

NISTIR 7207-A

Software Write Block

Testing Support Tools Validation
Test Plan, Test Design, and Test Case Specification

March 2005

Paul E. Black
Information Technology Laboratory

National Institute of Standards And Technology
Gaithersburg, MD 20899

NIST
Technology Administration

U.S. Department of Commerce

 Page ii of 44

 Page iii of 44

Abstract

This NIST Internal Report consists of two parts. Part A covers the planning, design, and
specification of testing and reviewing the Software write block (SWB) support tools.
Part B, which is a companion document, covers the test and code review support report.

Part A gives a test plan, test design specification, and test case specification for validation
of the disk drive software write block testing support tools. The test plan defines the
scope, including specific items and features to be validated, the methodology or approach
for validating the SWB test support tools, and some technical background. The test
design specification gives requirements for validating SWB tools. These requirements
yield assertions. Each assertion leads to one or more code reviews or test cases
consisting of preconditions, values, and method(s) for gaining confidence that the SWB
test support tools correctly assess those assertions, a test procedure and the expected
results. The test case specification gives details of test and review procedures for setting
up the test, performing the test, and assessing the results. Appendices include a code
review checklist and source code for validation programs.

Part B reports the results of reviewing the source code of the SWB test tools and testing
them against Part A of the companion NIST Internal Report entitled Software Write
Block Testing Support Tools validation – Test Plan, Test Design Specification, and Test
Case Specification.

The intended audience for this document should be familiar with the MS-DOS operating
system, computer operation, computer hardware components such as disk drives, disk
drive interfaces (e.g., IDE or SCSI) and computer forensics. A working knowledge of C
and Assembly programming is not necessary for understanding but is helpful.

Keywords: Code review; computer forensic tool; software testing; software write block;
testing support tools.

Certain trade names and company products are mentioned in the text or identified. In no
case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products are necessarily
the best available for the purpose.

 Page v of 44

Contents

Table of Figures.. vii

List of Tables .. vii

1 Introduction..2
1.1 How to read this document ... 2

2 Purpose ...3

3 Scope ..3
3.1 Items to Be Validated.. 3
3.2 Features to be Validated.. 4

3.2.1 Tally13 .. 4
3.2.2 Test-hdl ... 4
3.2.3 T-off .. 5
3.2.4 Sig-log... 5

4 Validation (Test and Review) Methodology ...5
4.1 Test and Review Approach... 5
4.2 Validation Phases.. 6

5 References ..7

6 Technical Background ...7
6.1 Software Write Block Tools ... 7
6.2 Disk Drive Attachment and Access .. 8
6.3 Software Write Block Tool Operation.. 9
6.4 SWB Tool Test Methodology... 10
6.5 Technical Terminology... 12
6.6 Types of Commands ... 12

7 Tool Requirements ..14
7.1 Requirements for Mandatory Features.. 14

7.1.1 Tally13 .. 14
7.1.2 Test-hdl ... 15
7.1.3 T-off .. 15
7.1.4 Sig-log... 16

7.2 Requirements for Optional Features ... 16

 Page vi of 44

8 Assertions..16
8.1 Assertions for Mandatory Features... 16

8.1.1 Tally13 .. 16
8.1.2 Test-hdl ... 17
8.1.3 T-off .. 18
8.1.4 Sig-log... 19

8.2 Assertions for Optional Features .. 19

9 Test and Review Procedures...21
9.1 Environmental Setup... 21

9.1.1 Hardware for testing ... 21
9.1.2 Software for Phase 1: tally13.. 21
9.1.3 Software for Phase 2: test-hdl ... 21
9.1.4 Software for Phase 3: t-off and sig-log ... 22

9.2 Code Review and Test Case Specifications.. 22
9.2.1 Code Review T13-01 .. 22
9.2.2 Test Case T13-02 .. 23
9.2.3 Test Case T13-03 .. 24
9.2.4 Code Review THDL-01.. 25
9.2.5 Test Case THDL-02.. 25
9.2.6 Test Case THDL-03.. 26
9.2.7 Test Case THDL-04.. 26
9.2.8 Test Case THDL-05.. 27
9.2.9 Test Case THDL-06.. 27
9.2.10 Code Review TOFF-01... 28
9.2.11 Test Case TOFF-02... 29
9.2.12 Test Case TOFF-03... 29
9.2.13 Code Review SIGL-01.. 30
9.2.14 Test Case SIGL-02.. 30
9.2.15 Test Case SIGL-03.. 31

Appendix A Abbreviations and Acronyms ...32

Appendix B Error Checklist for Code Review..32
B.1 Acknowledgements .. 32
B.2 Error Checklist ... 33

Appendix C Source Code for Validation Programs ...34
C.1 Vtpass ... 34
C.2 Vtact ... 35
C.3 Vtcmdgrp.. 36
C.4 Vtreport .. 38
C.5 Vtblksom .. 39
C.6 Vtblock ... 42

Table of Figures
Figure 6-1 Disk drive Access Through the 0x13 BIOS Interface....................................... 9
Figure 6-2 SWB Tool Operation... 10
Figure 6-3 Test Harness and Interrupt Monitor Operation ... 11

List of Tables
Table 9-1 Software Required for Phase 1 Testing .. 21
Table 9-2 Software Required for Phase 2 Testing .. 21
Table 9-3 Software Required for Phase 3 Testing .. 22
Table 9-4 Vtcmdgrp Parameters and Expected Vtreport Results. 24

 Page viii of 44

 Page 1 of 44

Part I

Test Plan

 Page 2 of 44

1 Introduction
There is a critical need in the law enforcement community to ensure the reliability of
computer forensics tools. The Computer Forensics Tool Testing (CFTT) program is a
joint project of the National Institute of Justice, the research and development
organization of the U.S. Department of Justice; the U.S. National Institute of Standards
and Technology (NIST) Office of Law Enforcement Standards and Information
Technology Laboratory and is supported by other organizations, including the Federal
Bureau of Investigation, the Department of Defense Cyber Crime Center, and the
Department of Homeland Security’s Bureau of Immigration and Customs Enforcement
and U.S. Secret Service. The goal of the CFTT project is to establish a methodology for
testing computer forensics tools.

A software write block (SWB) tool is software that blocks write or modification
commands from reaching a disk drive, as diagrammed in Figure 6-2. In other words, it is
a program that minimizes the chance of modifying a disk drive, usually during a forensic
examination of the content of the disk drive. Software Write Block Tool Specification &
Test Plan [SWB TS&TP] focuses on testing this class of computer programs.

The SWBT tool package includes a program (tally13.com) that monitors interrupt 0x13
to report commands allowed or blocked, a program to deactivate tally13.com (t-off.exe),
a program to record operator observations of audio or visual signals from the tool under
test (sig-log.exe), and a program (test-hdl.exe) to send specific groups of commands to
the software write block tool under test. The test-hdl.exe, sig-log.exe and t-off.exe
programs are written in Borland C++ 4.5, and tally13.com is written in Borland
Assembler. The software can be used in the MS-DOS environment to test programs such
as RCMP HDL. A set of test cases for software write block tools is described in [SWB
TS&TP] (see http://www.cftt.nist.gov/).

How can an analyst gain more confidence that the programs adequately test a Software
Write Block tool? This document lays out a test plan and test specification to address this
question.

1.1 How to read this document
This document is written assuming that the reader is familiar with the MS-DOS operating
system, computer operation, computer hardware components such as disk drives, disk
drive interfaces (e.g., IDE or SCSI) and computer forensics. A working knowledge of C
and Assembly programming is not necessary for understanding, but is helpful.

Part I is the test plan. Sect. 2 succinctly gives this document’s purpose. Sect. 3 sets forth
the scope: what is and is not covered, including the items and features covered. Test
methodology is discussed in Sect. 4, Sect. 5 is a bibliography of referenced documents,
and Sect. 6 gives a technical background. Part II is the test specification, beginning with
test requirements in Sect. 7. Sect. 8 lists test assertions. Part III is the test and review case
specification, beginning with Sect. 9 which gives abstract test cases, assertion pass/fail
criteria, and the detailed test procedures. Appendix A is abbreviations and acronyms. An

 Page 3 of 44

error checklist for code review is given in Appendix B. Finally Appendix C has the
source code of the SWB test tool validation programs. The above constitutes Part A of
the NIST Internal Report. A companion NIST Internal Report Part B is the test and code
review summary report.

2 Purpose
This document defines requirements and tests for tools and methods used to evaluate hard
disk drive software write block (SWB) tools used in computer forensics investigations.

3 Scope
This covers tools to test programs to prevent hard disk drives from being changed via the
interrupt 0x13 interface. This does not cover hardware-based means to prevent disk
drives from being changed, nor changes that might be made by directly using the BIOS
interface. The primary aim is to examine if the tools correspond to their build
specifications, rather than a comprehensive examination of whether the tools, used
according to the test plan, adequately examine Software Write Block tools.

The expected environment is an Intel X86 or Pentium architecture PC running MS-DOS
with a floppy disk and at least one hard disk drive. In particular, it applies to Windows
98. The disk drives may use either an IDE or SCSI interface. The system BIOS may be a
“legacy” BIOS (does not support the interrupt 0x13 extensions) or the BIOS may support
interrupt 0x13 extensions for large (more than 8GiB) disk access. This does not cover any
Unix-based or other operating system.

For tools that are compiled, the test object is primarily the object or executable code. The
compilation process is excluded. However the source code presumed to be the origin of
the executable code constitutes another or associated test object. In plain English, the
source code is reviewed for correctness, the object code is tested for behavior, and the
compilation process is presumed to be faithful.

3.1 Items to Be Validated
This document uses the Computer Science sense of some terms. The verb “test” means to
run a program. “Review” means to examine the source code of a program. “Validate”
means to test or review to gain confidence that the program will behave as needed.
Finally, “verify” means review to show that a program will satisfy its specification.1

There are several items to be tested or reviewed. Each item is one program.

