



# Improving Image Quality for Recognition

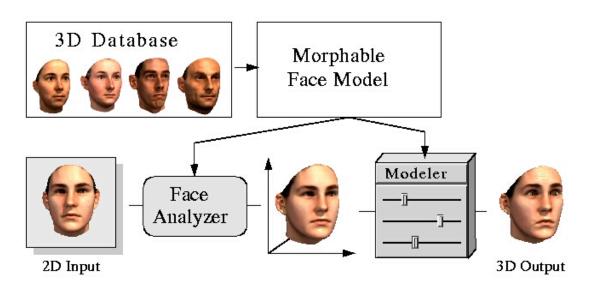
# Rama Chellappa Dept. of ECE and UMIACS University of Maryland





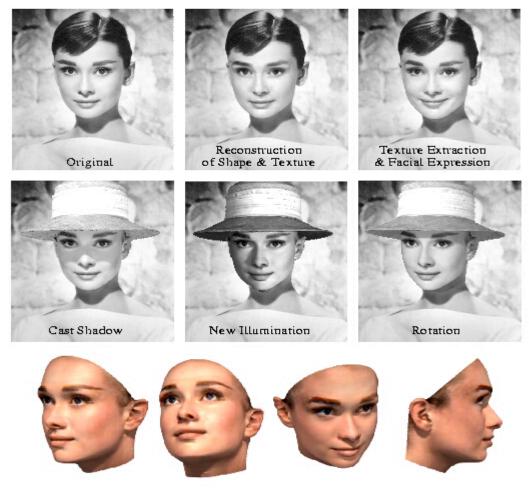
## Things that Make Faces Look Bad

- Illumination
- Pose
- Motion
- Atmospherics
- Expressions
- Aging
- Disguises
- Effectiveness of improving the quality measured by the increase in recognition performance.
- For an academician, poor images offer more opportunities!









- Similar to AAM and vectorized representation
- After manual initialization, align a novel 2D image to a morphable 3D model learnt from a set of training samples

Blanz and Vetter PAMI 2003





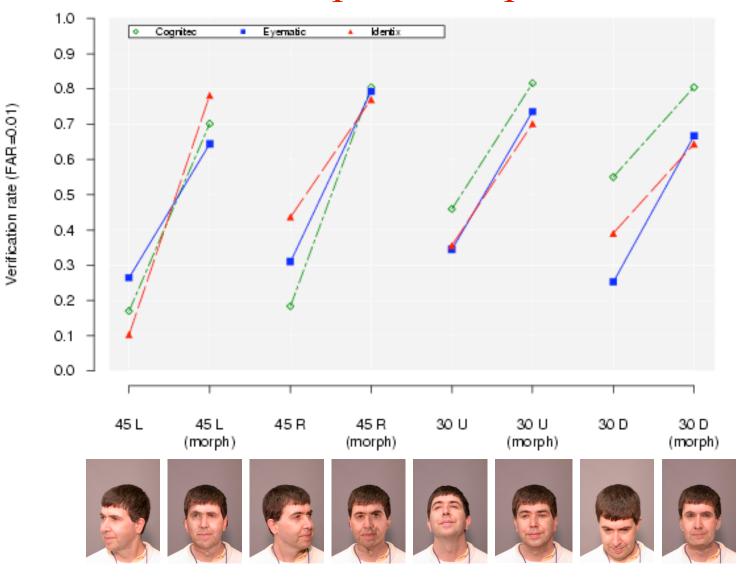




Recovered 3D shape and synthesized images Computional cost, semiautomatic.






#### Medium Computational Intensity Test 3D Morphable Models







#### Pose & Morphable Experiment







#### . Photometric Stereo

- Use shape from shading algorithms for synthesizing frontal, illumination-normalized images. [Zhao and Chellappa, IJCV 2001]
- Images of an object generated by a moving light source can be spanned using a subspace of dimension 3. [Shashua, IJCV, 1997].
  - Add an ambient component subspace becomes 4-D. [Yuille, et al, IJCV, 1999]
- With attached shadows infinite dimensional [Belhumeur and Kriegman, IJCV, 1998]
  - Low-dimensional approximation [Basri and Jacobs, CVPR, 2001, PAMI, 2003]
  - Ramamurthi and Hanrahan [JOSA, 2001]
- Object specific samples [Except Shashua and Raviv, PAMI 2001]





