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Environment: IT Industry
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The Transistor Historically Fueled IT Growth
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= How far can silicon technology be extended ?
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CMOS Scaling Rules

Dimensions Approaching Atomistic & Quantum-Mechanical Boundaries
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R. H. Dennard et al.,

IEEE J. Solid State Circuits, (1974).

RESULTS:
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Challenges in Extending Si-CMOS Technology

Dimensions Approaching Atomistic & Quantum-Mechanical Boundaries

= Growing Device & Chip Power Dissipation

= Increasing Process & Device Variability

= Degraded Device Performance With Scaling

= Formidable Lithography Capability & Process Complexity

= Degraded Interconncet RC Performance Scaling

NIST EEEL | T.C. Chen © 2009 IBM Corporation May 12, 2009




IBM Research | Science & Technology

Iin
T
@

Localized Variability
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Channel Scaling
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Stress Engineering Innovation

Example: Dual Stress Liner for 90nm
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H.S. Yang et al. IEDM 2004
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Gate Length Requirement
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Node | Device Pitch (nm) Nominal L (nm)
(required to fit pitch)
45 170-180 40-45
32 120-130 30-37
22 80-100 20-30
15 60-70 15-23
11 45-50 12-18

Gate Pitch
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Nitride Cap
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Conventional (Non High-K)
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Gate First Process with HKMG

Scalable process for future technology
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AC Performance Improvement with HK-MG

40% Delay Improvement At Fixed Leakage Or 10x Leakage Reduction At Fixed Delay
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X. Chen et al., VLSI 2008
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FINFET Advantages
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= Better short channel |

control AlS| == p| A2 Af
. A

= Short channel effect is Substrate
ContrO”ed by the A=tdep-i-“':si/soxtox A=2(tsi_'-‘c"si/“‘:oxtox) A=tsi-i-‘gsi/‘goxztox)
thickness of the thin A~ IAN L. ~3t,+9 L. ~15t,+09t
body Instead of Planar bulk Planar FDSOI FD DGFET
Ch ann el d o) p | n g W. Haensch, et al IBM J of R&D July 2006

— Reduced random dopant fluctuation

— Improved mobility due to lower vertical field and less coulombic
scattering

— Improved DIBL and SS due to better control of SCE

= Much lower parasitic junction capacitance

= Performance boost for pFET with <110> conducting
surfaces
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FINFET Challenges — Variability Control
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= Variability in FInNFETSs Drain
— Fin thickness (Dfin) variation
— Gate length (Lg) variation
— Metal gate-workfunction (Fm) variation
— Tinv variation
— Vertical extension doping

homogeneousness along the sidewall Source Ty

— Resistance variation

A ' A Process A
: ® Process B

15 20 25 30
Finwidth (nm) |\ \wasaki, et al IEDM 2008
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Silicon Nanowires

The Ultimate Si Field Effect Transistor

(100)

(b) ) R

O. Gunawan et al., DRC 2008
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Current scaling with Si Nano-wire dimensions

The Ultimate Si Field Effect Transistor
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Computational and Physical Efforts Keep Litho Scaling Alive

Computational Scaling Technology Required beyond 32nm
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Why We Do Computational Lithography

Enabling On-Wafer Pattern Realization

Without Computational Lithography With Computational Lithography
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Mask Inspection Challenges for Adv RETs (SMO)

= Defining a defect is difficult

= Mask inspection systems (e.g.

= [Inspection systems need to

18

when one-to-one

correspondence between mask
shape and wafer print is broken

AIMS) must emulate the

complete photolithography
process in order to predict the

defect impact on wafer

support highly complex

illuminators & match the exact
configuration of the scanner
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Effect of Missing Isolated Pixels
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Three Dimensional Integration (3DlI)

3D Integration Incorporates Multiple Chips Into a Single Package

= 3D Technology integration is a family
of technologies enabling vertical
stacking of semiconductor chips
and other components

= It is the next revolution in Semiconductor
technology roadmap and is fundamental to
staying on the path of performance improvement

= Compared to conventional 2D

3D integration can provide:
— Massive bandwidth
— Much higher capacity

— Variety of chips (& functions) in a single stack
« - More functionality in a smaller size

— Power reduction and better performance

The integration of 3D technology will enable performance,

form factor, power savings, and cost requirements of the
next generation of electronic devices
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3D: Multiple Chips Stacked Vertically
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The 3D/TSV Solution — Fundamental Technologies
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= Enabling the product roadmap requires a suite of & ;;!7;:5;_, &
- frobf ;’ ™ f"’::‘ LR ) [
technologies e -,:,:’1"-'&‘

= Each technology in the suite presents significant &= S i

challenge
= |In addition to technology, Systems Re-architecture

and EDA tool development are required
THERMAL INTERFACE SOLUTIONS

Known good die and test

process / methodology
Acked die assembly/handling
Wafer thinning, exposing

TSVs and forming
backside contacts

Permanent and temporary wafer

Alignment
techniques

TSV formation
process
-etching TSVS
-insulating TSVs

-filling TSVs _ : :
Fine oitch 3D Embedded passive & bonding and debonding
P active circuitry process/ ~ BGA/LGA warpage and CPI issues
electrical .
: test / yield
connection
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3D Metrology

= TSV Diameter, depth, pitch, aspect ratio,
density, uniformity

TSV Interconnection to CMOS FEOL / BEOL
level

TSV Dielectric uniformity, conductor fill,
defect free
Wafer planarity

= Mechanical Wafer handle adhesion

= Wafer thinning uniformity, absolute
thickness

= Backside wafer finishing

= Wafer bow with handle wafer, free
standing

= Bump size, uniformity

= Wafer test positional accuracy, KGD test

= Stack alignment, electrical contact
resistance

= Thermal stack resistance, Electrical stack
resistance
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CMOS ring oscillator built on a single carbon nanotube

Tim_Dalton@US.IBM.COM | Nanotechnology © 2009 IBM Corporation May, 2009
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CMOS Ring Oscillator on Individual Carbon Nanotube
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SV Z. Chen et al., (IBM), Science, 311, 1735 (2006).
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Conclusions

= Continued CMOS scaling will require continued Innovation
and optimization in materials and device structures

= Successful implementation of High-k, Strain Engineering,

and Body-controlled Devices will enable device performance
enhancement

= 3D Integration is fundamental to staying on the path of
system-level performance improvement for microelectronics
iIndustry

= Beyond Si at least another Decade of technology innovation
IS foreseeable
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