1. Tally13
Tally13 monitors the interrupt 0x13 interface. It operates in either active or passive mode.
In active mode it blocks all commands from reaching the BIOS and counts the number of

1 Verification compares the program to what was requested: building the program right. Validation
compares the program to what was needed: building the right program. For reasons ranging from mistakes
to poor communication to changing needs, what was requested might not be the same as what was needed.

 Page 4 of 44

times each command is received for each disk. In passive mode, all commands received
are passed on to the BIOS and no commands are tallied.

2. Test-hdl
Test-hdl issues interrupt 0x13 commands that are then either blocked or passed by the
tool under test. The program issues commands from the six categories described in Table
8-2 of [SWB TS&TP]. Any one of the six categories can be specified or all categories
can be specified.

3. T-off
T-off deactivates tally13 by switching tally13 to the passive mode.

4. Sig-log
Sig-log prompts the operator for observations of audio or visual signals produced by the
tool under test.

3.2 Features to be Validated
Most features to be tested or reviewed depend on the particular item tested and are listed
separately for each item. Each compiled program will be checked that it writes
identifying and execution information for logging. Interactive programs must log
command line information, including test case identification, operator ID, etc.

3.2.1 Tally13
1. Tally13 may be switched between passive mode and active mode.
2. In passive mode no commands are blocked.
3. In active mode no interrupt 0x13 command reaches the BIOS.
4. There is a capability to query how many of each interrupt 0x13 commands received in

active mode for each disk drive.
5. An identifying value is returned via the query interface when tally13 is installed.

3.2.2 Test-hdl
If a command is issued but tally13 does not show the commands was received, it is
presumed blocked.

These features are for use before any test commands are sent.
1. Query how many of each command was received for each disk drive. For any

unexpected, log the command and disk drive.
2. If tally13 is not present, issue a message and exit.
3. Command tally13 to active mode.
4. Issue each interrupt 0x13 command in the specified category to each disk drive.
5. For each command issued, log the command code, disk drive issued to, return count,

status register value and carry flag setting.

 Page 5 of 44

These features are for use after all test commands are sent.
6. Log the number of commands sent and the number of commands blocked for each

disk drive.
7. Log that all, not all or no commands were blocked.
8. Report if any commands were counted, but not sent.

3.2.3 T-off
1. Command tally13 to passive mode.

3.2.4 Sig-log
1. Query the operator if an audio or visual signal was observed and log the operator’s

response.

4 Validation (Test and Review) Methodology
Gaining additional confidence that the Software Write Block test tools and plan work as
designed is all the more difficult because the test tools are not grossly incorrect. That is,
use of the tools to date and reports produced so far would have revealed gross errors.
Therefore the test approach, as it is called in [IEEE Std 829], must concentrate on finding
subtle errors or potential weaknesses.

The entire method, the plan and the tools together, could be validated. That is, the plan
and the tools would be checked against a general set of requirements for SWB test tools.
This comprehensive approach would take more time than it is worth. Instead each tool
has its own, separate, explicit requirements, against which it is validated. Exhaustive
testing of the tools is also possible, but not justified given the time needed.

This document uses the term “validate”, instead of test, for several reasons. First, it may
be confusing to talk about, for instance, test case test cases, that is, cases to test other test
cases. Also, one of the methods is manual code inspection or review, not executable tests.
Most importantly, standard documents say that institutions “shall validate non-standard
methods” [NIST HB 150] Sect. 5.4.5.2.

4.1 Test and Review Approach
One possible approach is to essentially repeat what has been done before, by creating
independent versions of the tools and plan, test the same SWB tools again, and compare
the results. This would lack crucial independence: the examiner would be writing similar
tools for similar purposes and running similar tests on similar machines. We would
expect the examiner to be prone to make “equivalent logical errors” or different logical
errors with “statistically correlated failures” [BKL N-Version].

Instead the approach includes several different methods to validate the SWB test tools.
Code is reviewed or inspected for possible anomalous behavior [dACBP Prac] and to

 Page 6 of 44

determine if it meets its requirements. Compiled versions of the programs are executed in
very simple, controlled tests to independently check behavior. Information from code
reviews and information from test runs are combined to support assertions.

It should be noted that no methodology could hope to be complete for programs of more
than minimally complexity. An extreme example would be an SWB tool with a so-called
“Trojan horse”, i.e. a piece of code to perform a very particular unexpected function, that
does change a protected disk if the computer's date is, say, Sunday, 6 April 2014. While
inspecting the code might catch such an obvious problem, other anomalous behavior can
be arbitrarily subtle. Therefore testing and review continues until a sufficient level of
confidence is warranted or the test budget is exhausted.

These methods are likely to find simple errors, but will they find complex, subtle, or non-
localized errors? Researchers have found support [DLP Hints] [Offutt] [KWG Interact]
for the “fault-coupling hypothesis”: tests for simple faults are likely to find complex
faults, too. Thus, there is support that checking for simple errors suffices.

4.2 Validation Phases
The features to be tested and reviewed are divided into several groups so the tools can be
validated in phases. As pointed out above, duplicating work already done to develop
SWB test tools increases the cost of tests and would only slightly increase independence.
However the nature of interrupt 0x13 service handling is such that validating the SWB
test tools requires much the same functionality as the SWB test tools themselves!

Clearly the examiner needs to test that the driver sends the intended interrupt 0x13
commands. Other than inspecting the code, one simple strategy would be to run the driver
then examine the disk drive for evidence of the commands. The limitation is that only
effects of certain command parameters are measured: some status commands are defined
to be handled by the BIOS without sending anything to the disk. A second limitation is
that some commands should only be executed in a factory setting. Some commands in the
configuration or control category may have subtle and unexpected results. The proper
parameter values are propriety, and the user is cautioned that improper parameters may
render a disk drive unusable. What is a good way to test that the driver sends such
potentially destructive commands without the risk of damaging disk drives? Intercept
interrupt 0x13 commands and report how many and which kind were sent. But this is
essentially the function of tally13.

The tests are broken into independent pieces as much as practical so everything does not
have to be retested if one tool changes. Once an item is validated, it can be used in
subsequent phases to validate other items.

 Page 7 of 44

5 References
[BKL N-Version] Susan S. Brilliant, John C. Knight and Nancy G. Leveson, “Analysis of
Faults in an N-Version Software Experiment”, IEEE Transactions on Software
Engineering, 16(2):363-377, February 1990.

[dACBP Prac] Jorge Rady de Almeida Jr., João Batista Camargo Jr., Bruno Abrantes
Basseto, and Sérgio Miranda Paz, “Best Practices in Code Inspection for Safety-Critical
Software”, IEEE Software, 20(3):56-63, May/June 2003.

[DLP Hints] Richard A. De Millo, Richard J. Lipton and Frederick G. Sayward, “Hints
on Test Data Selection: Help for the Practicing Programmer”, IEEE Computer, 11(4):34-
41, April 1978.

[IEEE Std 829] IEEE Std 829-1998, Standard for Software Test Documentation, Institute
of Electronic and Electrical Engineers, 1998.

[KWG Interact] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo, Jr.,
“Software Fault Interactions and Implications for Software Testing”, IEEE Transactions
on Software Engineering, 30(6):418-421, June 2004.

[NIST HB 150] NIST Handbook 150, 2001 ed. “National Voluntary Laboratory
Accreditation Program; Procedures and General Requirements.”

[Offutt] A. Jefferson Offutt, "Investigations of the Software Testing Coupling Effect",
ACM Trans. on Software Engineering Methodology, 1(1):3-18, January 1992.

[SWB TS&TP] Software Write Block Tool Specification & Test Plan, Version 3.0,
September 1, 2003. http://www.cftt.nist.gov/documents/SWB-STP-V3_1a.pdf accessed
24 February 2004.

[SWBTT] SWBT 1.0: Software Write Block Testing Tools, Requirements, Design Notes
and User Manual, Version 1.0, October 2003.

6 Technical Background

6.1 Software Write Block Tools
The basic function of a software write block tool is to not allow a protected disk drive to
be modified while still allowing any access that does not modify the disk drive. The
critical requirements are the following:

• The tool shall not allow a protected disk drive to be changed.
• The tool shall allow any information to be obtained from or about any disk drive.
• The tool shall allow any operations to a disk drive that is not protected.

http://www.cftt.nist.gov/documents/SWB-STP-V3_1a.pdf

 Page 8 of 44

The next subsection reviews how disk drives are attached to a computer and how
programs running on the computer access them. Sections 6.3 and 6.4 explain how this
changes when using a software write block tool and when testing an SWB tool. Sections
6.5 and 6.6 define terminology related to software write block tools.

6.2 Disk Drive Attachment and Access
Before a disk drive can be used it must have some electronically connection to a
computer. A disk drive is attached to a computer by one of several available physical
interfaces. A disk drive is usually connected by a cable to a drive controller located either
on the motherboard or on a separate adapter card. The most common interfaces for
communicating with the disk drive through the drive controller are the AT Attachment
(ATA) or Integrated Drive Electronics (IDE) interface. These include variants such as
Enhanced IDE (EIDE) or ATA-2, ATA-3, etc. Other physical interfaces include, but are
not limited to Small Computer System Interface (SCSI), IEEE 1394 (also known as
FireWire or i.Link) and Universal Serial Bus (USB).

All access to a disk drive is accomplished by commands sent from a computer to a disk
drive through the drive controller. However, since the low level programming required
for direct access through the drive controller is difficult and tedious, operating systems
usually provide other access interfaces. For example, programs running in the MS-DOS
environment can, in addition to direct access via the drive controller, use two other
interfaces: MS-DOS service interface (interrupt 0x21) or BIOS service interface
(interrupt 0x13). The MS-DOS service operates at the logical level of files and records
(the “file system”) while the BIOS service operates at the physical drive sector level.
More sophisticated operating systems, for example Windows XP or a UNIX variant (e.g.,
Linux), may disallow low level interface (through the BIOS or the controller) and only
allow user programs access to a disk drive through a device driver, a component of the
operating system that manages all access to a device.