## Generalized Photometric Stereo

- Handles all appearances of all objects in a class
  - Human face class
- Rank constraint on the product of albedo and surface normal
  - Factorization of class-specific ensemble into two matrices
  - Albedo and surface normal
  - Blending linear coefficients and lighting conditions
- Class-specific ensemble
  - Exemplar images of different objects, each under different illumination. Goes beyond bilinear analysis (Freeman and Tenenbaum, CVPR 1997)
- To enable full recovery of albedo and surface normal
  - Integrability and symmetry constraints.
  - Zhou, Agarwal, Chellappa and Jacobs, IEEE Trans. PAMI feb. 2007.



DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING IMAGE Formation Model University of Maryland Institute for Advanced Computer Studies

Pixel:

$$h = \rho \cos(\theta) = \rho \mathbf{n}^{\mathrm{T}} \mathbf{s} = \mathbf{t}^{\mathrm{T}} \mathbf{s}$$

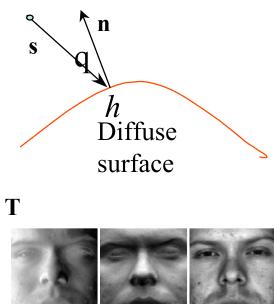

$$\mathbf{n} = [\hat{a}, \hat{b}, \hat{c}]^{\mathrm{T}}, \ \mathbf{t} = [a = \rho \hat{a}, b = \rho \hat{b}, c = \rho \hat{c}]^{\mathrm{T}}$$
$$\rho = \sqrt{\mathbf{t}^{\mathrm{T}} \mathbf{t}} = \sqrt{a^{2} + b^{2} + c^{2}}$$

Image: 

$$\mathbf{h}_{d\times 1} = \begin{bmatrix} h_1, h_2, \dots, h_d \end{bmatrix}^{\mathsf{T}}$$
  
= 
$$\begin{bmatrix} \rho_1 \mathbf{n}_1^{\mathsf{T}} \mathbf{s}_1, \rho_2 \mathbf{n}_2^{\mathsf{T}} \mathbf{s}_2, \dots, \rho_d \mathbf{n}_d^{\mathsf{T}} \mathbf{s}_d \end{bmatrix}$$
  
= 
$$\mathbf{T}_{d\times 3} \mathbf{s}_{3\times 1}$$

**T**: shape matrix for one person [Shashua IJCV'97]











Key derivations:

$$\mathbf{h}_{d \times n} = \mathbf{T}\mathbf{s} = [\mathbf{T}_1, \mathbf{T}_2, ..., \mathbf{T}_m] \mathbf{f} \otimes \mathbf{I}_3)\mathbf{s}$$
$$= \mathbf{W}_{d \times 3m} (\mathbf{f}_{m \times 1} \otimes \mathbf{s}_{3 \times 1})$$

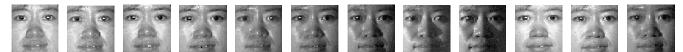
- Key properties:
  - $\mathbf{W} = [\mathbf{T}_1, \mathbf{T}_2, ..., \mathbf{T}_m]$  class-specific albedo-shape matrix for all faces.
  - **f** : illumination-invariant. Good for recognition.
  - Bilinear in f and s .
  - Learn W from the training set.



.

