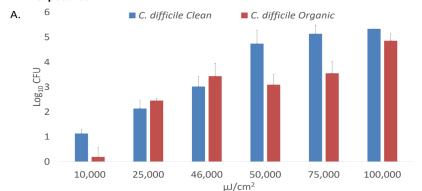

& Curtis J. Donskey, MD¹⁻³ 1. Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland OH,

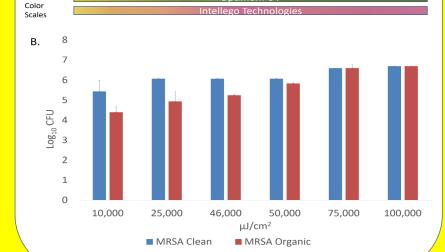
- 2. The Cleveland VA Medical Research and Education Foundation, Cleveland, OH
- 3. Department of Medicine, Division of Infectious Diseases, Case Western Reserve University, Cleveland, OH

Dosimete

Background


- Ultraviolet-C (UV-C) light is increasingly used as an adjunct to standard cleaning in healthcare facilities
- Most facilities do not have a means to measure UV-C to determine if effective doses are being delivered
- We tested the efficacy of 2 easy-to-use colorimetric indicators for monitoring UV-C dosing in comparison to log reductions in pathogens




Methods

- o In a laboratory setting, we exposed methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile spores on steel disk carriers to UV-C for varying fluence exposures ranging from 10,000 to 100,000 µJ/cm2
- The UV-C indicators were placed adjacent to the carriers
- Change in color of the indicators was correlated with dose and log₁₀ **CFU** reductions

Results

- o The UV-C doses required to achieve a 3-log reduction in MRSA and C. difficile were 10,000 and 46,000 µJ/cm², respectively
- o For both indicators, there was a visible color change from baseline at 10,000 µJ/cm2 and a definite final color change by 46,000 μJ/cm2 (Figure 1&2)
- Organic load had only a modest impact on UV-C efficacy
- o The indicators required only a few seconds to place and were easy to read (Figure 2)

Conclusions

- O UV-C doses of 10,000 μJ/cm² and 46,000 μJ/cm² were required to achieve 3 log reductions of MRSA and C. difficile spores, respectively.
- The colorimetric indicators provide an easy means to monitor UV-C
- Additional studies are needed to evaluate use of the indicators in patient rooms including in shaded areas

Acknowledgement

- We thank The Clorox Company and Intellego Technologies for providing devices for testing
- Providing companies did not have any role in planning or design of the study and no funding was received

Results

- The UV-C doses required to achieve a 3-log reduction in MRSA and
 C. difficile were 10,000 and 46,000 μJ/cm², respectively
- \circ For both indicators, there was a visible color change from baseline at 10,000 μ /cm2 and a definite final color change by 46,000 μ /cm2 (Figure 1&2)
- Organic load had only a modest impact on UV-C efficacy
- The indicators required only a few seconds to place and were easy to read (Figure 2)

Conclusion

- UV-C doses of 10,000 μJ/cm² and 46,000 μJ/cm² were required to achieve 3 log reductions of MRSA and *C. difficile* spores, respectively.
- The colorimetric indicators provide an easy means to monitor UV-C dosing.
- Additional studies are needed to evaluate use of the indicators in patient rooms including in shaded areas

Additional hospital studies

- Dr Donskey study presentation IUVA workshop 14th of January
- "Ultraviolet-C decontamination of hospital room: Amount of UV light needed"
- Hopsitals already using dosimeters today
- More to come...

Ultraviolet-C decontamination of a hospital room: Amount of UV light needed

Marie Lindblad a,d,*, Eva Tano b, Claes Lindahl c, Fredrik Huss a,d

- ^a Burn Centre, Department of Plastic and Maxillofacial Surgery, Uppsala University Hospital, Sweden
- ^b Department of Medical Sciences, Section of Clinical Bacteriology, Uppsala University, Sweden
- c Intellego Technologies AB, Sweden
- ^d Department of Surgical Sciences, Plastic Surgery, Uppsala University, Sweden

Pusiness activity of company and s

600 / 640

TECHNOLOGIES

TECHNOLOGY SAVING LIFE AND MONEY