Using the interrupt 0x13 interface for disk drive access is illustrated in Figure 6-1. An
application program issues an interrupt 0x13 command. The interrupt transfers control to
the BIOS interrupt 0x13 routine. The BIOS routine issues commands directly to the disk
drive controller. The device does the requested operation and returns the result to the
BIOS which then returns it to the application program.

 Page 9 of 44

Figure 6-1 Disk drive Access Through the 0x13 BIOS Interface

Application program

issue int 0x13 cmd

BIOS interrupt 0x13

issue cmd to drive

Disk drive
& controller

return

6.3 Software Write Block Tool Operation
Using a SWB tool changes the normal operation of the interrupt 0x13 interface. Figure
6-2 illustrates a SWB tool in operation. When first executed, the SWB tool saves the
current interrupt 0x13 routine entry address (labeled BIOS interrupt 0x13) and installs a
new interrupt 0x13 routine (labeled SWB tool). Subsequently interrupt 0x13 commands
are handled in the following steps.

1. The application program initiates a disk drive I/O operation by invoking interrupt

0x13 that goes to the replacement routine installed by the SWB tool.
2. The SWB tool determines if the requested command should be blocked or if the

command should be allowed.
3. If the SWB tool blocks the command, the tool returns to the application program

without passing any command to the BIOS interrupt 0x13 routine. Depending on tool
configuration, either success or error is returned for the command status code.

4. If the command is allowed (not blocked), the command is passed to the BIOS and the
BIOS I/O routine issues required I/O commands to the drive controller so that the
desired I/O operation occurs on the disk drive.

5. Results are returned to the application program.

 Page 10 of 44

Figure 6-2 SWB Tool Operation

BIOS interrupt 0x13

Application program

issue int 0x13 cmd

issue cmd to drive

SWB tool

return

allow

block

Disk drive
& controller

return

6.4 SWB Tool Test Methodology
This section describes the methodology that has been developed to test interrupt 0x13
based SWB tools. The normal interrupt 0x13 BIOS routine is replaced with a software
monitor, called tally13, that counts the number of times each I/O function is called for
each disk drive. When active tally13 blocks all commands from reaching the BIOS so
that any command can be safely issued to a SWB tool. Tally13 has a secondary interface
to allow a test harness to query tally13 to determine the command functions blocked or
allowed by the SWB tool.

Tally13 operates in two modes: allow command or block-and-tally. In the allow
command, or passive, mode all commands are passed to the disk drive. The allow
command mode permits the SWB tool to initialize during installation. After the SWB tool
is installed, tally13 is switched to block-and-tally, or active, mode. In this mode, tally13
blocks all commands passed by the SWB tool and a count by command and also by disk
is kept of all commands seen by tally13.

 Page 11 of 44

Figure 6-3 illustrates the command flow in the configuration ultimately examined in a
test case. First, tally13 is installed to replace the usual interrupt 0x13 processing. After
the interrupt 0x13 monitor and the SWB tool are installed, the test harness is executed.
The test harness issues every command for a given category. For example, a test of the
read category issues each command defined for the category: 0x02 (read), 0x10 (read
long) and 0x42 (extended read). As each command is issued, the SWB tool receives the
command and either blocks (return with no action) or allows the command (passes it to
the interrupt 0x13 monitor). If the command gets to tally13, a separate tally for each
received command and disk is incremented and tally13 returns to the caller (the test
harness). After control returns to the test harness, the test harness queries the interrupt
0x13 monitor to get a count of the number of times the issued command has been
intercepted by tally13. If the count is zero, the SWB tool blocked the command. A non-
zero count indicates that the command was not blocked.

Figure 6-3 Test Harness and Interrupt Monitor Operation

BIOS interrupt 0x13

interrupt 13 monitor

tally

allow

block

SWB tool

return

Test harness

issue int 0x13 cmd query result

query

issue cmd to drive

allow

block

Disk drive
& controller

return

 Page 12 of 44

6.5 Technical Terminology
The following terms are defined for convenience in specifying the tool requirements.

• Covered interface: a disk drive access interface that is controlled by the SWB tool

under test.
• Covered drive: a disk drive attached to a covered interface.
• Protected drive: a disk drive designated for protection from modification when

accessed by a covered interface.
• Unprotected drive: a disk drive that is not protected from modification through a

specified access interface.
• (Send a) command: when an application issues a command to a disk drive using the

interrupt 0x13 interface.
• Block (a command): when a SWB tool receives a command sent by an application

but neither the issued command nor any other command is sent to the disk drive.
• Blocked command to a drive: a command issued by an application program that is

intercepted by a SWB tool such that neither the issued command nor any other
command is sent to the disk drive.

• Return value: a value returned to the application from the interrupt 0x13 service
routine indicating success or failure.

6.6 Types of Commands
Commands for the interrupt 0x13 interface can be partitioned into two general categories:
those that may change a disk and those that definitely will not change a disk. Each
category has several different subcategories.

Commands that May Change a Disk
• Write: commands that transfer data from the computer memory to the disk drive.
• Configuration: commands that change how the disk drive is presented to the host

computer. This type of command often destroys data on the disk drive or makes data
inaccessible.

• Miscellaneous: commands that do not fit into the other categories.

Commands that Do Not Change a Disk
• Read: commands that transfer data from the disk drive to the computer memory.
• Control: commands that request the disk drive to do a nondestructive operation, for

example: reset or seek.
• Information: commands that return information about the disk drive.

 Page 13 of 44

Part II

Test and Review
Design Specification

 Page 14 of 44

7 Tool Requirements
This section presents requirements for mandatory features for the software write block
(SWB) tools. There are no optional features: the requirements parallel the build
requirements for SWB tools in [SWBTT], Sect. 2. The verb “logs” means writes to a log
file.

7.1 Requirements for Mandatory Features
The mandatory features are divided into common or shared requirements and one
subsection for each test item (see Sect. 3.1).

STV-RM-01. When executed, each program must write the following information to

stdout or a log file:
1. Program name.
2. For each source file, source file name, version number, and date and time the

source file was created.
3. System date and time program execution begins.
4. A compiled program must also write date and time the program was compiled.

STV-RM-02. When executed, interactive programs must write the following
information to stdout or a log file:

1. Command line, including any command line options.
2. Test case ID.
3. Command category to be tested, if applicable.
4. ID (initials or name) of the operator.
5. Name of the computer on which the program is executed.

7.1.1 Tally13
Since SWB testing depends little2 on what tally13 does with interrupt 0x13 commands
after it receives them, there are only simple requirements on allowing and blocking
commands.

STV-RM-03. Tally13 shall start running in passive mode.
STV-RM-04. Tally13 may be switched between passive mode and active mode. (see

STV-RM-10 and STV-RM-18)
STV-RM-05. Tally13 stays in its mode, either active or passive, until switched.
STV-RM-06. Tally13 allows how many of each interrupt 0x13 command is received in

active mode for each disk drive to be retrieved. (see STV-RM-11, STV-
RM-14, STV-RM-15, and STV-RM-16)

STV-RM-07. An identifying value is returned via the query interface when tally13 is
present. (see STV-RM-09 and STV-RM-17)

2 When SWB tools start, they must read the numbers of drive and other related information. Therefore
tally13 must allow commands initially.

 Page 15 of 44

7.1.2 Test-hdl
Test-hdl is an interactive program, so STV-RM-02 applies. The following also apply:

STV-RM-08. When executed, test-hdl must write the following information to stdout or

a log file:
1. The number of installed disk drives.
2. The external labels of each disk drive.

The following requirements are for use before any test commands are sent.

STV-RM-09. If tally13 is not present, test-hdl issues a message and exits. (see STV-

RM-07)
STV-RM-10. Test-hdl commands tally13 to active mode. (see STV-RM-04)
STV-RM-11. If the number of each command received for each disk drive is not zero,

test-hdl logs the command and disk drive. (see STV-RM-06)

These are for sending test commands.

STV-RM-12. Test-hdl sends each interrupt 0x13 command in the specified category to

each disk drive.
STV-RM-13. For each command sent, test-hdl logs

1. The command code,
2. Disk drive issued to,
3. Return count,
4. Status register value, and
5. Carry flag setting.

These are for use after all test commands are sent. (see STV-RM-06)

STV-RM-14. Test-hdl logs how many of each command is sent and how many of each

command is blocked for each disk drive.
STV-RM-15. Test-hdl logs that all, not all or no commands were blocked for each disk

drive.
STV-RM-16. Test-hdl logs if any commands were received, but not sent.

Commands would only be counted as received but not sent if there is a failure in one of
the tools. The failure may be that the tally13 counts or reports incorrectly, there is a bug
in test-hdl (sending, but claiming not to have sent), the SWB spontaneously sends
interrupt 0x13 commands, etc.

7.1.3 T-off
T-off is an interactive program, so STV-RM-02 applies. The following also apply:

 Page 16 of 44

STV-RM-17. If tally13 is not present, t-off issues a message and exits. (see STV-RM-
07)

STV-RM-18. T-off commands tally13 to passive mode. (see STV-RM-04)

7.1.4 Sig-log
Sig-log is an interactive program, so STV-RM-02 applies. The following also apply:

STV-RM-19. Sig-log asks the operator if an audio or visual signal was observed and

logs the response.

7.2 Requirements for Optional Features
There are no optional features.

8 Assertions
Each assertion specifies a condition or set of conditions and the expected result.
Following each assertion are criteria to determine if the assertion is supported. The
particular step in the test case or code review appears in brackets. [CCC-NN (x)] means
step x of test case or code review CCC-NN.

In assertions, the verb “logs” means writes to a log file.

8.1 Assertions for Mandatory Features
This section lists assertions the tools must meet. There is one subsection for each tool.