11-4




## Eigenface on PIE

|   |                 | 0        | 10       | (0.3)    | (8-1)<br>(8-1) |          | 0        |          | 10       |          | (8)<br>(8) | 611      | ie an    |         |
|---|-----------------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|------------|----------|----------|---------|
|   | Gallery         | $f_{08}$ | $f_{09}$ | $f_{11}$ | $f_{12}$       | $f_{13}$ | $f_{14}$ | $f_{15}$ | $f_{16}$ | $f_{17}$ | $f_{20}$   | $f_{21}$ | $f_{22}$ | Average |
|   | Probe           |          |          |          |                |          |          |          |          |          |            |          |          |         |
|   | $f_{08}$        | -        | 100      | 90       | 66             | 21       | 9        | 1        | 9        | 4        | 60         | 60       | 1        | 38      |
|   | $f_{09}$        | 100      | -        | 72       | 94             | 59       | 31       | 10       | 24       | 13       | 51         | 84       | 13       | 50      |
|   | $f_{11}$        | 97       | 91       | -        | 100            | 29       | 24       | 13       | 15       | 10       | 100        | 94       | 19       | 54      |
|   | $f_{12}$        | 93       | 97       | 100      | -              | 93       | 90       | 56       | 59       | 35       | 96         | 100      | 69       | 81      |
|   | $f_{13}$        | 19       | 62       | 22       | -68            | -        | 97       | 82       | 100      | 68       | 13         | 84       | 81       | 63      |
| 6 | f <sub>14</sub> | 9        | 15       | 12       | 62             | 180      | -        | 100      | 84       | 82       | 12         | 72       | 100      | 59      |
| 1 | $f_{15}$        | 0        | 3        | 1        | 4              | 76       | 100      | -        | 74       | 76       | 1          | 18       | 100      | 41      |
|   | $f_{16}$        | 6        | 25       | 3        | 31             | 82       | 65       | 71       | -        | 100      | 3          | 41       | 57       | 44      |
|   | $f_{17}$        | 4        | 12       | 3        | 31             | 51       | 56       | 81       | 100      | -        | 3          | 28       | 59       | 39      |
|   | $f_{20}$        | 88       | 76       | 100      | 99             | 28       | 28       | 15       | 12       | 16       | -          | 99       | 19       | 53      |
|   | $f_{21}$        | 84       | 97       | 97       | 100            | 96       | 88       | 57       | 74       | 46       | 96         | -        | 71       | 82      |
|   | $f_{22}$        | 3        | 4        | 3        | 13             | 72       | 100      | 100      | 50       | 57       | 3          | 24       | -        | 39      |
|   | Average         | 46       | 53       | 46       | 61             | 64       | 62       | 53       | 54       | 46       | 40         | 64       | 54       | 54      |



