

1)

Carbon Sequestration and Concrete

Paul Seiler, Director of Technology

Beachwood, June 8, 2022

>>

A brand of **MBCC** GROUP

ASTER

> 4 billion tons

> 40% in Residential

~70% Population in Cities

Demand for concrete, and concrete products will continue to increase

Source: The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete report

Concrete as main building material

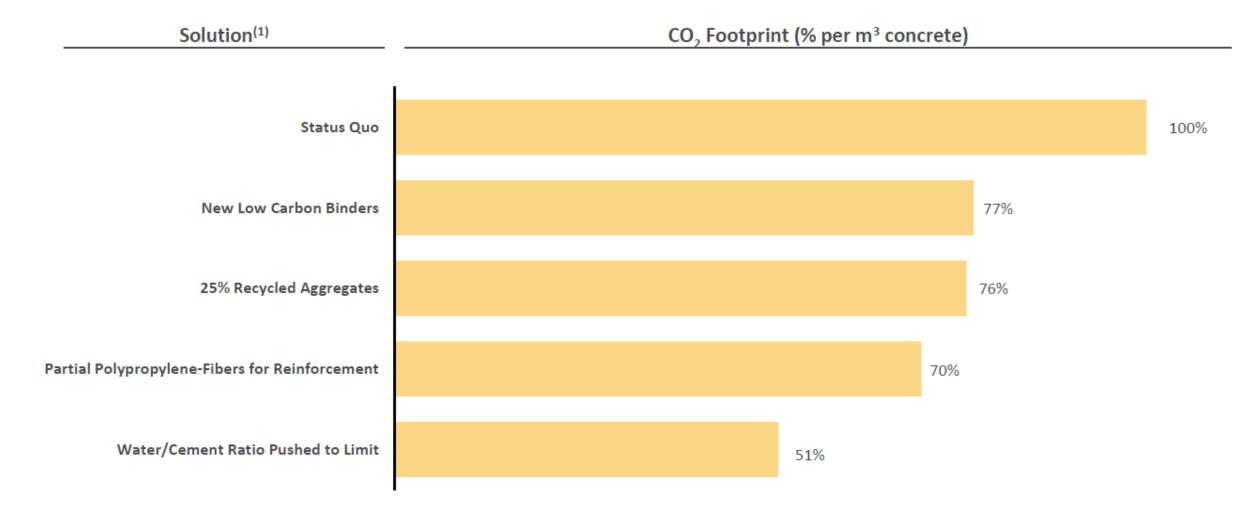
Concrete has several advantages to other building materials:

- >> Availability
- >> Durability
- >> Fire resistance
- >> Strength
- >> Resilience

- >> Versatility
- >> Place ability
- >> Thermal properties
- >> Carbon uptake
- >> Circular Economy

However... Producing the Raw Materials, transporting and placing is CO2 intense!

Source: The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete report


Reducing the CO₂ Footprint

Different Approaches:

- >> Material optimization:
 - >> Supplementary Cementitious Materials
 - >> Admixtures (focus on strength)
 - >> Recycled aggregates
 - >> Fiber reinforcement
- >> CO2 uptake during production and/or curing

Reducing the CO₂ Footprint

Highly Optimized Mix Designs

>> One World Trade Center

Environmental Impacts	Environmental Savings	
Energy usage	25,400,000 kWh (91,440,000 MJ)	
Greenhouse gas emissions	34,800,000 lb C0 ₂ eq (15,785,000 kg)	
Water emissions	5,247,000 gal (19,862,000 L)	
Solid waste	1,720,000 lb (780,178 kg)	

Highly Optimized Mix Designs

>> 432 Park Avenue

Climate Change

432 Park Avenue

Based on 90,000 yds³ of concrete developed for four compressive strengths

Environmental Impact	Environmental Savings		
Energy usage	822,000 kWh	2,959,200 MJ	
Climate change	21,120,000 lbs CO ₂ eq	9,579,000 kg CO ₂ eq	
Water emissions	191,500,000 gal	724,900,000 liters	
Solid waste	605,000 lbs	274,400 kg	

O

Waste Reduction

This analysis compares the actual mix designs to reference concrete mixes with similar design requirements. The analysis was completed using the BASF Eco-Efficiency Analysis