8.1.1 Tally13
STV-AM-01. When executed, tally13 writes the following information to stdout:

program name, file names, version numbers and date and time of creation of each
source file, system date and time program execution begins, and date and time
compiled.
Criteria: passes code review [T13-01 (b)], information gathered [T13-01 (a)] matches that
observed when program runs [T13-02 (b)], and execution time [T13-02 (a)] matches that
observed when program runs [T13-02 (b)].

STV-AM-02. Tally13 shall start running in passive mode.
Criteria: passes code review [T13-01 (b)] and disk is readable [T13-02 (c)].

STV-AM-03. Tally13 may be switched from passive to active mode.
Criteria: passes code review [T13-01 (b)] and disk is no longer readable [T13-02 (e)].

STV-AM-04. Tally13 may be switched from active to passive mode.
Criteria: passes code review [T13-01 (b)] and disk is again readable [T13-02 (g)].

STV-AM-05. Tally13 stays in passive mode until switched.

 Page 17 of 44

Criteria: passes code review [T13-01 (b)] and disk stays readable [T13-02 (h)].

STV-AM-06. Tally13 stays in active mode until switched.
Criteria: passes code review [T13-01 (b)] and disk stays unreadable [T13-02 (f)].

STV-AM-07. Tally13 allows how many of each interrupt 0x13 command is received in
active mode for each disk drive to be retrieved.
Criteria: passes code review [T13-01 (b)] and counts match commands sent [T13-03 (e)].

STV-AM-08. An identifying value is returned via the query interface when tally13 is
present.
Criteria: passes code review [T13-01 (b)] and the value is returned [T13-02 (d)].

8.1.2 Test-hdl
STV-AM-09. When executed, test-hdl logs the following information: program name,

file names, version numbers and date and time of creation of each source file, system
date and time program execution begins, and date and time compiled.
Criteria: passes code review [THDL-01 (b)], information gathered [THDL-01 (a) andTHDL-
02 (a)] matches that observed when program runs [THDL-02 (b)], and execution time
[THDL-02 (a)] matches that observed when program runs [THDL-02 (b)].

STV-AM-10. When executed, test-hdl logs the following information: command line,
including any command line options, test case ID, command category to be tested,
operator ID (initials or name), and name of the computer on which the program is
executed.
Criteria: passes code review [THDL-01 (b)] and logs command line information [THDL-04
(a)].

STV-AM-11. When executed, test-hdl writes the following information to a log file: the
number of installed disk drives and the external labels of each disk drive.
Criteria: passes code review [THDL-01 (b)] and logs disk information [THDL-04 (a)].

The following requirements are for use before any test commands are sent.

STV-AM-12. If tally13 is not running, test-hdl issues a message and exits.

Criteria: passes code review [THDL-01 (b)], issues a message, and exits [THDL-02 (b)].

STV-AM-13. Test-hdl commands tally13 to active mode.
Criteria: passes code review [THDL-01 (b)] and disk is not readable [THDL-04 (b)].

STV-AM-14. If the number of each command received for each disk drive is not zero,
test-hdl logs the command and disk drive.
Criteria: passes code review [THDL-01 (b)] and test-hdl exits [THDL-03 (b)].

These are for sending test commands.

 Page 18 of 44

STV-AM-15. Test-hdl sends each interrupt 0x13 command in the specified category to
each disk drive.
Criteria: passes code review [THDL-01 (b)] and vtreport counts the expected number of
commands [THDL-04 (c) and THDL-05 (b)].

STV-AM-16. For each command sent, test-hdl logs the command code, disk drive issued
to, return count, status register value, and carry flag setting.
Criteria: passes code review [THDL-01 (b)] and logs command information [THDL-04 (a)
and THDL-05 (a)].

These are for use after all test commands are sent.

STV-AM-17. Test-hdl logs how many of each command is sent and how many of each

command is blocked for each disk drive.
Criteria: passes code review [THDL-01 (b)] and logs command and blocking information
[THDL-04 (a), THDL-05 (a), and THDL-06 (a)].

STV-AM-18. Test-hdl logs that all, not all or no commands were blocked for each disk
drive.
Criteria: passes code review [THDL-01 (b)] and logs command blocking information
[THDL-04 (a), THDL-05 (a), and THDL-06 (a)].

STV-AM-19. Test-hdl logs if any commands were received, but not sent.
Criteria: passes code review [THDL-01 (b)] and logs that some unsent commands were
received [THDL-05 (a)].

8.1.3 T-off
STV-AM-20. When executed, t-off logs the following information: program name, file

names, version numbers and date and time of creation of each source file, system date
and time program execution begins, and date and time compiled.
Criteria: passes code review [TOFF-01 (b)], information gathered [TOFF-01 (a) andTOFF-
02 (a)] matches that observed when program runs [TOFF-02 (a)], and execution time
[TOFF-02 (a)] matches that observed when program runs [TOFF-02 (a)].

STV-AM-21. When executed, t-off logs the following information: command line,
including any command line options, test case ID, operator ID (initials or name),
name of the computer on which the program is executed.
Criteria: passes code review [TOFF-01 (b)] and logs command line information [TOFF-02
(a)].

STV-AM-22. If tally13 is not present, t-off issues a message and exits.
Criteria: passes code review [TOFF-01 (b)] and issues a message and exits [TOFF-02 (a)].

STV-AM-23. T-off commands tally13 to passive mode.
Criteria: passes code review [TOFF-01 (b)] and disk is again readable [TOFF-03 (b)].

 Page 19 of 44

8.1.4 Sig-log
STV-AM-24. When executed, sig-log logs the following information: program name,

file names, version numbers and date and time of creation of each source file, system
date and time program execution begins, and date and time compiled.
Criteria: passes code review [SIGL-01 (b)], information gathered [SIGL-01 (a) and (b)]
matches that observed when program runs [SIGL-02 (b)], and execution time [SIGL-02 (a)]
matches that observed when program runs [SIGL-02 (b)].

STV-AM-25. When executed, sig-log logs the following information: command line,
including any command line options, test case ID, operator ID (initials or name),
name of the computer on which the program is executed.
Criteria: passes code review [SIGL-01 (b)] and logs command line information [SIGL-02
(b)].

STV-AM-26. Sig-log asks the operator if an audio or visual signal was observed and
logs a positive response.
Criteria: passes code review [SIGL-01 (b)] and logs a signal [SIGL-02 (b)].

STV-AM-27. Sig-log asks the operator if an audio or visual signal was observed and
logs a negative response.
Criteria: passes code review [SIGL-01 (b)] and logs no signal [SIGL-03 (a)].

8.2 Assertions for Optional Features
There are no optional features.

 Page 20 of 44

Part III

Test and Review Case
Specification

 Page 21 of 44

9 Test and Review Procedures

9.1 Environmental Setup
This section covers the hardware and software needed to validate the SWB test tools.

On Windows 98 the “dir” command seems to cache the latest result. Therefore testing
must do some other “dir”, e.g., dir a:, to “flush” the cache before “dir” can be used to
determine if commands are going to the disk drive.

9.1.1 Hardware for testing
Install one or more hard disk drives in the computer so one is drive C.

9.1.2 Software for Phase 1: tally13
The programs listed in Table 9-1 are required for testing in phase 1.

Table 9-1 Software Required for Phase 1 Testing

Program Description
tally13 The interrupt 0x13 monitor program. Log compile and run

information. Block all interrupt 0x13 command functions, count the
number of times each function is requested for each disk drive, and
provide an interface for retrieving those counts for each disk drive.

vtpass Command tally13 to passive mode. (A validation version of t-off.)
vtact Command tally13 to active mode. Report if tally13 returns an

identifying value.
vtcmdgrp Send every command with bit N on to the specified disk drive. For

N=0, send 0x1, 0x3, 0x5, etc. For N=1, send 0x2, 0x3, 0x6, 0x7, etc.
vtreport Query tally13 for number and type of commands blocked and report

them.

9.1.3 Software for Phase 2: test-hdl
The programs listed in Table 9-2 are required for testing in phase 2.

Table 9-2 Software Required for Phase 2 Testing

Program Description
tally13 The interrupt 0x13 monitor program.
test-hdl The interrupt 0x13 driver and reporter program. Log compile and run

information. Issue (request) all interrupt 0x13 commands for a
specified command category. Query tally13 to determine if the

 Page 22 of 44

Program Description
function was allowed (received) or blocked (not received).

vtblksom Change all interrupt 0x13 commands with a function of 0x80 (an
arbitrary function) to function 0x81 and pass. Block all other
interrupt 0x13 commands greater than 0x40 (an arbitrary cut off).

vtblock Block all interrupt 0x13 commands.

9.1.4 Software for Phase 3: t-off and sig-log
The programs listed in Table 9-3 are required for testing in phase 3.

Table 9-3 Software Required for Phase 3 Testing

Program Description
tally13 The interrupt 0x13 monitor program.
vtact Command tally13 to active mode.
t-off Log compile and run information. Exit if tally13 is not running.

Command tally13 to passive mode.
sig-log Log compile and run information. Ask the operator if a signal was

observed, and log the response.

9.2 Code Review and Test Case Specifications
Phase 1 validates tally13.

9.2.1 Code Review T13-01

9.2.1.1 Purpose
Collect information about the source code to check that the right information is reported
[STV-AM-01]. Review the source code to find possible errors and to check that it meets
all assertions [STV-AM-01 through STV-AM-08].

9.2.1.2 Setup
(a) Get the source code for tally13.
(b) For each reviewer, get a copy of the source code, a copy of the error checklist, a copy

of the assertions, and a copy of other conditions to check.

9.2.1.3 Dependencies
None.

9.2.1.4 Procedure
(a) Find file names, version numbers, and date and time of creation of source files.
(b) Review the code. In addition to the error checklist, check that it satisfies STV-AM-01

through STV-AM-08, check the conditions for which counts overflow and what

 Page 23 of 44

happens when they overflow, and check what happens if there are more than five disk
drives.