Fisherface on PIE

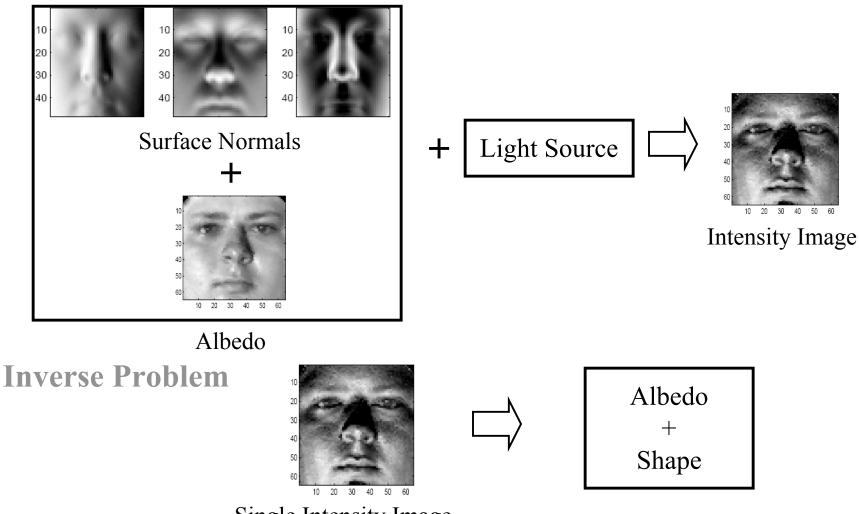




|    |                 | States and the second |          |          |          |          |          | the formation of the second |          | Constant of the second s |          |          | and the second |         |
|----|-----------------|-----------------------|----------|----------|----------|----------|----------|-----------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------------------------------------------------------------------------------------------------|---------|
|    | Gallery         | $f_{08}$              | $f_{09}$ | $f_{11}$ | $f_{12}$ | $f_{13}$ | $f_{14}$ | $f_{15}$                    | $f_{16}$ | $f_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f_{20}$ | $f_{21}$ | $f_{22}$                                                                                                         | Average |
|    | Probe           |                       |          |          |          |          |          |                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |                                                                                                                  |         |
|    | $f_{08}$        | -                     | 97       | 97       | 93       | 63       | 56       | 29                          | 16       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94       | 85       | 29                                                                                                               | 61      |
|    | $f_{09}$        | 99                    | -        | 97       | 99       | 96       | 88       | 38                          | 21       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91       | 96       | 57                                                                                                               | 72      |
|    | $f_{11}$        | 99                    | 96       | -        | 99       | 62       | 63       | 29                          | 16       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      | 94       | 41                                                                                                               | 65      |
|    | $f_{12}$        | 96                    | 99       | 100      | -        | 93       | 91       | 40                          | 22       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99       | 100      | 69                                                                                                               | 75      |
|    | $f_{13}$        | 74                    | 93       | 69       | 84       | -        | 100      | 71                          | 37       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62       | 87       | 97                                                                                                               | 72      |
| 4  | f <sub>14</sub> | 66                    | 88       | 74       | 93       | 100      | -        | 76                          | 34       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71       | 93       | 100                                                                                                              | 74      |
| 25 | $f_{1p}$        | 22                    | 34       | 24       | 35       | 71       | 66       | -                           | 82       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28       | 44       | 99                                                                                                               | 50      |
|    | $f_{16}$        | 12                    | 21       | 13       | 18       | $^{28}$  | 26       | 74                          | -        | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18       | 22       | 47                                                                                                               | 33      |
| 20 | f <sub>17</sub> | 6                     | 7        | 9        | 13       | 15       | 18       | 40                          | 81       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13       | 16       | 24                                                                                                               | 22      |
|    | $f_{20}$        | 93                    | 88       | 100      | 96       | 63       | 68       | 32                          | 19       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | 96       | 43                                                                                                               | 65      |
|    | $f_{21}$        | 87                    | 94       | 100      | 100      | 93       | 99       | 51                          | 22       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99       | -        | 84                                                                                                               | 77      |
|    | $f_{22}$        | 41                    | 65       | 43       | 62       | 96       | 100      | 100                         | 56       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46       | 71       | -                                                                                                                | 64      |
|    | Average         | 63                    | 71       | 66       | 72       | 71       | 70       | 53                          | 37       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65       | 73       | 63                                                                                                               | 61      |



