
8 January 2008
ACES Test Suite User’s Guide

Version 1

[image: image21.wmf]

Application

Class Driver

Function Driver

Bus Driver

User Mode

Kernel Mode

Abstract

This document describes how to setup and run the Advanced Computer Examination Support for Law Enforcement (ACES) test suite software used for testing the ACES for hard drive software write block (SWB) tools. It is applicable to testing software write blockers that protect disk drives while connected to a computer system running the Windows 2000 or later operating system.
Contents

11.
Introduction

12.
Purpose

13.
Scope

14.
References

15.
Test System Setup

15.1.
Install the write blocker software

25.2.
Install the NIST test suite

25.2.1.
Copy the test suite software to the Windows system disk

25.2.2.
Overview of the test suite filter drivers

55.2.3.
Configure the test suite filter drivers

75.2.4.
Configure the test suite driver startup

115.2.5.
Install the BusTrace software

115.2.6.
Reboot the system and verify installation

116.
Running the tests

126.1.
Test suite console application tests

126.2.
FTK application test

126.3.
ENCASE application test

126.4.
Windows COPY command test

136.5.
Windows DRAG and DROP test

136.6.
Windows PASTE test

136.7.
Windows NOTEPAD application test

1. Introduction

There is a critical need in the law enforcement community to ensure the reliability of computer forensic tools. A capability is required to ensure that forensic software tools consistently produce accurate and objective test results. The goal of the Computer Forensic Tool Testing (CFTT) project at the National Institute of Standards and Technology (NIST) is to establish a methodology for testing computer forensic software tools by development of general tool specifications, test procedures, test criteria, test sets, and test hardware. The results provide the information necessary for toolmakers to improve tools, for users to make informed choices about acquiring and using computer forensics tools, and for interested parties to understand the tools capabilities. Our approach for testing computer forensic tools is based on well-recognized international methodologies for conformance testing and quality testing. This project is further described at http://www.cftt.nist.gov/.
The CFTT is a joint project of the National Institute of Justice, the research and development organization of the U.S. Department of Justice; the National Institute of Standards and Technology Office of Law Enforcement Standards and Information Technology Laboratory; and other agencies, such as the Technical Support Working Group. The entire computer forensics community participates in the development of the specifications and test methods by commenting on drafts as they are published on the website.

The central requirement for a sound forensic examination of digital evidence is that the original evidence must not be modified, i.e., the examination or capture of digital data from the hard drives of a seized computer must be performed so that the drive contents are not changed. The investigator follows a set of procedures designed to avoid any modification of original data, including prevention of the execution of any program that might modify the drive contents, using a software tool to block modification of a drive, or using a hardware device to block modification of a drive.

2. Purpose

This document describes the installation and use of the NIST software writeblocker test suite. The test suite is a collection of NIST developed software products designed to test the conformance of software write blocking applications to the ACES Software Write Block Tool Specification and Test Plan.

3. Scope

The scope of this specification is limited to software tools that protect disk drives connected to systems running the Microsoft Windows 2000 or later operating systems and that implement that protection via I/O filtering within the Windows device driver interface.

4. References

[NCITS 347:2001] ANSI NCITS 347-2001 BIOS Enhanced Disk Drive Services, ANSI 11 West 42nd Street, New York, NY 10036.

5. Test System Setup

This section describes the steps needed to prepare a Microsoft Windows computer system to be used in running the NIST software write blocker test suite.

5.1. Install the write blocker software

Install the ACES write blocker tool to be tested in accordance with the vendor’s instructions.

5.2. Install the NIST test suite

5.2.1. Copy the test suite software to the Windows system disk

The KernelDrivers\Install\i386 folder on the NIST test suite software CD contains two kernel device driver files named Catcher.sys and Pitcher.sys. Manually copy these files to the device driver folder on the Windows system disk. This folder is usually C:\Windows\System32\Drivers.
The KernelDrivers\DevCtl\objchk_wnet_i386 folder on the test suite CD contains the console application program file Devctl.exe. Manually copy this file to the C:\Windows\System32 folder on the Window’s system disk.

5.2.2. Overview of the test suite filter drivers

The Windows family of operating systems provides a multi-user environment in which user applications and non-privileged OS components run in user mode and do not have access to device control registers. These user mode processes access storage devices via calls to privileged kernel mode operating system device driver modules which perform the low level I/O operations on their behalf. Beginning with Windows 2000, the Windows family of operating systems all implement a layered driver architecture called the Windows Driver Model (WDM). The WDM architecture consists of a set of layered drivers for each device controller.

