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We present the results of research into the three dimensional measurement process using a classically designed measuring
machine. This machine has been retrofitted with laser interferometers to provide a stable metric and is controlled by a
minicomputer. Machine motions are programmable in a high level interactive language. Data Tinks are provided to a larger

computer for sophisticated data processing.

We have pursued the objective of creating, with the lasers, a machine independent coordinate system based at a point.
Measurements made in this reference frame are transformed into the coordinate system of the measured object using the
techniques -of rigid body kinematics. The error terms inherent to the mechanical design (yaw, pitch, straightness, etc.) are
measured over the machine volume, 48" x 24" x 10", on a cubic lattice of spacing two (2) inches. These error terms are
stored as matrices and used to correct the data during a measurement. A measurement history on these error terms is being
compited. Real time instrumental drifts due to temperature and other external effects are removed using cross referenced
measurement algorithms. Errors that cannot be assessed by calibration, such as axis non-orthagonality, are ¢btained by
measuring the object in different angular positions within the measurement volume. This technique, which we call multiple
redundancy, allows the assessment of all metric errors which do not commute with the finite rotation matrix.

Introduction

For several years we at NBS have been concerned with the
problem of 3-dimensional measurement as part of our program to
provide 3-dimensional calibrations of certifiable accuracy. Our
work has been concentrated upon retrofitting a "classical" mea-
suring machine. The machine is a Moore 5-Z(1). We have adapted
it for computer control using an interdata 70 minicomputér, added
Hewlett-Packard laser iaterferometers to provide the scales, and
added a cooling system to reduce the temperature rise when the
machine is in operation. Other features include a temperature
controlled environment and a high-speed {1200 baud).data link to
a large computer (Univac 1108). '

The machine has a measurement volume of 48" x 24" x 10 (120 x
61 x 25 cm). Before retrofitting it had a worst case accuracy of
several thousandths of an inch (0.003 cm) along a diagonal of the
measurement volume. A schematic diagram of this machine is <hown
in Figure 1. The workpiece (gage) is mounted on the table which
moves 48" (120 cm) to provide the X measurement. Y wotion is
obtained by movement of the large carriage across the bridge.

The Z slide is mounted on the Y carriage. These two movements
provide the 24" (61 cm) and 10" (25 cm) displacements respec-
tively. Axes movement is controlled by stepping motors attached
to lead screws. The three carriages are mounted upon traditional
double-V wavs. the X and Y slides with roller bearings and the 7
slide with plain ways.
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Figure 1 - Schematic diagram of Moore 5-7
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In an attempt to upgrade the performance of this machine, we
have developed an extensive formal analysis which to the best of
our knowledge is unique to our laboratory(2). The purpose of
this paper is to describe this formalism in a. broad sense and to
ﬂlustrate"-it with specific examples.

Three separable techniques form the basis for our understanding
of machine behavior. We beqin by examinina our machine geometry
using the formal structure of rigid body kinematics(3). We then
add to this the methods of temporal modeling and production
sampling(4,6). Finally, we use the techniques of multiple redun-
dancy(6,7). The first three sections of this paper will explain
briefly each of these techniques with illustrative examples from
our Meore 5-Z. The rest of the paper will be devoted to relating
these techniques to provide a coherent picture of an actual

. measurement with this system.

Rigid Body Kinematics

The formalism of rigid body kinematics allows one to perform a
complete analysis of any machine structure without resorting to
compiicated and error prone geometric arguments. The technique
consists of choosing the minimum number of ideal reference frames
(coordinate systems) necessary to characterize a machine and
using matrix transformations to relate coordinates in these
chosen frames. Ideally these coordinate systems must have their
origins at a point but in practice small kinematically mounted
"metrology bases" serve to decouple these systems from the dis-
torted machine geometry.