9.2.1.5 Expected results
(a) The file names, version numbers, and date and time of creation of source files.
(b) Possible violations of the error checklist, assertions STV-AM-01 through STV-AM-

08, count overflow handling, handling in case of more than five disk drives, and
commanding to present mode.

9.2.2 Test Case T13-02

9.2.2.1 Purpose
Check that tally13 reports file information and date and time run [STV-AM-01], starts in
passive mode [STV-AM-02], can be switched between active and passive mode [STV-
AM-03 and STV-AM-04], stays in mode until switched [STV-AM-05 and STV-AM-06],
and returns an identifying value [STV-AM-08].

9.2.2.2 Setup
(a) Standard computer setup.
(b) Run dir c:. Note directory information. (It should be blocked when tally13 is

active.)

9.2.2.3 Dependencies
None.

9.2.2.4 Procedure
(a) Note system date and time. [STV-AM-01 (report execution time.)]
(b) Run tally13. Observe stdout. [STV-AM-01]
(c) Run dir a: (to flush cache). Run dir c:. Observe result. [STV-AM-02 (starts

passive)]
(d) Run vtact. Observe result. [STV-AM-08 (returns identifying value)]
(e) Run dir a: (to flush cache). Run dir c:. Observe result. [STV-AM-03 (switch

to active mode)]
(f) Run vtact. Run dir a: (to flush cache). Run dir c:. Observe result. [STV-AM-

06 (stays active)]
(g) Run vtpass. Run dir a: (to flush cache). Run dir c:. Observe result. [STV-AM-

04 (switch to passive mode)]
(h) Run vtpass. Run dir a: (to flush cache). Run dir c:. Observe result. [STV-AM-

05 (stays passive)]

9.2.2.5 Expected results
(a) n/a
(b) Tally13 reports program name, file information, and system time.
(c) Dir command returns expected result.
(d) Vtact reports an identifying value returned.

 Page 24 of 44

(e) Results are consistent with commands to disk being blocked.
(f) Results are consistent with commands to disk being blocked.
(g) Dir command returns expected result.
(h) Dir command returns expected result.

9.2.3 Test Case T13-03

9.2.3.1 Purpose
Check that tally13 counts commands received in active mode [STV-AM-07].

9.2.3.2 Setup
(a) Standard computer setup.

9.2.3.3 Dependencies
None.

9.2.3.4 Procedure
(a) Run tally13.
(b) Run dir a: (to flush cache). Run dir c:.
(c) Run vtreport and observe stdout.
(d) Run vtact (make tally13 active).
(e) Run vtcmdgrp with the parameters in Table 9-4. Each time run vtreport and append to

the log file. [STV-AM-07 (commands counted)]

9.2.3.5 Expected results
(a) n/a
(b) n/a
(c) Vtreport should show that tally13 did not count any commands. (A dir c: sends

0x02 commands to the first hard disk “80”.)
(d) n/a
(e) Vtreport responds with the results in Table 9-4.
Table 9-4 Vtcmdgrp Parameters and Expected Vtreport Results.

 vtcmdgrp
parameters

Run # Bit Drive Increased Counts For Commands
1 0 1 *1, *3, *5, *7, *9, *b, *d, and *f
2 1 2 *2, *3, *6, *7, *a, *b, *e, and *f
3 2 3 *4, *5, *6, *7, *c, *d, *e, and *f
4 3 4 *8, *9, *a, *b, *c, *d, *e, and *f
5 4 2 1*, 3*, 5*, 7*, 9*, b*, d*, and f*
6 5 3 2*, 3*, 6*, 7*, a*, b*, e*, and f*
7 6 1 4*, 5*, 6*, 7*, c*, d*, e*, and f*

 Page 25 of 44

Phase 2 tests test-hdl. Since tally13 will have been validated, it can be used to validate
test-hdl.

9.2.4 Code Review THDL-01

9.2.4.1 Purpose
Collect information about the source code to check that the right information is reported
[STV-AM-09]. Review the source code to find possible errors and to check that it meets
all assertions [STV-AM-09 through STV-AM-19].

9.2.4.2 Setup
(a) Get the source code for test-hdl.
(b) For each reviewer, get a copy of the source code, a copy of the error checklist, and a

copy of the assertions.

9.2.4.3 Dependencies
None.

9.2.4.4 Procedure
(a) Find file names, version numbers, and date and time of creation of source files.
(b) Review the code. In addition to the error checklist, check that it satisfies STV-AM-09

through STV-AM-19.

9.2.4.5 Expected results
(a) The file names, version numbers, and date and time of creation of source files.
(b) Possible violations of the error checklist and assertions STV-AM-09 through STV-

AM-19.

9.2.5 Test Case THDL-02

9.2.5.1 Purpose
Check that test-hdl reports file information and date and time run [STV-AM-09]. Check
that it issues a message and exits if tally13 is not running [STV-AM-12].

9.2.5.2 Setup
(a) Standard computer setup. Note: Tally13 NOT installed.

9.2.5.3 Dependencies
None.

9.2.5.4 Procedure
(a) Note system date and time. [STV-AM-09 (report execution time)]
(b) Run test-hdl THDL-02 USR HOST a HDD1 HDD2 … Observe stdout. [STV-AM-09

and STV-AM-12 (message and exit if no tally13)]

 Page 26 of 44

9.2.5.5 Expected results
(a) n/a
(b) Test-hdl reports program name, file information, and system time. It also issues a

message that tally13 is not running and exits.

9.2.6 Test Case THDL-03

9.2.6.1 Purpose
Check that test-hdl exits if initial counts are not zero [STV-AM-14].

9.2.6.2 Setup
(a) Standard computer setup.

9.2.6.3 Dependency
Phase 1 testing (up to T13-03) done.

9.2.6.4 Procedure
(a) Run tally13. Run vtact. (to activate tally13.) Run dir c: (so tally13 counts some

commands).
(b) Run test-hdl THDL-03 USR HOST r HDD1 HDD2 … Check log file.

9.2.6.5 Expected results
(a) n/a
(b) Test-hdl logs that count(s) are not zero, then exits. [STV-AM-14 (exit if initial count

nonzero)]

9.2.7 Test Case THDL-04

9.2.7.1 Purpose
Check that test-hdl logs command line [STV-AM-10] and disk drive [STV-AM-11]
information. Check that test-hdl commands tally13 to active mode [STV-AM-13]. Check
that test-hdl sends specified commands [STV-AM-15], logs each command sent [STV-
AM-16], logs commands blocked [STV-AM-17], and summarizes blocking [STV-AM-
18].

9.2.7.2 Setup
(a) Standard computer setup.
(b) Run tally13.

9.2.7.3 Dependency
Phase 1 testing (up to T13-03) done.

9.2.7.4 Procedure
(a) Run test-hdl THDL-04 HOST USER w HDD1 HDD2 … [STV-AM-10 (log

command line), STV-AM-11 (log disk drive information), STV-AM-16 (log each

 Page 27 of 44

command sent), STV-AM-17 (log commands blocked), and STV-AM-18 (summarize
blocking)]

(b) Run dir a: (to flush cache). Run dir c:. [STV-AM-13 (activate tally13)]
(c) Run vtreport. [STV-AM-15 (send specified commands)]

9.2.7.5 Expected results
(a) Test-hdl reports command line information and logs disk information. Test-hdl logs

that write commands were sent.
(b) Results are consistent with commands to disk being blocked.
(c) Vtreport shows that test-hdl sent the write commands.

9.2.8 Test Case THDL-05

9.2.8.1 Purpose
Check that test-hdl sends specified commands [STV-AM-15], logs each command sent
[STV-AM-16], logs commands blocked [STV-AM-17], summarizes blocking [STV-AM-
18], and logs commands received, but not sent [STV-AM-19].

9.2.8.2 Setup
(a) Standard computer setup.
(b) Run tally13.
(c) Run vtblksom.

9.2.8.3 Dependency
Phase 1 testing (up to T13-03) done.

9.2.8.4 Procedure
(a) Run test-hdl THDL-05 HOST USER a HDD1 HDD2 … [STV-AM-16 (log each

command sent), STV-AM-17 (log commands blocked), STV-AM-18 (summarize
blocking), and STV-AM-19 (log unsent commands received)]

(b) Run vtreport. [STV-AM-15 (send specified commands)]

9.2.8.5 Expected results
(a) Test-hdl logs that all commands were sent. It also reports that some commands were

blocked and some commands were received, but not sent.
(b) Vtreport shows proper counts.

9.2.9 Test Case THDL-06

9.2.9.1 Purpose
Check that test-hdl logs commands blocked [STV-AM-17] and summarizes blocking
[STV-AM-18].

9.2.9.2 Setup
(a) Standard computer setup.

 Page 28 of 44

(b) Run tally13.
(c) Run vtblock.

9.2.9.3 Dependency
Phase 1 testing (up to T13-03) done.

9.2.9.4 Procedure
(a) Run test-hdl THDL-06 HOST USER a HDD1 HDD2 … [STV-AM-17 (log

commands blocked) and STV-AM-18 (summarize blocking)]

9.2.9.5 Expected results
(a) Test-hdl logs that all commands were sent. It also reports that all commands were

blocked.

Phase 3 validates t-off and sig-log. Since tally13 will have been validated, it can be used
to validate t-off.

9.2.10 Code Review TOFF-01

9.2.10.1 Purpose
Collect information about the source code to check that the right information is reported
[STV-AM-20]. Review the source code to find possible errors and to check that it meets
all assertions [STV-AM-20 through STV-AM-23].

9.2.10.2 Setup
(a) Get the source code for t-off.
(b) For each reviewer, get a copy of the source code, a copy of the error checklist, and a

copy of the assertions.

9.2.10.3 Dependencies
None.

9.2.10.4 Procedure
(a) Find file names, version numbers, and date and time of creation of source files.
(b) Review the code. In addition to the error checklist, check that it satisfies STV-AM-20

through STV-AM-22.