[image: image1.jpg]The lowest level drivers (Bus drivers) are typically provide by the operating system and are specific to the bus architecture of the system the operating system is running on. The next level up consists of the Function drivers. These drivers are typically provided by the manufacturer of the individual devices attached to the system bus(es) and implement device specific control functions via the bus drivers. A third layer just above the function drivers is the Class driver. Class drivers expose a generic device interface to user mode processes and map generic I/O requests to device specific requests for the target function and bus driver. The Windows operating system categorizes devices into several generic groupings or classes and provides a class driver for each category. In Windows 2000 and later the Disk class driver provides access to read/write rotating mass storage devices and the CDROM class driver provides access to CDROM and DVD devices. It is important to note that at this level all I/O is performed using a generic view of the device regardless of physical bus interface (ATA, SCSI, USB, FireWire, etc).

The illustration to the left shows the movement of a user mode I/O request through these layers.

[image: image14.wmf]

Application

Class Driver

Function Driver

Bus Driver

User Mode

Kernel Mode

The WDM includes a mechanism for specifying upper and lower filter drivers at each of these three layers. Filter drivers are simply additional kernel mode modules placed either above (upper filter) or below (lower filter) a Class, Function, or Bus driver. The purpose of a filter driver is to functionally modify the behavior of a Class, Function, or Bus driver without modifying the actual code of that driver. Filter drivers may intercept I/O requests on their way up or down the driver stack and modify the request or the results as appropriate. Multiple filter drivers may themselves be stacked above or below the Class, Function, and Bus drivers.

Since any API function that requires physical access to the target device ends up being one or more Kernel I/O requests to the WDM driver stack for the device it is possible to implement a software write blocker as a WDM filter driver placed in the WDM stack at the Class, Function or Bus level. While it is possible to implement a Kernel mode write blocker at any point in the device stack, the closer the write blocker is to the bus interface the greater the assurance that the writeblocker is in a position to receive all Kernel mode I/O requests directed to the device. The illustration to the left shows the placement of a software writeblocker between the class and function drivers for a device.

The NIST test suite provides two kernel drivers which are used to generate test I/O requests and monitor the processing of that I/O activity through the write blocker’s device drivers. The test suite drivers are loaded into the WDM stack immediately above and below the SWB driver(s) to be tested. The upper test suite driver (Pitcher.sys) implements a user mode API for formatting and issuing low level Kernel mode I/O requests. The lower driver (Catcher.sys) monitors the stack for test I/O requests and completes them if they are passed by the write blocker. The illustration on the next page shows this arrangement. This API compromises the security and integrity constraints of the Windows I/O model but permits extensive and thorough exercising of the possible I/O paths through a WDM driver based software write blocker with minimal kernel mode development.
To run the tests using the NIST test suite drivers an application simply calls the standard OPENFILE function with the full pathname of the physical device to be tested. This call returns a handle to the topmost driver on the device’s driver stack. The test application then uses the standard Window’s DeviceIoControl function to issue IOCTL requests to this device. These IOCTL requests contain a custom (NIST defined) IOCTL function code which allows an application program to construct a kernel mode I/O Request Packet (IRP) in user memory and pass it to the kernel mode driver in the data buffer of the IOCTL request.

These IOCTL requests are ignored by the upper device drivers and filters that do not recognize the IOCTL code and are passed down the stack until they are received by the test suite’s upper filter driver. This driver allocates a kernel mode IRP from kernel memory and copies the contents of the user’s IOCTL data buffer into the corresponding fields of the [image: image15.wmf]

Application

Class Driver

Function Driver

Bus Driver

User Mode

Kernel Mode

SWB Driver

kernel IRP. It performs any additional fixup needed for the particular kernel mode function being requested and then calls the next lower driver (the SWB driver) with the IRP so constructed. All test suite generated IRP’s are marked with a special flag which allows the test suite drivers to differentiate them from legitimate operating system IRP’s. This flag is transparent to non-test suite drivers.

Because the test suite’s lower filter driver is immediately below the SWB driver on the driver stack, should the SWB driver fail to block the request the test suite’s lower filter driver will receive it. This test suite driver will recognize it as a test IRP and complete it immediately with a special completion status indicating that the test suite lower filter driver processed the request. When the test suite upper filter driver receives the completed test IRP back from the stack it copies the completion status from the kernel IRP into the user mode copy and completes the user mode IOCTL that started the process. The user mode application can then determine what processing was performed by the write blocker by interrogating the copy of the IRP status information that was returned in the IOCTL data buffer.