In Figure 2 we show a schematic representation of our machine
viewed from above. For simplicity the vertical axis {Z) is not
shown even though our analysis is 3-dimensional. Three right
handed coordinate systems are used. (Counterclockwise rotations
about an axis are defined as positive.) The systems are:

a) The Space System: This is the primary measurement system.
Its origin on a small metrology base mounted on the column
of the weasuring machine. Must measurements are made di-
rectly in this system with instruments of small random
error. Angles measured in this system will be denoted by
Greek letters without superscripts and vectors denoted by X
without any superscript.

b} The Table System: The origin of this system is on a small
metrology base, now rigidly attached to the table. The
position of this origin in the space frame, when the prabe
is at position X5 is denoted l(oi' Vectors in this frame
are denoted X'. Of necessity, 3 parameters will be measured
in this system. :

c) The Object System: This is the coordinate system of the
workpiece, usually a gage. It has its origin at some

403



preselected point on the workpiece and all reported co-
ordinates are 1deally in thiz frame. Vectors in the object
system are denoted by X*. We assume that goal of any mea-
surement is to obtain a set of N vectors _)1‘1' which define
positions in this gage and a set of N error vectors g%

which estimate the errors in these vectors.
A typical set of vectors X., _)gm., L; and 2(_} are shown in Figure
2. The three coordinate systems are always chosen so that,
except for infinitesimal rotations, they are aligned.
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Figure 2 ~ Schematic diagram of measuring machine viewed from
above. Both the table and object system may differ
from the space system by infinitesimal rotations.

Any lack of alignment is described by the infinitesimal ro-
tation matrix R which is
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This antisymmetric matrix retains only first order terms in the
infinitesimal angular rotations ¢,¥ and © which are the familiar
yaw, pitch, and roll respectively. This matrix will be used to
describe the rotations of the three coordinate systems with
respect to (WRT) each other. In a well designed measuring ma-
chine, the off diagonal terms will be of the order of micro-
radians (1076 radians) so that the small angle approximation is
quite accurate.
that is

The infinitesimal rotation matrices commute,

j;i 53. = B_j Ry for small ¢, ¥, and o,
if we again neglect second order terms in the rotations. Fur-
thermore products of such matrices are also antisymmetric which

allows some computational simplification.

Now suppose at time 1 the machine is moved so that the probe is
at point i on the work piece. Let &i denote the rotation of the
table system WRT the space system at time i and R} denote the
votation of the object system NRT the table system at the sama
time, The superscripts indicate in which system the measurements
are made. Then the vector Xj is related to the vector A by
the simple equation

X < B KD,
where 16,. is the vector to the origin of the object system in the

table system, Similarly the vector in the table system, L; is
related to the vector in the space system g(_}. by

X = By O X
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Combining these relationships enables us to simply express VECfor;'
in the object, X!, in terms of vectors in the space frame, .
That is:

B (Ry (X5 X Xgq)-
1t may appear at first glance that the introduction of the tabjg
system is umnecessary. This would bé true if the table did noi:
move {as in some machines) or if it were an ideal rigid body,
_v_lhich it is not.

&

Equation-S gives us a prescription for obtaining coordinates p
the body from measurements made in the other systems as well as
rigidly specifying what geometrical characteristics we need tp
measure. The compactness of the notation and strict adherence to
sign conventions can prevent errors that often occur when one
attempts to do the same problem using analytic geometry. We will
defer further discussion of this equation to a later section.

Measurement Modeling

The second technique we use is related to the visualization of
measurement as a production process with a product, numbers,
whose quality may be controlled by the methods of statistical
sampling. The goal h‘aro is to mode) those asperts of inctrument
behavior which influence the quality of these numbers and to
check this model with quality comtrol techniques.

In a large measuring machine meay factors conspire to degrade
the quality of measurement. Besides tnose geometrical factors
displayed in Section 1, one of the most troublesome of these
factors is a temporal dependence of the measurements. The causes
of this time dependence are most likely changing temperature
distributions 1a the machine and Arifts in the associated mAChine

electronics. A complete analytic model of such behavior is
currently impossible, but an empirical mode! based on observa-

tional data is not. A very limited set of intuitively plausible
assumptions makes such an cmpirical model possible.

