Characterizing and Verifying Parameters for Two New Mechanical Systems Through the Multiaxial Deformation of Automotive Sheet Metal

Daevin Bhathal Hugh

Mentors: Thomas Gnäupel-Herold Justin Milner

SURF 2016 Final Colloquium

Motivation

Classes and Properties of Automotive Sheet Metals

(Courtesy of WorldAutoSteel)

Rising fuel economy standards \rightarrow Need for lighter vehicles \rightarrow Need for mechanical properties of new metals \rightarrow Methods for determining formability outcomes

Austenitic-Based

Generation 2

1400

...............................

......

1700

Steels

Neutron Diffraction Experiments

The Mechanical Systems

Octo-Strain

In-Plane Shearing Device

Preparation of Samples

Apply White Coat

Spray Speckle Pattern

Digital Image Correlation Setup

Digital Image Correlation Setup

- Sample placed in mechanical system.
- Cameras positioned to provide an appropriate field of view of the sample.
- Lights rotated and positioned to provide even lighting.

Basics of Digital Image Correlation

National Institute of Standards and Technology U.S. Department of Commerce

Octo-Strain: Parameters Researched

Parameters:

- Strain Control
 - Allows more complex strain paths.
 - No user input required during testing.
 - More accurate than current control methods.
- Testing Strain Paths

Octo-Strain

Octo-Strain: Control Methods

Two Current Control Methods:

- Force Control:
 - Load cells read forces exerted on each arm.
 - Computer code changes speed of motors to approach the arm forces that the user has defined.

Displacement Control:

• Computer code sets speed of motors based on user defined strain targets and rates.

New Control Method:

- Strain Control:
 - Digital Acquisition (DAQ) setup reads strain from Digital Image Correlation (DIC) system.
 - Code changes speed of motors based on comparing a user defined strain path to the DAQ strain readings.

Strain Control: Results

All tests were run to be **equi-biaxial**.

Equi-biaxial means that at each point: $\varepsilon_{yy} = \varepsilon_{xx}$

$$\boxed{\text{%error} = \frac{|\varepsilon_{xx} - \epsilon_{yy}|}{\varepsilon_{yy}} * 100\%}$$

Strain control has lowest %error.

Octo-Strain: Plane Strain Test Results

Octo-Strain: Equi-Biaxial Test Results

Octo-Strain: Path Change Test Results

0.25

0.21875

0.1875

0.15625

0.125

0.09375

0.0625

0.03125

Octo-Strain: **Pure-Shear Test Results**

0.316 0.29625 0.2765

0.25675 0.237

0.21725 0.1975 0.17775

0.158

0.13825 0.1185

0.09875

0.079

0.05925 0.0395

0.01975

In-Plane Shearing Device: Parameters Researched

Parameters:

 Planar sample geometry with the most homogeneity in strain.

In-Plane Shearing Device

SURF 2016 Final Colloquium

In-Plane Shearing Device: Homogeneity in Strain Results

In-Plane Shearing Device: Homogeneity in Strain Results

Summary of Results

- A new control method, **strain control**, has been developed.
 - Advantages:
 - **Complex strain paths** can be defined easily in Excel.
 - No user input required during testing.
 - **More accurate** strain tests.
- Geometric parameters to achieve the highest homogeneity in strain for planar samples have been determined.
 - Smaller Height = Greater Homogeneity
 - Notches = Greater Homogeneity

Acknowledgements

Special Thanks To:

- Dr. Thomas Gnäupel-Herold
- Dr. Justin Milner
- Dr. Julie Borchers
- Dr. Joseph Dura
- NCNR Director Dr. Robert Dimeo
- NIST Center for Neutron Research
- Center for High Resolution Neutron Scattering (CHRNS)
- SURF Program

Questions?

SURF 2016 Final Colloquium

0