In order to properly install the test suite drivers the location of the write blocker driver in the operating system driver stack must first be identified. A software write blocker driver might be installed as a class, function, or bus driver. The write blocker vendor should be able to provide this information for the product to be tested. Windows device drivers are loaded by the operating system based on the values of special software configuration keys in the Windows Registry. The registry contains keys for all the different device classes known to the operating system. Each device class is identified by a Globally Unique Identifier (GUID) and are stored in the Windows registry. The registry key used for this purpose is HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class as shown in the registry editor screen shot below.
[image: image2.png]
Associated with each device class key in the registry is a set of parameters stored as name/value pairs. The right pane of the registry editor window lists the parameters for the key selected in the left pane. In the example shown the GUID for the generic disk drive class has been selected. The UpperFilters and LowerFilters parameters in the right pane list the filter drivers to be loaded for this class. The operating system loads the upper filter drivers into the device stack above the OS driver for the specified device class. Likewise it loads the list of lower filter drivers into the stack beneath the OS driver. If either filter driver list specifies more than one driver name the drivers are loaded into the stack with the driver(s) to the right in the list above the driver(s) to the left.

5.2.3. Configure the test suite filter drivers

To configure the NIST test suite drivers, use the registry editor to locate the GUID that references the write blocker driver to be tested. The write blocker vendor should be able to provide the GUID(s) for their driver(s). Once the appropriate registry key has been located, add Catcher and Pitcher to the list of filters that contains the reference to the write blocker. Pitcher should be added to the list immediately to the right of the write blocker and Catcher should be added immediately to the left as follows:

1. In the example above a write blocker named NTWPMB is installed as a lower filter for the disk drive class. To add Pitcher and Catcher to this list right click on the LowerFilters parameter and select Modify from the dropdown menu. An edit window similar to the one shown below will open.

2. [image: image16.wmf]

Test Suite

Application

User Mode

Kernel Mode

SWB Driver

Test

IRP

?

Build KERNEL

IRP from User

data

Yes

Test Suite Upper

Filter

 Driver

(Pitcher.sys)

Complete IRP and

return “PASSED”

status

Test Suite Lower

Filter Driver

(Catcher.sys)

Test

IRP

?

Yes

No

No

Add entries for Pitcher and Catcher as separate lines above and below the entry for the write block driver. Use the Enter key to terminate each line you add. When you are finished your edit window should look similar to the one below.
3. Click the OK button to update the registry. The modified data should now appear in the right pane of the registry editor.

[image: image3.png]
5.2.4. Configure the test suite driver startup

Windows Kernel drivers are services started by the OS at boot time. The OS finds which services to load at boot time by looking in the registry. The registry key used for this purpose is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

Registry keys for both Pitcher and Catcher need to be added under this key to tell the OS to load the drivers.

1. Open the Services key using the registry editor.

[image: image4.png]
2. [image: image17.wmf]

Application

Class Driver

Function Driver

Bus Driver

User Mode

Kernel Mode

SWB Driver

With the Services key selected (highlighted) right click the mouse and choose New->Key from the dropdown menu. A new key will be added to the bottom of the Services section of the registry.
3. Rename this key to Pitcher.
4. Right click in the right pane of the editor window and choose New->String Value from the dropdown menu. Rename the newly created value to DisplayName.
[image: image5.png]
5. Right click on DisplayName and chose Modify from the menu. Enter “Pitcher” as the new value for this parameter.
6. Repeat Steps 4 and 5 again to add another string value named Group with a value of “System Bus Extender”.
[image: image6.png]
7. Right click in the right pane again and chose New->DWORD Value from the menu. Rename this value to ErrorControl.
[image: image7.png]
8. Right click on the ErrorControl key and select Modify. Enter the value 1 for the key and click OK.
[image: image8.png]
9. Repeat steps 7 and 8 to add a key named Start with a value of 0.
[image: image9.png]
10. Repeat steps 7 and 8 to create a key named Tag with a value of hexadecimal ‘a’.
[image: image10.png]
11. Repeat steps 7 and 8 to create a key named Type with a value of 1.
[image: image11.png]
12. Finally repeat this entire procedure a second time to create a Service key named Catcher with parameters (except for DisplayName) identical to Pitcher. The DisplayName for Catcher should be “Catcher”. Close the registry editor when you are done.
[image: image12.png]
5.2.5. Install the BusTrace software

Install the current release of the BusTrace software package according to the manufacturer’s instructions

5.2.6. Reboot the system and verify installation

After software has been installed reboot the system and verify the proper installation of the write blocker and test drivers by running the Bus Trace Filter Driver utility. This utility is used to display the names and positions of filter drivers in the Windows device driver stack. The following is a screen shot of the BusTrace utility showing the installation of a write blocker (NTWPMB) and the two NIST test suite drivers. Verify the installation order for all drives that are to be used in the write blocker testing.