9.2.10.5 Expected results
(a) The file names, version numbers, and date and time of creation of source files.
(b) Possible violations of the error checklist and assertions STV-AM-20 through STV-

AM-22.

 Page 29 of 44

9.2.11 Test Case TOFF-02

9.2.11.1 Purpose
Check that t-off reports file information and date and time run [STV-AM-20 and STV-
AM-21]. Check that t-off issues a message and exits if tally13 is not running [STV-AM-
22].

9.2.11.2 Setup
(a) Standard computer setup. Note: tally13 not running.

9.2.11.3 Dependencies
None.

9.2.11.4 Procedure
(a) Note system date and time.
(b) Run t-off TOFF-02 USR HOST. [STV-AM-20 (log compile and run information),

STV-AM-21 (log command line), and STV-AM-22 (issue message and exit)]

9.2.11.5 Expected results
(a) n/a
(b) T-off logs program name, file information, and system time. It also logs command

line information. T-off issues a message and exits.

9.2.12 Test Case TOFF-03

9.2.12.1 Purpose
Check that t-off commands tally13 to passive mode [STV-AM-23].

9.2.12.2 Setup
(a) Standard computer setup.
(b) Run tally13.
(c) Run vtact. (to activate tally13)
(d) Run dir a: (to flush cache). Run dir c:. (check that commands are blocked.)

9.2.12.3 Dependencies
Phase 1 testing (up to T13-03) done.

9.2.12.4 Procedure
(a) Run t-off TOFF-03 USR HOST.
(b) Run dir a: (to flush cache). Run dir c:. [STV-AM-23 (make tally13 passive)]

9.2.12.5 Expected results
(a) n/a
(b) Results are consistent with the disk being readable.

 Page 30 of 44

9.2.13 Code Review SIGL-01

9.2.13.1 Purpose
Collect information about the source code to check that the right information is reported
[STV-AM-24]. Review the source code to find possible errors and to check that it meets
all assertions [STV-AM-24 through STV-AM-27].

9.2.13.2 Setup
(a) Get the source code for sig-log.
(b) For each reviewer, get a copy of the source code, a copy of the error checklist, and a

copy of the assertions.

9.2.13.3 Dependencies
None.

9.2.13.4 Procedure
(a) Find file names, version numbers, and date and time of creation of source files.
(b) Review the code. In addition to the error checklist, check that it satisfies STV-AM-24

through STV-AM-27.

9.2.13.5 Expected results
(a) The file names, version numbers, and date and time of creation of source files.
(b) Possible violations of the error checklist and assertions STV-AM-24 through STV-

AM-27.

9.2.14 Test Case SIGL-02

9.2.14.1 Purpose
Check that sig-log logs file information [STV-AM-24] and date and time run [STV-AM-
25]. Check that sig-log logs when the operator reports a signal [STV-AM-26].

9.2.14.2 Setup
(a) Standard computer setup.

9.2.14.3 Dependencies
None.

9.2.14.4 Procedure
(a) Note system date and time.
(b) Run sig-log SIGL-02 HOST USER. Answer that a signal was observed.

9.2.14.5 Expected results
(a) n/a
(b) Sig-log logs program name, file information, and system time, and that a signal was

observed [STV-AM-24 (log file info), STV-AM-25 (log run time), STV-AM-26 (log
positive response)].

 Page 31 of 44

9.2.15 Test Case SIGL-03

9.2.15.1 Purpose
Check that sig-log logs when the operator reports no signal [STV-AM-27].

9.2.15.2 Setup
(a) Standard computer setup.

9.2.15.3 Dependencies
None.

9.2.15.4 Procedure
(a) Run sig-log SIGL-03 HOST USER. Answer that no signal was observed.

9.2.15.5 Expected results
(a) Sig-log logs that no signal was observed [STV-AM-27 (log negative response)].

 Page 32 of 44

Appendix A Abbreviations and Acronyms

CFTT NIST Computer Forensic Tool Testing program
NIST U.S. National Institute of Standards and Technology
SWB Software Write Block

Appendix B Error Checklist for Code Review

B.1 Acknowledgements
Ideas for checklist questions came from these sources.

John T. Baldwin, An Abbreviated C++ Code Inspection Checklist, Oct 1992,
www.literateprogramming.com/Baldwin-inspect.pdf, accessed 19 May 2004.
Jorge Rady de Almeida Jr., João Batista Camargo Jr., Bruno Abrantes Basseto, and
Sérgio Miranda Paz, Best Practices in Code Inspection for Safety-Critical Software,
IEEE Software, 20(3):56-63, May/June 2003.
Java Code Inspection Checklist, www.isys.uni-klu.ac.at/ISYS/Courses/03WS/sete/
literatur/L06-1, accessed 20 May 2004.
John Noll, Code Inspection Checklist, Jan 2004, www.cse.scu.edu/~jnoll/286/projects/
checklist.html, accessed 19 May 2004.

http://www.literateprogramming.com/Baldwin-inspect.pdf
http://www.isys.uni-klu.ac.at/ISYS/Courses/03WS/sete/�literatur/�L06-1
http://www.isys.uni-klu.ac.at/ISYS/Courses/03WS/sete/�literatur/�L06-1
http://www.cse.scu.edu/~jnoll/286/projects/�checklist.html
http://www.cse.scu.edu/~jnoll/286/projects/�checklist.html

 Page 33 of 44

B.2 Error Checklist
Review Date ____________________ Reviewer _____________________________

Name of Code (function or file) __

1 Data & Variables

1.1 Possible uninitialized variable? No

1.2 Possible off-by-1 error in array indexing? No

1.3 Possible array access out of bounds (or buffer overflow)? No

1.4 Can a string not be null-terminated? No

2 Calls & Returns

2.1 Wrong parameter order or type across call or return? No

2.2 Parameter doesn’t match format in *printf() or *scanf()? No

2.3 Returned structures on stack? No

2.4 Error return from function not checked? No

3 Control Flow

3.1 Switch case without break (or return)? No

3.2 Switch without default? No

3.3 Possible infinite loop? No

3.4 Incorrect comparison or Boolean operators (eg & vs. &&)? No

4 Files

4.1 Possible reuse of temporary or working files? No

Describe the location and nature of possible errors.

 Page 34 of 44

Appendix C Source Code for Validation Programs

C.1 Vtpass
static char *SCCS_ID[] = {"@(#) VTPASS.CPP Version 1.3 Created 07/20/04 at 10:21:28",
 __DATE__, __TIME__};

/**
The software provided here is released by the National
Institute of Standards and Technology (NIST), an agency of
the U.S. Department of Commerce, Gaithersburg MD 20899,
USA. The software bears no warranty, either expressed or
implied. NIST does not assume legal liability nor
responsibility for a User's use of the software or the
results of such use.

Please note that within the United States, copyright
protection, under Section 105 of the United States Code,
Title 17, is not available for any work of the United
States Government and/or for any works created by United
States Government employees. User acknowledges that this
software contains work which was created by NIST employees
and is therefore in the public domain and not subject to
copyright. The User may use, distribute, or incorporate
this software provided the User acknowledges this via an
explicit acknowledgment of NIST-related contributions to
the User's work. User also agrees to acknowledge, via an
explicit acknowledgment, that any modifications or
alterations have been made to this software before
redistribution.
**/

/***** Author: Dr. Paul E. Black, NIST/SDCT/SQG ****/
// derived from t-off.cpp Version 1.1 Created 08/02/03 at 16:24:48
// *created "Mon May 24 2004" *by "Paul E. Black"
// *modified "Tue Jul 20 08:59:52 2004" *by "Paul E. Black"

/**
*
* vtpass is used to validate the Software Write Block test tools, in
* particular the TALLY13 TSR program.
*
* vtpass turns off the TALLY13 monitor and blocking function.
*
**/

include <stdio.h>
include <stdlib.h>

/**
The main routine
**/

int main (int np, char **p)
{
 //***
 // display identifying information
 (void)printf("CMD: %s", p[0]);
 for (int j = 1; j < np; j++) {
 (void)printf(" %s", p[j]);
 }
 (void)printf("\n");
 // print version and compile date and time
 (void)printf("Version: %s\n", SCCS_ID[0]);
 (void)printf("Compiled on %s at %s\n", SCCS_ID[1], SCCS_ID[2]);

 // Deactivate tally13

 Page 35 of 44

 asm {
 mov dl,0
 int 0x17
 }
 return 0;
}

// end of VTPASS.CPP

C.2 Vtact
static char *SCCS_ID[] = {"@(#) VTACT.CPP Version 1.3 Created 07/20/04 at 10:21:28",
 __DATE__, __TIME__};

/**
The software provided here is released by the National
Institute of Standards and Technology (NIST), an agency of
the U.S. Department of Commerce, Gaithersburg MD 20899,
USA. The software bears no warranty, either expressed or
implied. NIST does not assume legal liability nor
responsibility for a User's use of the software or the
results of such use.