Inherent in our discussion in Section 1, though not explicitly
stated, was the assumption that the workpiece (object) was an
ideal rigid body. Here we make that assumption explicit with the
further corollary that, besides being a perfect rigid body, the
object is characterized by a fixed set of coordinates of the gage
points which, in the object system, are functions only of the
workpiece temperature. That is, the numbers computed from equa-
tion 5 are invariant in time except for a random error component
which is assumed small and independent of the magnitude of .
Call this error vector a. Then, if on a repeated measurement,
the coordinates obtained for a point on the gage differ from the
previous value by more than 91;, the change may have been caused
by a drift in some instrument parameter. One can then assume
that the drift was linear in time and correct intervening points
accordingly. Again this procedure is best illustrated with an
example.

Suppose the workpfece is a gage with N gage points which may be
located with the same algorithm. The random error in this algo-
rithm, g.. may be accessed by repeated location of the same nage
point during a time short compared with the time of a complete
measurement of the gage (called a "run"). Our technique then is
to choose one particular gage point, called the repeated point,
and K other points called check points. A run begins with a
measurement of the repeated point. This point is remeasured at
random intervals throughout a run, and then measured as the last
measurement. Between remeasurements of the repeated point the
check points are also remeasured. The constraint is then imposed
that measurements of the repeated point should agree within the
estimated random error s, {i.e. the gage itself does not change)-



[f they do not, a linearized drift correction is computed and
applied to all data. A simple statistical test is applied to
confirm that this correction, computed from the repeated point
measurements only, reduces the standard deviation of the check
points to the predicte(li o

The model this algorithm defines is quite simple. Though the
machine behavior is governed by many uncontrolled variables, over
a time short compared with the machine's thermal time constant,
the behavior of the machine is a linear function of time. Ex-
tensive experimentation has shown that thig is ipdeed true, an
observation that will be proven in a later section. The process
of statistical comparison at the check points, analogous to
productio'n sampling for part quality, continually checks the
adequacy of the model.

Multiple Redundancy

Qur third technique is perhaps the most powerful and yet the
most difficult to elucidate. It is based on the realization that
properly chosen redundant measurements, made with an imperfect
instrument can contain sufficient information to also measure and
remove the known imperfections in the measurement system itself.
In three dimensional measuring machines the type of redundancy we
have found most suitable is that of remeasuring the workpiece at
different angular orientations WRT the measuring machine. The
data then allows us to remove errors due to scale imperfections
and axis nonorthogonality. Again we illustrate this procedure
with a simple example.

Suppose we had an object with three gage points that we measure
in a nonorthogonal coordinate system as depicted in Figure 3. In
such a system X coordinates are defined by distances to\vthe ¥
axis (rather than projectioas on the X axis) and Y coordinates
are defined similarly. Vectors in the non-orthogomal system,
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1 Figure 3 - A three point gage as measured in a non-orthogonal
coordinant system.

KNOG, will be related to vectors in the orthagonal system, KOG,
with the same origin by

Zyog = & Xog where A = (}) '1),
and @ is assumed small, The X axes of the two systems are chosen
to be aligned for convenience. This choice is arbitrary. Now
let us suppose we rotate the object by a finite angle A, which
corresponds to a rotation of the coordinate systems, and remea-
sure the vector to the same gage point. The new vector; denoted
with the superscript N, is related to the old vector in the
orthogonal system by the simple finite rotation matrix g_‘ That
is

N [ cosa sina
Xgg = 8 Xgq where § (—-sinA cosh >

The coordinates of this new vector in the non-orthogonal frame
are simply

Yiog = A Xo = A B Xgq-
it is easy to see that equation 8 does not correspond to a simple
rotation of the original vector in the non-orthogonal frame.
Such a vector, call it ’—(506‘ would be given by

B -

06 = B Jog * B4 Yo
The two vectors, '&:OG obtained by a simple rotation of the non-
orthogonal coordinates and the measurementc of the rotated object

1:;06 will be equal if and only if
E-84

>

fe, if the matrix which describes the imperfection of the mea-
surement system commutes with the finite rotation matrix. For
this case it is easy to show that

AB#BA if afnvradians, n=0,1,2....

