

Carrie Stemple

Mentored by Dr. Amy Xu Characterizing Protein-Adjuvant Interactions in Vaccines

# <sup>2</sup> Overview

- Project
- What is in a Vaccine
- Protein Adjuvant Interactions
- Effects of Freeze Thaw Cycles on Adjuvants
- Effects of Freeze Thaw Cycles on Microstructure of Adjuvant and Complexes
- Summary
- Future Research/ Acknowledgements

# 3 Project

- Define the interactions between proteins and adjuvants Binding Isotherm
- Determine the effects of freeze thaw cycles on adjuvants and their interactions – Binding Isotherms, Microscopy, and Dynamic Light Scattering
- Develop understanding of how freeze thaw cycles affect microstructures of proteins, adjuvants, and complexes – Small Angle Neutron Scattering

# 4 Vaccines

- Purpose
- Components:
  - Antigen
  - Adjuvant
  - Excipients







# 5 Protein Adjuvant Interactions



# 6 Protein Adjuvant Interactions: Binding Isotherm

Aluminum Hydroxide + Ovalbumin Aluminum Phosphate + Ovalbumin



# 7 Protein Adjuvant Interactions: Binding Isotherm

Aluminum Hydroxide + Lysozyme Aluminum Phosphate + Lysozyme

Ē



### 8 Protein Adjuvant Interactions: Binding Isotherm

Aluminum Hydroxide + Lysozyme in Phosphate Buffer Aluminum Hydroxide + Lysozyme in Sodium Chloride Buffer



# 9 Effects of Freeze Thaw Cycles on the Adjuvants

- Importance of Freeze Thaw Cycles
- Experiments

# <sup>10</sup> Effects of Freeze Thaw Cycles on Adjuvants:

Binding Isotherms

FT Aluminum Hydroxide & Ovalbumin Complex Fresh Aluminum Hydroxide & Ovalbumin Complex FT Aluminum Hydroxide + Ovalbumin



# 11 Effects of Freeze Thaw Cycles on Adjuvants :

Binding Isotherms

Ì

FT Aluminum Phosphate & Lysozyme Complex Fresh Aluminum Phosphate & Lysozyme Complex FT Aluminum Phosphate + Lysozyme



# 12 Effects of Freeze Thaw Cycles on Adjuvants: Microscopy 40x Magnification



Ì

Aluminum Hydroxide: Fresh

> Aluminum Phosphate: Fresh





Aluminum Hydroxide: Freeze-Thawed

Aluminum Phosphate: Freeze-Thawed



# <sup>13</sup> Effects of Freeze Thaw Cycles on Adjuvants: Dynamic Light Scattering

Fresh Aluminum Hydroxide FT Aluminum Hydroxide Fresh Aluminum Phosphate FT Aluminum Phosphate

\_



# 14 Effects of Freeze Thaw Cycles on Microstructures

- Importance of Understanding the Effects of Freeze Thaw on Microstructures
  - Adjuvants
  - Proteins

- Complexes
- Experiment

### <sup>15</sup> Effects of Freeze Thaw Cycles on Microstructures: SANS and Contrast Matching



#### **Small Angle Neutron Scattering**

Solvent Protein Adjuvant Solvent Protein Adjuvant

Solvent Protein Adjuvant

#### **Contrast Matching**







https://www.sciencedaily.com/releases/2016/11/161115094633.htm

## <sup>16</sup> Effects of Freeze Thaw Cycles on Microstructures: Small Angle Neutron Scattering



Ì



### 17 Effects of Freeze Thaw Cycles on Microstructures: Small Angle Neutron Scattering



# <sup>18</sup> Summary

- Interactions between proteins and adjuvants
  - Electrostatic interactions
  - Ligand exchange
- Effects of freeze thaw cycles on adjuvants and their interactions
  - Aggregation Hydroxide > Phosphate
  - More aggregation= less binding
- Effects of freeze thaw on microstructures of proteins, adjuvants, and complexes
  - Complexes form new structures
  - Protein 3D conformation is Maintained
  - Little change in adjuvant characteristics after freeze-thaw

## <sup>19</sup> Future Research/Acknowledgements

- Binding Isotherms in
  Sodium Chloride buffer
- Differential Scanning Calorimetry

- Dr. Amy Xu
- NIST/NCNR
- CHRNS
- SURF Directors
- Dr. Kathryn Sarachan







# **Experimental Conditions**

|                   | Ovalbumin | Lysozyme | AI(OH) <sub>3</sub> | AIPO <sub>4</sub> |
|-------------------|-----------|----------|---------------------|-------------------|
| Isoelectric point | 4.5       | 11.3     | ~11                 | 4 – 5.5           |