Please note that within the United States, copyright
protection, under Section 105 of the United States Code,
Title 17, is not available for any work of the United
States Government and/or for any works created by United
States Government employees. User acknowledges that this
software contains work which was created by NIST employees
and is therefore in the public domain and not subject to
copyright. The User may use, distribute, or incorporate
this software provided the User acknowledges this via an
explicit acknowledgment of NIST-related contributions to
the User's work. User also agrees to acknowledge, via an
explicit acknowledgment, that any modifications or
alterations have been made to this software before
redistribution.
**/

/***** Author: Dr. Paul E. Black, NIST/SDCT/SQG ****/
// derived from vtpass.cpp
// *created "Mon May 24 16:16 2004" *by "Paul E. Black"
// *modified "Tue Jul 20 09:02:12 2004" *by "Paul E. Black"

/**
*
* vtact is used to validate the Software Write Block test tools, in
* particular the TALLY13 TSR program.
*
* vtact turns on the TALLY13 monitor and blocking function.
*
**/

include <stdio.h>
include <stdlib.h>
include "wb-defs.h"

/**
The main routine
**/

int main (int np, char **p)
{
 unsigned int is_active; /* indicates that tally13 TSR is running */

 //***
 // display identifying information
 (void)printf("CMD: %s", p[0]);
 for (int j = 1; j < np; j++) {

 Page 36 of 44

 (void)printf(" %s", p[j]);
 }
 (void)printf("\n");
 // print version and compile date and time
 (void)printf("Version: %s\n", SCCS_ID[0]);
 (void)printf(" %s\n", WB_DEFS_SCCS_ID);
 (void)printf("Compiled on %s at %s\n", SCCS_ID[1], SCCS_ID[2]);

 // Activate tally13
 asm {
 mov dl,1
 int 0x17
 mov is_active,ax
 }
 if (is_active != tally13_TSR_active){
 printf ("Tally13 identifying code not returned\n");
 return 1;
 }
 printf ("Identifying code for tally13 was returned\n");
 return 0;
}

// end of VTACT.CPP

C.3 Vtcmdgrp
static char *SCCS_ID[] = {"@(#) VTCMDGRP.CPP Version 1.3 Created 07/20/04 at 10:21:28",
 __DATE__, __TIME__};

/**
The software provided here is released by the National
Institute of Standards and Technology (NIST), an agency of
the U.S. Department of Commerce, Gaithersburg MD 20899,
USA. The software bears no warranty, either expressed or
implied. NIST does not assume legal liability nor
responsibility for a User's use of the software or the
results of such use.

Please note that within the United States, copyright
protection, under Section 105 of the United States Code,
Title 17, is not available for any work of the United
States Government and/or for any works created by United
States Government employees. User acknowledges that this
software contains work which was created by NIST employees
and is therefore in the public domain and not subject to
copyright. The User may use, distribute, or incorporate
this software provided the User acknowledges this via an
explicit acknowledgment of NIST-related contributions to
the User's work. User also agrees to acknowledge, via an
explicit acknowledgment, that any modifications or
alterations have been made to this software before
redistribution.
**/

/***** Author: Dr. Paul E. Black, NIST/SDCT/SQG ****/
// derived from test-hdl
// *created "Tue May 25 16:32 2004" *by "Paul E. Black"
// *modified "Tue Jul 20 09:01:52 2004" *by "Paul E. Black"

/**
*
* vtcmdgrp is used to validate the Software Write Block test tools, in
* particular the TALLY13 TSR program.
*
* vtcmdgrp sends interrupt 0x13 commands
*
* The logical design of vtcmdgrp is as follows:
* check command line parameters
* the bit position to turn on

 Page 37 of 44

* the disk drive
* If a problem is found, print a message and exit
* Send every command
*
**/

include <stdio.h>
include <stdlib.h>

/**

The main routine
**/

static const char *usageMsg = "Usage: vtcmdgrp cmdBit drive";

// the first hard disk drive is 0x80, second is 0x81, etc.
static const int firstDrive = 0x80;

int main (int argc, char **argv)
{
 int bitN, /* bit to test */
 driveN; /* disk drive to send commands to (0-n) */

 if (argc < 2) {
 (void)printf("%s\n", usageMsg);
 return 0;
 }

 /* get N, bit to test */
 if (sscanf(argv[1], "%d", &bitN) < 1 || bitN < 0 || bitN > 7) {
 (void)printf("cmdBit (bit to test) must be between 0 and 7 inclusive\n");
 (void)printf("%s\n", usageMsg);
 return 0;
 }

 /* get disk drive number */
 if (sscanf(argv[2], "%d", &driveN) < 1 || driveN < 0 || driveN > 4) {
 (void)printf("drive must be between 0 and 4 inclusive\n");
 (void)printf("%s\n", usageMsg);
 return 0;
 }

 //***
 // display identifying information
 (void)printf("CMD: %s", argv[0]);
 for (int j = 1; j < argc; j++) {
 (void)printf(" %s", argv[j]);
 }
 (void)printf("\n");
 // print version and compile date and time
 (void)printf("Version: %s\n", SCCS_ID[0]);
 (void)printf("Compiled on %s at %s\n", SCCS_ID[1], SCCS_ID[2]);

 // send all 128 commands with bitN on. For programming ease, generate
 // all 256 possible codes, then set bitN on.
 int bitNmask = 1 << bitN;
 for (int command = 0; command < 256; command++) {
 int cmdNset = command | bitNmask, // command with bit N on
 fun = cmdNset << 8, // put command
code in upper byte
 drive = driveN + firstDrive; // hard drive starting at
0x80

 // send a command to the int 13 interface
 asm {
 push si
 mov ax,fun
 mov dx,drive
 int 0x13
 pop si

 Page 38 of 44

 }
 }

 return 0;
}

// end of VTCMDGRP.CPP

C.4 Vtreport
static char *SCCS_ID[] = {"@(#) VTREPORT.CPP Version 1.3 Created 07/20/04 at 10:21:28",
 __DATE__, __TIME__};

/**
The software provided here is released by the National
Institute of Standards and Technology (NIST), an agency of
the U.S. Department of Commerce, Gaithersburg MD 20899,
USA. The software bears no warranty, either expressed or
implied. NIST does not assume legal liability nor
responsibility for a User's use of the software or the
results of such use.

Please note that within the United States, copyright
protection, under Section 105 of the United States Code,
Title 17, is not available for any work of the United
States Government and/or for any works created by United
States Government employees. User acknowledges that this
software contains work which was created by NIST employees
and is therefore in the public domain and not subject to
copyright. The User may use, distribute, or incorporate
this software provided the User acknowledges this via an
explicit acknowledgment of NIST-related contributions to
the User's work. User also agrees to acknowledge, via an
explicit acknowledgment, that any modifications or
alterations have been made to this software before
redistribution.
**/

/***** Author: Dr. Paul E. Black, NIST/SDCT/SQG ****/
// derived from test-hdl
// *created "Thu Jun 3 09:26 2004" *by "Paul E. Black"
// *modified "Tue Jul 20 09:01:28 2004" *by "Paul E. Black"

/**
*
* vtreport is used to validate the Software Write Block test tools, in
* particular the TALLY13 TSR program.
*
* vtreport queries tally13 for interrupt 0x13 commands received
*
* The logical design of vtcmdgrp is as follows:
* check command line parameters
* for each possible drive
* for each possible command
* query tally13 for number of commands received
* report count
*
**/

include <stdio.h>
include <stdlib.h>

/**

The main routine
**/

static const char *usageMsg = "Usage: vtreport";

 Page 39 of 44

// the first hard disk drive is 0x80, second is 0x81, etc.
static const int firstDrive = 0x80;

// check maximum number of drives tally13 can handle
static const int numberOfDrives = 5;

int main (int argc, char **argv)
{
 if (argc != 1) {
 (void)printf("%s\n", usageMsg);
 return 0;
 }

 //***
 // display identifying information
 (void)printf("CMD: %s", argv[0]);
 for (int j = 1; j < argc; j++) {
 (void)printf(" %s", argv[j]);
 }
 (void)printf("\n");
 // print version and compile date and time
 (void)printf("Version: %s\n", SCCS_ID[0]);
 (void)printf("Compiled on %s at %s\n", SCCS_ID[1], SCCS_ID[2]);

 // for each drive, for each command, get current count
 for (int driveNo = 0; driveNo < numberOfDrives; driveNo++) {
 int drive = driveNo + firstDrive;
 (void)printf("Drive %d (%x)\n", driveNo, drive);
 // column headings for count report
 (void)printf("Command 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9
a b c d e f\n");
 for (int j = 0; j < 256; j++){ // for each command code
 int fun = j << 8; // shift to upper byte
 int ans = 1776; // arbitrary, unusual initial value to check
assignment

 asm {
 push si
 mov ax,fun
 mov dx,drive
 int 0x17
 mov ans,cx
 pop si
 }

 static const int countsPerLine = 32;
 // print command code at start of every line
 if ((j % countsPerLine) == 0) {
 (void)printf(" %02x", j);
 }
 (void)printf("%2d", ans);
 // after last count, start a new line
 if ((j % countsPerLine) == countsPerLine-1) {
 (void)printf("\n");
 }
 }
 }

 return 0;
}

// end of VTREPORT.CPP

C.5 Vtblksom
;**
; The software provided here is released by the National
; Institute of Standards and Technology (NIST), an agency of
; the U.S. Department of Commerce, Gaithersburg MD 20899,

 Page 40 of 44

; USA. The software bears no warranty, either expressed or
; implied. NIST does not assume legal liability nor
; responsibility for a User's use of the software or the
; results of such use.
;
; Please note that within the United States, copyright
; protection, under Section 105 of the United States Code,
; Title 17, is not available for any work of the United
; States Government and/or for any works created by United
; States Government employees. User acknowledges that this
; software contains work which was created by NIST employees
; and is therefore in the public domain and not subject to
; copyright. The User may use, distribute, or incorporate
; this software provided the User acknowledges this via an
; explicit acknowledgment of NIST-related contributions to
; the User's work. User also agrees to acknowledge, via an
; explicit acknowledgment, that any modifications or
; alterations have been made to this software before
; redistribution.
;**
; vtblksom -- block all hard disk BIOS Int 0x13 requests
; greater than 0x40 (arbitrary cutoff). Change all
; 0x80 (arbitrary) commands to 0x81 and pass on.
; based on vtblock
; Author: Dr. Paul E. Black
; *created "Wed Jun 17 10:45:29 2004" *by "Paul E. Black"
; *modified "Tue Jul 20 08:52:10 2004" *by "Paul E. Black"
; Usage: vtblksom
;**
 .model tiny
 version m510
 P386
.code
cr equ 0ah
lf equ 0dh
doscall equ 21h
dos_tsr equ 3100h
set_i13 equ 2513h
get_i13 equ 3513h
print_cmd equ 9h
;**
; Print a message
;**
print MACRO message
 lea dx,message
 mov ah,print_cmd
 int 21h
 ENDM