Furthermore it can be shown that with just 3 points, (one of
which is defined as the origin) measured twice as in this ex-
ample, it is possible to compute both the coordinates of the
points and the angles a4 and 0. There are 8 measurements and only
6 unknowns so the system is just slightly over constrained. For
a real measurement where there are many gage points and measure-
ments at several angles the measurements are termed “multiply

redundant” and the angles and coordinates determined by large
Teast squares fits.

The generalization of the above analysis to three dimensions is
messy but straightforward. The class of errors that may be
computed and rémoved is exactly the same, that is, those metric
errors that do not commute with the finite rotation matrix.

Other common errors at this type, besides nonorthogonality, are
scale errors. In fact, with sufficient measurements, only one

good scale is required for a three dimensional measurement.

It should be noted that though the analysis in Section 1 is
made in orthogonal coordinate systems it is equally valid in
slightly non-orthogona) systems. This is because the infinites-
imal rotation matrix § commutes with the non-orthogonality matrix
A (to first order in the angles).

The technique of multiple redundancy shares with the technique
of measurement modeling the assumption of gage stability. Ina
sense both are self calibrating algorithms in that, through a
closed series of measurements, errors in instrument performance:

_ may be assessed and removed.

fiow with this background and terminology, we are ready to

discuss the process we use for three dimensional measurement on
our Moore 5-7.

Machine Calibration

In order to actually make a measurement using the techniques
outlined in the preceding sections several more steps are re-
quired. The first of these is to actually write out, by com-
ponents, the geometrical observation equation, equation 5. One
then must identify those terms which must be measured, the system
they must be measiured in, and devise techniques for their measure-
ment. An inspection of the equation reveals that at least 15
independent measurements are required, three (3) for each ro-
tation matrix, and three (3) for each vector, even for this
simple model which assumes that the X,Y, and Z positions of the
probe can be accurately determined directly in the space frame.
Some reduction %n this number can be obtained by observing cer-
tain machine characteristics. For instance, we assume the table
of our Moore 5-Z to be a quasi-rigid body 'w'n that it remains
rigid WRT the X,Y plane. This assumption merely reflects the
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fact that distortions of the table are larger ia the direction of

gravity (1) and gravity induced changes im X,Y distances only

Three measurements, Xi., Yo, and 47 are elim-

cosine errors. 0i®

inated by this means.

Table 1 - The geometric parameters needed in 3-dimensions

Measurement

. Coordinate

Symbol Description System Method
11 Yo Y straightness of X table space stored
2 Z0 Z straightness of X table space stored
3) ¢ Yaw of X table space stored
4) v pitch of X table space stored
5) © roll of X table space stored
6) XSP X straightness of prohe space* stored
7) YSZ Y straightness of Z axis space* stored
8) IsY Z straightness of Y axis space* stored
9) ¢' Pitch of object table on-line
10) o' roil of object table on-line
n) 26 Z position of object table on-Tine
12) X Basic table position space on-line
13) ¥° Basic Y-carriage position space on-line
14) Z Basic Z carriage position space*

on-line

*These measurements are transferred to the space system via an
intermediate coordinate system at height Z = 0. This system is
not described in detail in the text.