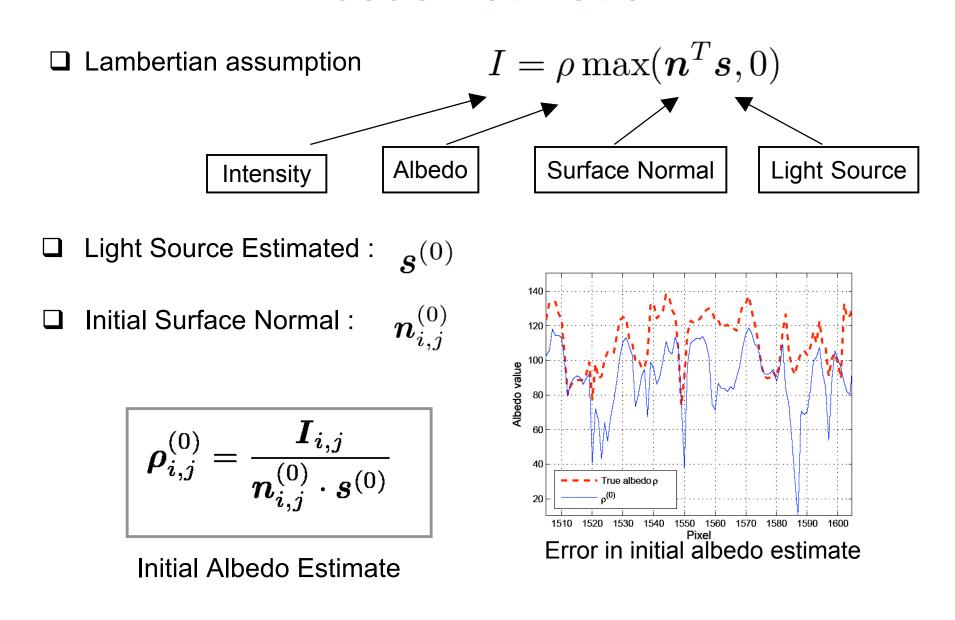





|      | Gallery           | $f_{08}$ | $f_{09}$ | $f_{11}$ | $f_{12}$ | $f_{13}$ | $f_{14}$ | $f_{15}$ | $f_{16}$ | $f_{17}$ | $f_{20}$ | $f_{21}$ | $f_{22}$ | Average |
|------|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| ĺ    | Probe             |          |          |          |          |          |          |          |          |          |          |          |          |         |
|      | $f_{08}$          | 100      | 100      | 100      | 100      | 97       | 91       | 79       | 62       | 40       | 100      | 96       | 84       | 87      |
|      | $f_{09}$          | 100      | 100      | 100      | 100      | 100      | 100      | 96       | 87       | 69       | 100      | 99       | 99       | 96      |
|      | $f_{11}$          | 100      | 100      | 100      | 100      | 99       | 99       | 93       | 71       | 49       | 100      | 100      | 96       | 92      |
|      | $f_{12}$          | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 91       | 81       | 100      | 100      | 100      | 98      |
| 4    | 5 f <sub>13</sub> | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 94       | 100      | 100      | 100      | 100     |
| 200  | $f_{14}$          | 97       | 100      | 100      | 100      | 100      | 100      | 100      | 99       | -99      | 100      | 100      | 100      | 100     |
|      | $f_{15}$          | 82       | 96       | 87       | 100      | 100      | 100      | 100      | 100      | 100      | 91       | 100      | 100      | 96      |
| 215  | $f_{16}$          | 66       | 79       | 75       | 91       | 100      | 00       | 100      | 100      | 100      | 75       | 97       | -100     | 90      |
| e je | $f_{17}$          | 56       | 69       | 68       | 84       | 93       | 97       | 100      | 100      | 100      | 71       | 90       | 99       | 86      |
|      | $f_{20}$          | 99       | 100      | 100      | 100      | 99       | 100      | 94       | 74       | 60       | 100      | 100      | 99       | 94      |
|      | $f_{21}$          | 99       | 100      | 100      | 100      | 100      | 100      | 100      | 97       | 87       | 100      | 100      | 100      | 99      |
|      | $f_{22}$          | 94       | 99       | 99       | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 100      | 99      |
|      | Average           | 91       | 95       | 94       | 98       | 99       | 99       | 97       | 90       | 82       | 95       | 99       | 98       | 95      |






#### **Image Formation Model**



Single Intensity Image







Albedo Estimation





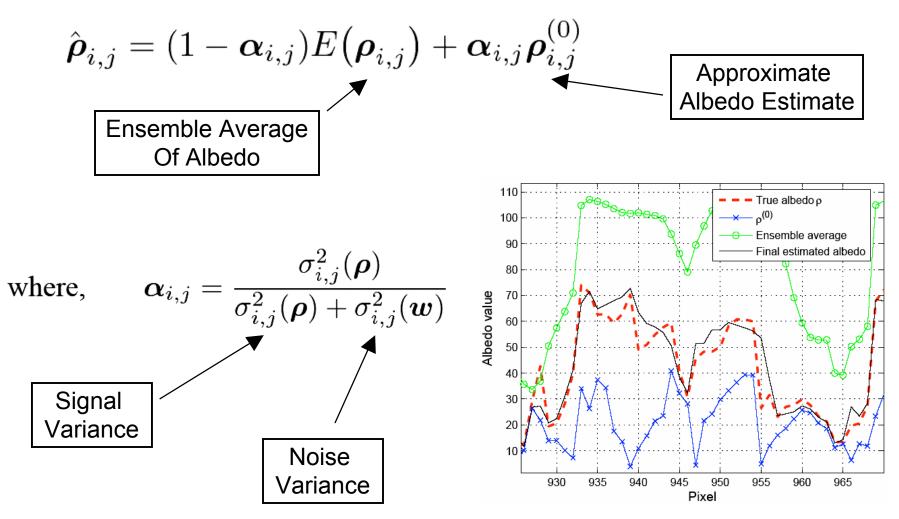
#### Image Estimation Framework

Initial Albedo Estimate

$$oldsymbol{
ho}_{i,j}^{(0)} = rac{oldsymbol{I}_{i,j}}{oldsymbol{n}_{i,j}^{(0)}\cdotoldsymbol{s}^{(0)}} = oldsymbol{
ho}_{i,j}rac{oldsymbol{n}_{i,j}\cdotoldsymbol{s}}{oldsymbol{n}_{i,j}^{(0)}oldsymbol{s}^{(0)}}$$