;**
;**
decode MACRO from ; from is a byte register with the digit pair
 mov AH,from ; move digits to AH
 shr AX,4 ; shift left digit into low bits & right digit into AL
 shr AL,4 ; move right digit into low bits
 or AX,3030H ; convert to ASCII, leave in AX
 ENDM
get_date MACRO string ; get a date, put in string
 mov AH,04H ; setup for date BIOS service
 int 1AH ; get the date mm in DH
 decode DH ; decode the month
 mov string,AH ; save month in string
 mov string+1,AL
 decode DL ; day is in DL
 mov string+3,AH ; save day of month
 mov string+4,AL
 decode CL ; year is in CL
 mov string+6,AH ; save year digits
 mov string+7,AL
 ENDM

 Page 41 of 44

get_time MACRO string ; get current time from BIOS
 mov AH,02H ; setup for time service
 int 1AH ; get the time
 decode CH ; hours is in CH
 mov string,AH ; save hours
 mov string+1,AL
 decode CL ; minutes is in CL
 mov string+3,AH ; save minutes
 mov string+4,AL
 decode DH ; seconds is in DH
 mov string+6,AH ; save seconds
 mov string+7,AL
 ENDM
;**
;**
start:
 jmp install
;**
; DISK REQUEST
; AL MBZ for write command
; AH Command, 42 = read, 43 = write
; DL Drive ID
; DS DAP segment
; SI DAP offset
;**
; DISK ADDRESS PACKET (DAP)
; 0 Must be 16
; 1 MBZ
; 2 # of sectors to read/write
; 3 MBZ
; 4-5 Data area segment
; 6-7 Data area offset
; 8- Sector LBA (64 bit value)
;**

change_func:
 inc ah ; change function
use_prev_service:
 popf ; restore flags
 jmp CS:bios_old ; execute previous BIOS service
tally_service:
 pushf ; save flags
 cmp dl,7Fh
 jbe use_prev_service ; not hard drive
 cmp ah,40h
 jbe use_prev_service ; func <= 0x40; pass
it
 cmp ah,80h
 je change_func ; func is 0x80; change
it
 popf ; restore flags

 iret

;**
; Resident data area
;**
bios_old label dword
biosoff dw 0
biosseg dw 0

install:
 mov ax,@data ; put address of data
segment ...
 mov ds,ax ; ... in DS

 get_date date ; add date to signoff line
 get_time time ; add time to signoff line

 Page 42 of 44

 mov ax,get_i13 ; get current DISK
BIOS interrupt vector
 int doscall

 mov biosoff,bx ; save offset of DISK
handler
 mov biosseg,es ; and segment

 lea dx,tally_service ; address of new disk
service
 mov ax,set_i13 ; install as new BIOS
interrupt vector
 int doscall

 print signon ; print sign on and sign off
message

 lea dx,install ; calculate resident
part size
 add dx,110h ; don't forget PSP
 mov cx,4
 shr dx,cl ; size is in
paragraphs!!!
 inc dx ; round up by 1
 mov ax,dos_tsr ; get ready to TSR
;;;;mov ah,4ch ; DOS terminate program
;;;;mov al,0 ; return code 0
 int doscall ; Now TSR

;**
; non-resident data area
;**

signon db 'Block or change some BIOS interrupt 13h (disk
service)',cr,lf
 db ??filename,' compiled on '
 db ??date,' at ',??time,cr,lf
 db '@(#) vtblksom.asm Version 1.2 Created 07/20/04 at
10:21:28',cr,lf
signoff db 'Now ('
date db '99/99/99 at '
time db '99:99:99) Going . . . TSR',cr,lf,'$'
 end start

C.6 Vtblock
;**
; The software provided here is released by the National
; Institute of Standards and Technology (NIST), an agency of
; the U.S. Department of Commerce, Gaithersburg MD 20899,
; USA. The software bears no warranty, either expressed or
; implied. NIST does not assume legal liability nor
; responsibility for a User's use of the software or the
; results of such use.
;
; Please note that within the United States, copyright
; protection, under Section 105 of the United States Code,
; Title 17, is not available for any work of the United
; States Government and/or for any works created by United
; States Government employees. User acknowledges that this
; software contains work which was created by NIST employees
; and is therefore in the public domain and not subject to
; copyright. The User may use, distribute, or incorporate
; this software provided the User acknowledges this via an
; explicit acknowledgment of NIST-related contributions to
; the User's work. User also agrees to acknowledge, via an
; explicit acknowledgment, that any modifications or

 Page 43 of 44

; alterations have been made to this software before
; redistribution.
;**
; vtblock -- block all hard disk BIOS Int 0x13 requests
; based on tally13
; Author: Dr. Paul E. Black
; *created "Wed Jun 16 14:27:29 2004" *by "Paul E. Black"
; *modified "Tue Jul 20 08:51:38 2004" *by "Paul E. Black"
; Usage: vtblock
;**
 .model tiny
 version m510
 P386
.code
cr equ 0ah
lf equ 0dh
doscall equ 21h
dos_tsr equ 3100h
set_i13 equ 2513h
get_i13 equ 3513h
print_cmd equ 9h
;**
; Print a message
;**
print MACRO message
 lea dx,message
 mov ah,print_cmd
 int 21h
 ENDM

;**
;**
decode MACRO from ; from is a byte register with the digit pair
 mov AH,from ; move digits to AH
 shr AX,4 ; shift left digit into low bits & right digit into AL
 shr AL,4 ; move right digit into low bits
 or AX,3030H ; convert to ASCII, leave in AX
 ENDM
get_date MACRO string ; get a date, put in string
 mov AH,04H ; setup for date BIOS service
 int 1AH ; get the date mm in DH
 decode DH ; decode the month
 mov string,AH ; save month in string
 mov string+1,AL
 decode DL ; day is in DL
 mov string+3,AH ; save day of month
 mov string+4,AL
 decode CL ; year is in CL
 mov string+6,AH ; save year digits
 mov string+7,AL
 ENDM

get_time MACRO string ; get current time from BIOS
 mov AH,02H ; setup for time service
 int 1AH ; get the time
 decode CH ; hours is in CH
 mov string,AH ; save hours
 mov string+1,AL
 decode CL ; minutes is in CL
 mov string+3,AH ; save minutes
 mov string+4,AL
 decode DH ; seconds is in DH
 mov string+6,AH ; save seconds
 mov string+7,AL
 ENDM
;**
;**
start:
 jmp install

 Page 44 of 44

not_hard_drive:
 popf ; restore flags
 jmp CS:bios_old ; execute previous BIOS service
tally_service:
 pushf ; save flags
 cmp dl,7Fh
 jbe not_hard_drive ; no match, not hard drive
 popf ; restore flags

 iret

;**
; Resident data area
;**
bios_old label dword
biosoff dw 0
biosseg dw 0

install:
 mov ax,@data ; put address of data segment
...
 mov ds,ax ; ... in DS

 get_date date ; add date to signoff line
 get_time time ; add time to signoff line

 mov ax,get_i13 ; get current DISK
BIOS interrupt vector
 int doscall

 mov biosoff,bx ; save offset of DISK
handler
 mov biosseg,es ; and segment

 lea dx,tally_service ; address of new disk
service
 mov ax,set_i13 ; install as new BIOS
interrupt vector
 int doscall

 print signon ; print sign on and sign off
message

 lea dx,install ; calculate resident
part size
 add dx,110h ; don't forget PSP
 mov cx,4
 shr dx,cl ; size is in
paragraphs!!!
 inc dx ; round up by 1
 mov ax,dos_tsr ; get ready to TSR
;;;;mov ah,4ch ; DOS terminate program
;;;;mov al,0 ; return code 0
 int doscall ; Now TSR

;**
; non-resident data area
;**

signon db 'Block BIOS interrupt 13h (hard disk service)',cr,lf
 db ??filename,'compiled on '
 db ??date,' at ',??time,cr,lf
 db '@(#) vtblock.asm Version 1.2 Created 07/20/04 at
10:21:28',cr,lf
signoff db 'Now ('
date db '99/99/99 at '
time db '99:99:99) Going . . . TSR',cr,lf,'$'
 end start

	Table of Figures
	List of Tables
	Introduction
	How to read this document

	Purpose
	Scope
	Items to Be Validated
	Features to be Validated
	Tally13
	Test-hdl
	T-off
	Sig-log

	Validation (Test and Review) Methodology
	Test and Review Approach
	Validation Phases

	References
	Technical Background
	Software Write Block Tools
	Disk Drive Attachment and Access
	Software Write Block Tool Operation
	SWB Tool Test Methodology
	Technical Terminology
	Types of Commands

	Tool Requirements
	Requirements for Mandatory Features
	Tally13
	Test-hdl
	T-off
	Sig-log

	Requirements for Optional Features

	Assertions
	Assertions for Mandatory Features
	Tally13
	Test-hdl
	T-off
	Sig-log

	Assertions for Optional Features

	Test and Review Procedures
	Environmental Setup
	Hardware for testing
	Software for Phase 1: tally13
	Software for Phase 2: test-hdl
	Software for Phase 3: t-off and sig-log

	Code Review and Test Case Specifications
	Code Review T13-01
	Test Case T13-02
	Test Case T13-03
	Code Review THDL-01
	Test Case THDL-02
	Test Case THDL-03
	Test Case THDL-04
	Test Case THDL-05
	Test Case THDL-06
	Code Review TOFF-01
	Test Case TOFF-02
	Test Case TOFF-03
	Code Review SIGL-01
	Test Case SIGL-02
	Test Case SIGL-03

	Appendix A Abbreviations and Acronyms
	Appendix B Error Checklist for Code Review
	B.1 Acknowledgements
	B.2 Error Checklist

	Appendix C Source Code for Validation Programs
	C.1 Vtpass
	C.2 Vtact
	C.3 Vtcmdgrp
	C.4 Vtreport
	C.5 Vtblksom
	C.6 Vtblock