Table \. catalogs those terms remaining which must be measured
for an accurate three dimensional measurement. There are 14 in
all*, requirmg great expense for instrumentation and making the
prob]em of just fitting the instruments oa the machlne very
difficult. Many of the terms are, however, small and if they are
sufficiently smooth functions of measuring machine position and
are also sufficiently reproducible, they can be measured at
regular intervals and used as corrections to the basic X,Y,Z

metric. This is the course we chose to pursue.

We concluded that the generalized error term, E, must be a
function of the machine position (X,Y,Z) and of such variables as
the machine temperature distribution T(X,Y,Z) and the table
loading L(X,Y). The load term is the most difficult of these
effects to handle. We are currently standardizing the table
loading to avoid large changes in its structure. Changes in
machine geometry due to seif-loading are built into the analysis
as functions of the coordinates.

We divide the measurement volume of the machine into a 2 inch
(5 ¢m) cubic array with 1950 lattice sites. Each of the stored
error terms is to be measured at all lattice sites. Our algo-
rithm for doing this is, however, basically two dimensional. The
instrument is set up for measuring the srror torm and probe moved
through the measurement volume in the X,Y plane at constant 2.
This path is depicted in Figure 4.

*The fourteen (14) terms become necessary due to the addition
of a 4th coordinate system used to transfer the Z axis measure-
ments into the space system. Since the methodology of this pro-
cess is the same as described in Section 1-and its addition to
the algorithm only an additional complexity, this system {in which
cnlyi two parameters are measured) has been deleted from the dis-
cussion.
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Figure 4 - The measurement path for generatwn of a machine
error surface at constant Z.

After an initial standardized warm up exercise, the machine is
moved until the probe is at X = 0, Y = 0 in the X,Y plane (lat-
tice site 1,1,1 for Z = 0), and the interlaced path is swept out
as indicated. The error term(s) being measured is, by the end of
the run, measured 4 times at each lattice site. Temporal average
over a 30 sec interval is performed for each of these measure-
ments. The resulting set of data (1300 points) is divided into
what we call cycles (one back and forth run in either the X or ¥
direction) and a linear temporal drift correction applied within
A least squares fit is used to “"tie in" the whole
surface and the standard deviation of the error surface thereby
The stability and reproducibility of the drift cor-
rection is discovered, by remeasuring the whole surface.

assessed.
Since
each run takes some 16 hours, the test that two or more runs
should agree is indeed stringent. The extent of this reproduci-
bility is best illustrated by examining the data. In Figure 5,
we show typical error surface. This surface is a measure of the
roll of the table (at its origin) as a function of X and Y ma-
chine positions at Z = 0. The total roll is about 2 sec (as
measured in the space frame) and Figure § is a result of com-
bining 6 runs (7800 data points, each averaged for 30 sec). The
resulting standard deviation of this surface 1s about +0.01 sec.
Similar surfaces have been prepared for the error terms listed as
stored in Table 1. The standard deviations of the angular error
surfaces are of the order of hundredths of a second of arc and of
The stralgntness errors of the order of micrainches (1 pinch = 25
nm). Qur work so far has shown that the five table errors {4, ¥s
Q, YO, iu) are independent of the Z probe position, which con-
siderably simplifies the analysis.

The excellent reproducibility of these error surfaces leads us
to have considerable faith in both the geometrical integrity and
temporal predictability of our machine. That is not to say that
the drift is always the same, but vather by careful choice of a
measurement algerithm such behavior may be reliably removed. We
are now ready to describe a typical measurement of a gage at
NBS.