$$oldsymbol{
ho}_{i,j}^{(0)} = oldsymbol{
ho}_{i,j} + rac{oldsymbol{n}_{i,j} \cdot oldsymbol{s} - oldsymbol{n}_{i,j}^{(0)} \cdot oldsymbol{s}^{(0)}}{oldsymbol{n}_{i,j}^{(0)} \cdot oldsymbol{s}^{(0)}} oldsymbol{
ho}_{i,j} \quad igsqprox igstarrow oldsymbol{
ho}_{i,j}^{(0)} = oldsymbol{
ho}_{i,j} + oldsymbol{w}_{i,j}}{oldsymbol{
ho}_{i,j}}$$

Signal Dependent Additive Noise


Non-stationary Mean Non-stationary Variance (NMNV) model for true albedo

- Unbiased source assumption and Uncorrelated Noise
- □ Biswas, Agarwal and Chellappa, ICCV 2007.





#### LMMSE Estimate: NMNV MODEL








#### Estimated Albedo – PIE Dataset







#### Relighting Using the Estimated Albedo







### Albedo-based Face Recognition

| Probe    | $f_{08}$ | $f_{09}$ | $f_{11}$ | $f_{12}$ | $f_{13}$ | $f_{14}$ | $f_{15}$ | $f_{16}$ | $f_{17}$ | $f_{20}$ | $f_{21}$ | $f_{22}$ | Avg | Avg [14] | Avg [31] |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|----------|----------|
| Gallery  |          |          |          |          |          |          |          |          |          |          |          |          |     |          |          |
| $f_{08}$ | -        | 100      | 100      | 99       | 93       | 91       | 79       | 72       | 44       | 100      | 96       | 85       | 87  | 89       | 92       |
| $f_{09}$ | 100      | -        | 100      | 100      | 99       | 97       | 91       | 90       | 75       | 100      | 99       | 93       | 95  | 93       | 97       |
| $f_{11}$ | 100      | 100      | -        | 100      | 100      | 97       | 88       | 78       | 57       | 100      | 100      | 93       | 92  | 92       | 95       |
| $f_{12}$ | 99       | 99       | 100      | -        | 100      | 100      | 96       | 96       | 87       | 100      | 100      | 97       | 98  | 96       | 98       |
| f13      | 99       | 99       | 100      | 100      | -        | 100      | 99       | 99       | 90       | 99       | 100      | 100      | 99  | 98       | 100      |
| $f_{14}$ | 97       | 99       | 100      | 100      | 100      | -        | 99       | 97       | 90       | 100      | 100      | 100      | 98  | 99       | 99       |
| $f_{15}$ | 84       | 94       | 88       | 100      | 100      | 100      | -        | 100      | 99       | 93       | 100      | 100      | 96  | 96       | 97       |
| $f_{16}$ | 76       | 97       | 79       | 99       | 100      | 99       | 99       | -        | 100      | 75       | 99       | 100      | 93  | 91       | 94       |
| $f_{17}$ | 53       | 82       | 56       | 90       | 96       | 94       | 94       | 100      | -        | 54       | 96       | 97       | 83  | 80       | 87       |
| $f_{20}$ | 100      | 100      | 100      | 100      | 100      | 100      | 94       | 78       | 57       | -        | 100      | 99       | 93  | 91       | 95       |
| $f_{21}$ | 99       | 99       | 100      | 100      | 100      | 100      | 93       | 94       | 85       | 100      | -        | 97       | 97  | 96       | 99       |
| $f_{22}$ | 90       | 99       | 97       | 100      | 100      | 100      | 100      | 97       | 91       | 97       | 100      | -        | 97  | 98       | 98       |
| Avg      | 91       | 97       | 93       | 99       | 99       | 98       | 94       | 91       | 80       | 93       | 99       | 96       | 94  | -        | -        |
| Avg [14] | 88       | 94       | 93       | 97       | 99       | 99       | 96       | 89       | 75       | 93       | 98       | 98       | -   | 93       | -        |
| Avg [31] | 90       | 97       | 94       | 99       | 99       | 99       | 98       | 93       | 87       | 95       | 99       | 99       | -   | -        | 96       |





