Performance Evaluation of Ultrasonic Flow Meters in NIST's Smokestack Simulator

Liang Zhang

National Institute of Metrology, China

Performance Evaluation of USM in NIST's SMSS

Smokestack Simulator of NIM China

Flue Gas Ultrasonic Flowmeter

USM Evaluation Using CFD Simulation

Calculate the flow field in the SMSS using CFD
Estimate the performance of different USMs

Give recommendation for the path layout of spool

piece

Provide users with a reference when selecting USM.

□Use for extrapolate the SMSS test result to real

stack.

CFD Simulation Method

CFD Flow Field in SMSS

38.0 m/s 36.1 m/s 34.2 m/s 32.3 m/s 30.4 m/s 28.5 m/s 26.6 m/s 24.7 m/s 22.8 m/s 20.9 m/s 19.0 m/s 17.1 m/s 15.2 m/s 13.3 m/s 11.4 m/s 9.50 m/s 7.60 m/s 5.70 m/s 3.80 m/s 1.90 m/s 0.00 m/s

Axial Velocity Integral Error

$$E_{1} = \sum_{i=1}^{n} w_{i} v_{ai} S_{c} - \lim_{m \to \infty} \sum_{j=1}^{m} w_{j} v_{aj} S_{c}$$

Transverse Flow Projection Error

$$E_3 = -\sum_{i=1}^n w_i v_{ci} \tan \theta S_c$$

Cross Path/Plane Compensation

Velocity Impact on Measurement

□ In the velocity range of 10m/s to 25m/s, velocity dose not have obvious impact on USMs measurement errors

Cross Path Diametric USM

5.0% 2.0% A=0E1 IA=0 E1 ⊘ 0.0% \diamond 1.5% ▲ IA=0 E2 ▲ IA=0 E2 0 -5.0% IA=0 E3 IA=0E3 -10.0% 1.0% Error Error ♦ IA=0 Et ◆IA=0Et -15.0% ۵ Δ □ IA=90 E1 □IA=90E1 0.5% -20.0% △ IA=90 E2 △IA=90E2 -25.0% 0.0% OIA=90 E3 Ô OIA=90E3 -30.0% 😫 Ô ◙ ً ♦ IA=90 Et ♦IA=90Et -0.5% -35.0% 10 15 20 25 15 20 25 10 Flowrate (m/s) Flowrate (m/s)

4*2 Path Mid-Radius USM (Gauss-Jacobi)

Flow Profile Correction Factor

Flow profile correction factors (FPCF)

$$K_{1} = 1 + 0.2488 \cdot \operatorname{Re}^{-\frac{1}{8}} \left(3 \times 10^{3} \le \operatorname{Re} \le 10^{6} \right)$$

$$K_{2} = 1.119 - 0.011 \cdot \log \left(\operatorname{Re} \right) \left(3 \times 10^{3} \le \operatorname{Re} \le 5 \times 10^{6} \right)$$

$$K_{3} = 1 + 0.01\sqrt{6.25 + 431 \cdot \operatorname{Re}^{-0.237}} \left(3 \times 10^{3} \le \operatorname{Re} \le 10^{6} \right)$$

L. C. Lynnworth, 1989

J. C. Jung et al., 2000

Korean Nuclear Society, 2001

PA45°, A Single Path IA=0°

PA45°, AB Cross-Path IA=0°

Error Analysis of Diametric USMs

Integration Methods for Mid-Radius USMs

- Gauss-Jacobi and Optimized Weighted Integration for Circular Section (OWICS) are the most accurate integration method for USMs in circular pipes.
- □ For 2*2 path USM, the measurement error of OWICS USMs decrease quicker than Gauss-Jacobi USMs.

Error Analysis of Mid-Radius USMs-PN 2&4

Error Analysis of Mid-Radius USMs-PN 4&8

Error Analysis of Mid-Radius USMs-PN 3&6

□ Staggered path USMs transverse flow error compensation effects depend on the flow field in the pipe and path layout.

OWICS, Path Angle 45°, 15m/s

Impact of USM Path Angle

$$E = \left(\sum_{i=1}^{n} w_i v_{ai} S_c - \lim_{m \to \infty} \sum_{j=1}^{m} w_j v_{aj} S_c\right) - \lim_{m \to \infty} \sum_{j=1}^{m} w_i v_{cj} \cot \theta S_c - \sum_{i=1}^{n} w_i v_{ci} \tan \theta S_c$$
$$\approx \left(\sum_{i=1}^{n} w_i v_{ai} S_c - \lim_{m \to \infty} \sum_{j=1}^{m} w_j v_{aj} S_c\right) - 2\sum_{i=1}^{n} \frac{w_i v_{cj} S_c}{\sin 2\theta}$$

 \Box E₁ of different path angle USM depend on the flow field in the pipe

2-4 path single plane USM may have the minimum absolute E₂+E₃ in 45° path angle

□ For cross-plane USM, the E_2+E_3 can be partially or completely canceled out, it depends on the distribution of transverse velocity in the pipe.

Conclusion

- □ Flowrate have little effect on the measurement errors of diametric path and mid-radius path USMs
- □ USMs measurement errors reduced with the increase of upstream straight pipe length
- Using cross-plane or cross-path USM configuration, measurement errors introduced by transverse flow can be totally or partially compensate
- Optimization of the USM installation angle will reduce the transverse flow velocity component in the path, especially for a single plane USM
- Diametric USMs integration errors are significantly greater than the mid-radius USMs

Conclusion

- □ For diametric USMs, using dual cross-path do not obviously enhance the USM performance compared to cross-path USM.
- □ Overall, the measurement errors of OWICS USMs are lower than Gauss-Jacobi USMs, especially when the path number is low
- Mid-radius path USMs measurement errors decrease with the path number increase
- For a single-plane USM, usually in 45° path angle, measurement error introduced by the transverse flow may reach the smallest value.
- Recommendation for spool piece: cross plane mid-radius USM using OWICS integration method

Performance Evaluation of USM in NIST's SMSS

Smokestack Simulator of NIM China

Smoke Stack Simulator of NIM

Smoke Stack Simulator of NIM

Components Smoke Stack Simulator

Primary Standard

LDA Velocity Area Method

-5

ò

mm

5

Pitot Tube Calibration Section

USM Working Standard

Working Standard: DN800 8-Path Flowsic600 Ultrasonic Flowmeter

Completion Time: November 2015

1 al and the

5

Thank you for your attention

zhangliang@nim.ac.cn