The Complete Measurement Algorithm

The complete measurement algorithm for measurement of a three
{or two) dimensional gage is schematized in Figure 6, The algo-
rithn begins with positioning- the gage on the table. HNo attempt
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Figure 6 - Measurement flow chart for a multi-dimensional

: Each set of 2 vuns at a single
position has a flow diagram like that shown for
Dashed 1ines indicate where
statistical checks are pérformed. The last
least squares fit of the redundant data is of
course a stringent statistical test.

calibration.

position 1.

is made to align the preferred (by the user) gage coordinate
system with the machine system. Furtherwore once the original
position {position 1 on the Figure is established) the possible
positions for 2 and 3 are constrained since rotations of m a{m =
1,2) yield no new information, in fact =/4 and w/2 rotations are
preferred, The operator then designs a typical run algorithm (as
described in Section 1) which contains the repeated point and the
check points. - One such path, for the NBS 2-0 ball plate, is
shown Figure 7. An attempt is made to randomize the path so that
distances measured will not be correlated with time. The machine
encoders are set at prescribed values to allow retrieval of the
error matrices previously described. The plate is then measured,
recording the laser readings, encoder readings and time of each
gage point location. Atmospheric conditions and average gage
temperature are recorded at the beginning and end of each run.

The resulting data set is then transferred to a large computer
(UNIVAC 1108) where the following computations are performed.
First the time correction is computed nn;l applied using the
standard deviation of the check points to test the applicability
of the model. Next the corrections for the machine geometric
distortions are made with the ervor matrices stored in the com-
puter. rinally the laser wavelenyglh is currected for atmospheric
conditions and the gage size corrected for thermal expansion (a1l
results are reported for 20 °C).

The resulting set of coordinates, called a single run, and
their standard deviations are stored for future analysis. Such a
run may take from 3 to 6 hours.

The process is now repeated and a second such set of coordinates
and errors generated., These results are combined with those of
the previous run. The standard deviation {rms) of the combined
runs ivs compared to the single run deviation. If there is a

Figure 7 - Typical run path for the NBS 2-D ball plate. Point
7 is the repeated point and points 3,6,8 and 9 the
check points.

statistically significant increase in the random error a new run
is instituted. This process checks specifically the applica-
bility of the time, atmospheric and thermal expansion correction,
as well as giving a good estimate of the gage point Tocation
error,

The whole process is now repeated for 2 different orientations
of the gage WRT the measurement machine. Rotations of 90° (n/2
radians) and 45° {r/4 radians) are particularly sought after
since the former exchanges the axes and the latter mixes the
axes.
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The final results of these measurements are three complete sets
of coordinates and errors in three different coordinate systems.
Naturally these coordinates look nothing alike as they differ
from each other by finite rotations, by scale errors and by
machine axes non-orthogonality. These results are used as the
input to a large nonlinear least squares fit which treats these
numbers as data and the "coordinates®, the angles describing the
gage orientations and the angles characterizing the machine axes
non-orthogonality as parameters. The constraint that the pre-
ferred gage coordinate axes should pass throngh specific gage
points is used in this final fit. :

Summary

The algorithm described in the preceding text is a recent
synthesis of several different approaches. At the time of this
writing it is fully implemented. in two-dimensions and nearing
completion in three. Only the passage of time will allow com-
plete assessment of its usefuiness. Particularly we must es-
tablish a history on the multi-dimensional error matrices and
perhaps a wear model for the updating of these matrices. At this
time the hardware for the pitch, roll and Z-straightness of the
gage WR1 the table is also in the deveiopment stage. {These
measurements are only required in three dimensions).

We have however already learned a great deal. The short term
reproducibility of the error matrices is quite encouraging and
has been shown to be valid over periods of a month ar so. We
have also created several questions that as yet are unanswered.
Specifically though we can obtain single run standard deviations
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on a large ball plate that are equal to our location error

(v6 winches, .15 wm}. The total error (1} of the complete
algorithm after multiply redundant measurements is of the order
of twice that. This inclines us to believe that some systematics
have been excluded from our analysis and we are pursuing their
sources. Scale errors are not currently included in our multiple
redundancy programs on the assumption that the properly aligned
H.P. interferometers provide an accurate and stable metric:

Tests of these lasers against an iodine stabilized helium-neon
laser show a frequency stahility of parts in 108 which would seem
to support this assumption. We expect that with continued re~
search and study these problems will be solved.
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