### **Shape-based Face Recognition**

| Probe    | $f_{08}$ | $f_{09}$ | $f_{11}$ | $f_{12}$ | $f_{13}$ | $f_{14}$ | $f_{15}$ | $f_{16}$ | $f_{17}$ | $f_{20}$ | $f_{21}$ | $f_{22}$ | Avg |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|
| Gallery  |          |          |          |          |          |          |          |          |          |          |          |          |     |
| $f_{08}$ | -        | 99       | 99       | 94       | 88       | 74       | 53       | 47       | 26       | 97       | 85       | 57       | 74  |
| $f_{09}$ | 94       | -        | 94       | 99       | 99       | 94       | 71       | 66       | 46       | 93       | 99       | 79       | 85  |
| $f_{11}$ | 99       | 99       | -        | 100      | 99       | 96       | 74       | 57       | 46       | 100      | 100      | 87       | 87  |
| $f_{12}$ | 91       | 99       | 100      | -        | 100      | 100      | 96       | 87       | 71       | 100      | 100      | 99       | 95  |
| $f_{13}$ | 87       | 93       | 97       | 100      | -        | 100      | 99       | 94       | 90       | 96       | 99       | 100      | 96  |
| $f_{14}$ | 71       | 96       | 97       | 100      | 100      | -        | 100      | 99       | 94       | 100      | 100      | 100      | 96  |
| $f_{15}$ | 60       | 76       | 75       | 96       | 100      | 100      | -        | 100      | 100      | 82       | 97       | 100      | 90  |
| $f_{16}$ | 41       | 69       | 54       | 90       | 96       | 100      | 100      | -        | 100      | 62       | 93       | 100      | 82  |
| $f_{17}$ | 28       | 44       | 47       | 84       | 93       | 97       | 100      | 100      | -        | 59       | 88       | 99       | 76  |
| $f_{20}$ | 94       | 96       | 100      | 100      | 97       | 96       | 85       | 60       | 57       | -        | 100      | 91       | 89  |
| $f_{21}$ | 85       | 99       | 100      | 100      | 100      | 100      | 97       | 93       | 79       | 100      | -        | 99       | 96  |
| $f_{22}$ | 59       | 84       | 85       | 99       | 100      | 100      | 100      | 100      | 100      | 96       | 99       | -        | 93  |
| Avg      | 74       | 87       | 86       | 97       | 97       | 96       | 89       | 82       | 74       | 90       | 96       | 92       | 88  |



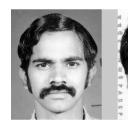


### **Novel View Synthesis**








## Facial Similarity across Aging/disguises





4 years

5 years





10 years 1 year

#### Pose Variations





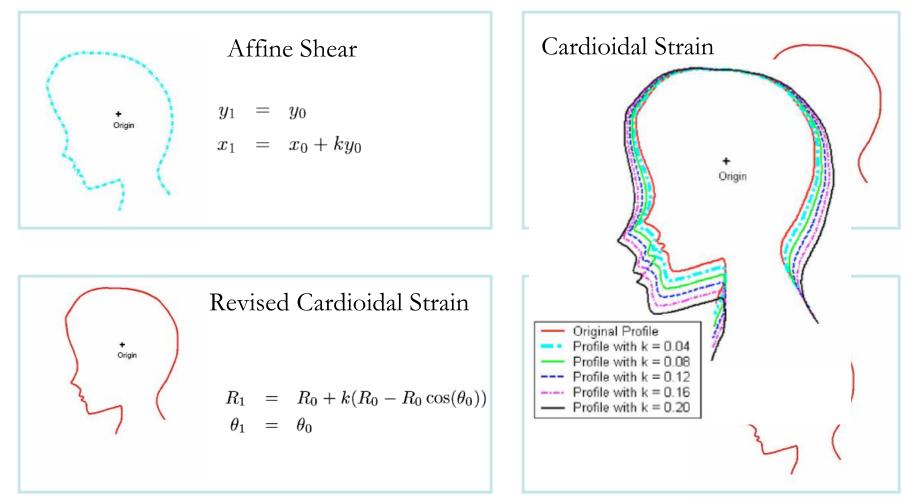
#### Illumination and Disguise



How do the above factors affect facial similarity?






