
A tool with improved accuracy in checker-board corner
detection and automatic data processing for vision-based

measurement instrument (camera) Calibration

Traditional camera calibration methods compute camera intrinsic parameters from a set of target features
with known geometries. The most common target is a checkerboard. Calibration usually requires users to
select corners and areas on the checkerboard images manually. The manual process has several problems:

• Time-consuming. Users must manually click four corners on each checkerboard image to
define the region of interest. When there are multiple images, this process is very time-
consuming.

• Prone to error. The corner detection relies on the accuracy of the user's clicking which is prone
to error.

• The difficulty for stereo camera calibration. Using the dual camera as an example, stereo
camera calibration needs to find correspondence between the left and right camera images.
Users either have to make sure both cameras contain the full checkerboard image, or count and
align the same corners for both left and right images manually. This process is tedious and
time-consuming.

 A method and tool for automatic camera calibration were developed. This method has advantages: 1) it
doesn’t involve user clickings to define the region of interest, which eliminates the error and accuracy
problems from human operation; 2) Images are processed automatically in batch, eliminating the time-
consuming manual data processes; 3) improved the accuracy by developing advanced algorithms in the
checker-board corner detection, thus improved the vision-based
system’s accuracy; 4) Enabled the creation of user-defined markers for
auto data processing. The key to the automatic method is to enable
auto-counting and auto-alignment. As shown in Fig. 1, the calibration
board produced by Cognex has two long rectangle makers in the center.
The special markers are utilized as the indicator of the checkboard’s
orientation and the center position. If the marker features are correctly
detected, any corner in the image can find the correspondence to the
center. Users may customize their markers on their checkerboard, for
example, by adding extra dots or special shapes as indicators. This tool
can help to improve the accuracy and efficiency in vision-based system
calibration, where cameras and vision-based systems are widely used in machine vision, robot guidance,
inspection, and health condition monitoring for industrial applications.

Tool description:

This program is developed using Python 3.

Figure 1. An example of calibration
board with center markers

Setup for Windows

• Install anaconda Python environment

• Install the following packages through conda or pip: numpy, matplotlib,

python- opencv, scipy

Single Camera Calibration

Script to run: CalibrateSingleCamera. y

Please note that all parameters are hardcoded.

• You will need to specify the BOARDHEIGHT and BOARDWIDTH, these are

the number of squares in rows/columns for the calibration board. Most of the

time you don't need to change these numbers if the calibration board is not

changed.

• zoom_factor: This is used to estimate the projection back to frontal parallel

for iterated calibration, should be left at 0.8-1 most of the cases.

• iteration: number of times to iteratively calibrate the camera. The current take

is that we don't see a lot of benefit by iterating more than 1 time.

• resize_factor: In theory, if we upsample the image, we may get better results

for corner detection. Currently, it is left at 1.

• calib_img_path: the folder contains all the calibration images. It should have one

of the following formats: png, bmp, tif, or jpg.

The results are saved in yaml files.

Stereo Camera Calibration

Script to run: CalibrateStereoCamera. y

In addition to the parameters shown in single camera calibration, You will need to provide the
following:

• calib_left_img_path and calib_left_img_path.

The results are saved in yaml files.

Algorithm Procedures
1. Obtain negative images.

Negative images (as shown in Figure 2b) are used because our approach is based on detection and
fitting contour to ‘black’ squares and rectangles.

Figure 2. Original calibration image (a) on the left and negative image (b) on the right.

2. Obtain binarized image.

3. Squares and rectangles detection.

4. Recursive algorithm to search and map the squares to a grid.

Fig. 3 shows the valid contours detected. Fig. 4 shows the labeled corners.

Figure 3. Illustration of the valid contours, squares are shown in random color, long rectangles
are shown in red color.

Figure 4. Labeled corners

5. Subpixel edge detection

The detected corner was passed through a subpixel edge detection module to iterate to find the
sub-pixel accurate location of corners or radial saddle points, as shown in Fig. 5.

Figure 5. Subpixel edge detection algorithm from OpenCV library

6. Align the grids and corner detection refinement.

Final calibration results
The table below shows the reprojection errors before and after the subpixel improvement. Fig. 6
shows the reprojection error after calibration.

Calibration results (using saddle point
subpixel detection)

Calibration results (combing Harris corner
improvement)

1 sigma reprojection error: 0.144 Pixel 1 sigma reprojection error: 0.130 Pixel

Final calibration of the single camera

Intrinsic Matrix:[[4.62135558e+03 0.00000000e+00 9.39734834e+02]

 [0.00000000e+00 4.62093465e+03 5.85333167e+02]

 [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

Distortion:

[1.13627163e-01, 5.70960007e-01, 2.45515559e-03,-1.38852863e-03, -1.17335534e+01]]

Figure 6. Reprojection error for each of the 40 calibration images.

	Tool description:
	Setup for Windows
	Single Camera Calibration
	Stereo Camera Calibration