Opportunity

Utilization of CO₂ during the manufacturing or curing process

- >> Thermodynamically favorable reaction mechanism
- >> Stable carbonates outlasting the life of the structure
- Solution Growing concrete demand increases potential sequestration opportunities

Net CO₂ uptake benefits vary dramatically on how CO₂ is introduced to concrete

Source: Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit; Dwarakanath, R et al. – Nature Communications

Opportunity

Utilization of CO₂ during the manufacturing or curing process

Added during Mixing

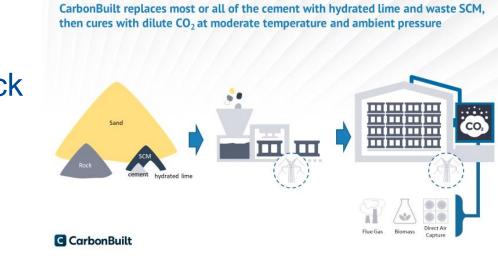
- Relies on CO2 capture, compression, storage and transportation
- Limited time contact between CO2 and concrete, with large amount lost to atmosphere.
- Can have impact on strength development

Added during Curing

- Redirects CO2 that would go to the atmosphere through a carbonation chamber
- Longer period of contact between concrete and CO2
- Directly contributes to the strength development (depending on the binder)

Studies demonstrate that CO2 uptake during curing is significantly higher than during mixing

Source: Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit; Dwarakanath, R et al. – Nature Communications



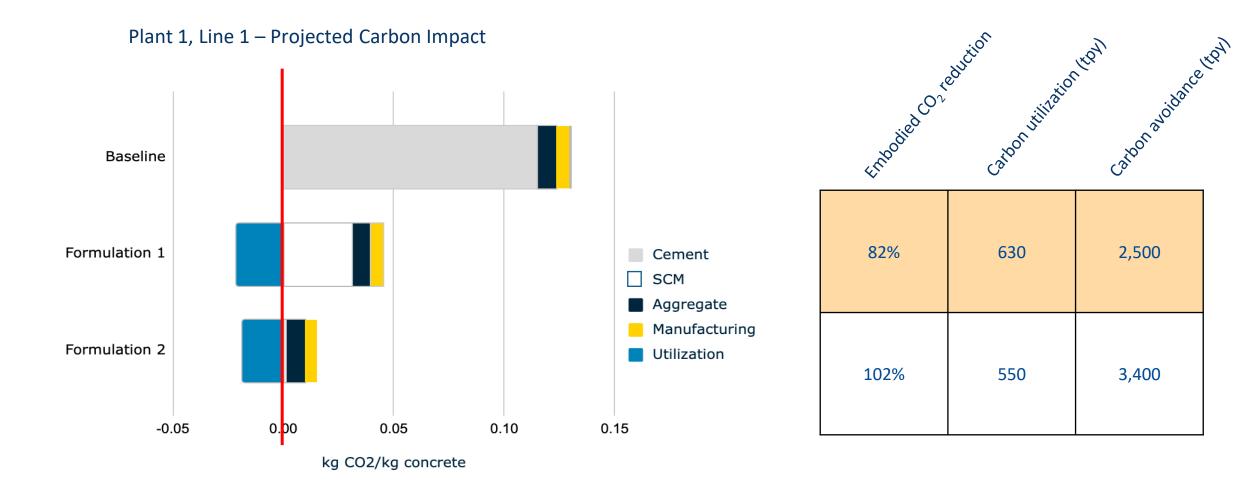
Carbonation during Curing

Example: Portlandite-rich Systems for Concrete Block

Materials:

- >> Minimal (if any) amount of OPC
- >> Higher levels of Calcium Hydroxide
- >> Supplementary Cementitious Materials
- >> Admixtures

Process:


- >> CMUs manufactured with normal equipment
- Transferred to Carbonation Chamber colocated at generation site

Analysis indicates up to 0.75lb of CO2 captured per block.

Source: CarbonBuilt

Effect on Embodied Carbon

Master Builders Solutions – a brand of MBCC Group

Conclusion

- >> Technologies to reduce embodied carbon exist, and continue evolving
 - >> High optimization
 - >> Sequestration/ Mineralization

- >> Further industrialization is key, alongside co-location
 - >> Extend to precast concrete (wet cast)
- >> Incentives and policy changes can expedite adoption

MASTER® >> BUILDERS SOLUTIONS