### Modeling Age Progression in Young Faces

- Challenges :
  - Facial growth depends on factors such as gender, ethnicity, age group etc.
  - Facial features grow at different rates during different ages : During infancy and during adolescence, growth spurts are observed over different facial features.
- Previous work :
  - Researchers from psychophysics, studied craniofacial growth as a result of internal forces acting on the human cranium.
  - Cardioidal strain, spiral strain, affine shear etc. are some of the transformations that were applied on infant faces (profile views) to study age transformation effects.





#### Craniofacial Growth models



Transformations induced by the revised cardioidal s..... model reflected growth related transformations best.



## **Aging Results**





Original 2yrs



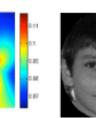
Original 9 yrs



Original 7 yrs



Growth Parameters (2 yrs - 5 yrs)




Growth Parameters Transformed (9 yrs - 12 yrs) 12 yrs

Transformed

16 yrs

5 yrs



Growth Parameters Transformed (7 yrs - 16 yrs)



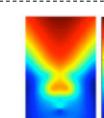
Original 5 yrs



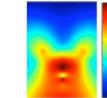
Original 12 yrs

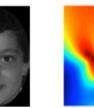


Original 16 yrs



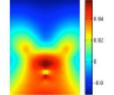

Original 6 yrs



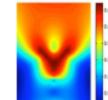


Original 8 yrs






Growth Parameters (6yrs - 12 yrs)






Original 10 yrs





Growth Parameters (8 yrs - 12 yrs)



Growth Parameters (10 yrs - 16 yrs)



Transformed 12 yrs



Original 12 yrs



Original 16 yrs











Transformed

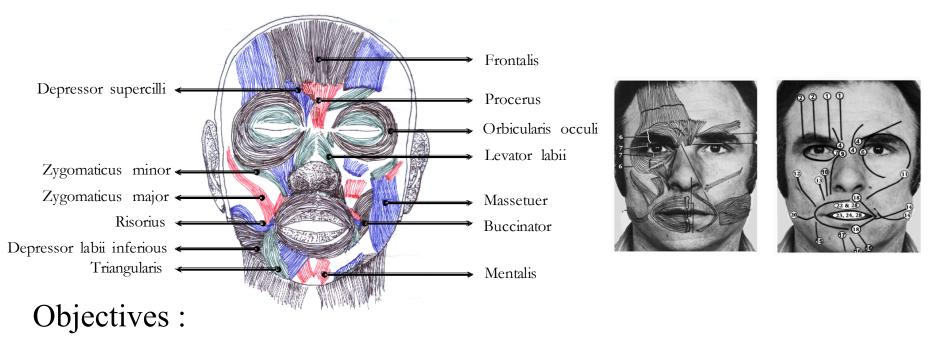
16 yrs

\_\_\_\_\_





## Face Recognition Across Aging


- On a database of 233 images of 109 individuals (a few individuals with multiple age separated images), we perform a face recognition experiments (eigenfaces)
- For each probe image (age known apriori), the gallery images are transformed before performing face recognition.

| Approach          | Rank 1 | Rank 5 | Rank 10 |
|-------------------|--------|--------|---------|
| No transformation | 8      | 28     | 44      |
| Age transformed   | 15     | 37     | 58      |





Modeling Age Progression in Adults



- Characterize elastic properties of facial muscles as a function of age.
  - Develop a realistic skin model where wrinkles and other artifacts can be simulated by varying functions of facial muscles.

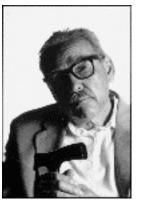




## Disguises






























- Discussed methods for improving the quality of images degraded by pose, illumination variations and aging.
- The effectiveness of image quality improvements should be measured by the resulting increase in recognition rate.