 [image: image13.png]
6. Running the tests

The write blocker testing procedure consists of a series of tests run using the test suite drivers and console application. An additional set of tests is also run using standard Windows file manipulation commands and two forensic applications (EnCase ® and FTK ®) commonly employed by the forensic community. The purpose of these tests is to confirm that the write blocker prevents these commands and tools from altering protected drives. These tests are more fully described in the ACES Software Write Block Tool Specification and Test Plan which may be found on the NIST computer forensic tool web site www.cftt.nist.gov.

6.1. Test suite console application tests

Tests SWB-01 through SWB-24 are run using the test suite console application. A typical procedure for running these tests is described below.

1. Login to the test system and open a command window on the test system.

2. Ensure that an unprotected storage drive is available for recording the output of the test.

3. Create a folder on the unprotected device for saving the output of the test and set the current working directory to that folder.

4. Configure the write blocker with the protection pattern to be tested

5. Save screen shots of the Write Blocker configuration, Disk Manager configuration, and Filter Driver load order to the current working directory.

6. Execute the console application specifying the parameters for the specific test to be run. Redirect the output of the application to a file named Summary.txt in the current working directory. The application automatically creates a detailed logfile named <test_case_name>.log of the complete test results in the current working directory. The console application requires 5 positional command line parameters:

Devctl SWB-07 RWOVU 3 PUU DPA >Summary.txt

P1 – a string specifying the name of the test that is being run

P2 – a string specifying the command categories to be tested

P3 – a string specifying the number of drives to test

P4 – a string specifying the protection pattern in effect for those drives

P5 – a string identifying the individual running the test
6.2. FTK application test

Test SWB-25 is run using the FTK forensic tool. The procedure for running this test is as follows:

1. Login to the test system and open a command window.

2. Create a folder on an unprotected drive to record the results of the test.

3. Configure the write blocker to protect the drive under test.

4. Run the FTK disk image utility specifying an output file located on the protected disk drive.

5. Save a screen shot of the test results in the folder created in step 2

6.3. ENCASE application test

Test SWB-26 is conducted using the ENCASE Forensic toolkit as follows:

1. Login to the test system and invoke the ENCASE tool kit GUI.

2. Create a folder on an unprotected drive to record the results of the test

3. Configure the write blocker to protect the drive under test.

4. Using the ENCASE tool initiate an ACQUIRE operation specifying an output case file on the protected drive

5. Save a screen shot of the test results in the folder created in step 2

6.4. Windows COPY command test

Test SWB-27 is conducted using the DOS Copy command as follows:

1. Login to the test system and open a command window

2. Create a folder on an unprotected drive to record the results of the test

3. Configure the write blocker to protect the drive under test.

4. From the command window execute the COPY command specifying an output file on the protected drive

5. Save a screen shot of the test results in the folder created in step 2

[image: image18.wmf]

Test Suite

Application

User Mode

Kernel Mode

SWB Driver

Test

IRP

?

Build KERNEL

IRP from User

data

Yes

Test Suite Upper

Filter

 Driver

(Pitcher.sys)

Complete IRP and

return “PASSED”

status

Test Suite Lower

Filter Driver

(Catcher.sys)

Test

IRP

?

Yes

No

No

[image: image19.png]
6.5. Windows DRAG and DROP test

Test SWB-28 is conducted using the Windows DRAG and DROP operation
1. Login to the test system.

2. Create a folder on an unprotected drive to record the results of the test

3. Configure the write blocker to protect the drive under test.

4. Using the Windows mouse initiate a DRAG and DROP operation on a file specifying an output location on the protected drive

5. Save a screen shot of the test results in the folder created in step 2

6.6. Windows PASTE test

Test SWB-29 is conducted using the Windows PASTE operation
1. Login to the test system.

2. Create a folder on an unprotected drive to record the results of the test

3. Configure the write blocker to protect the drive under test.

4. Using the Windows mouse select and COPY any test file.

5. Using the Windows mouse attempt to PASTE the file copied in step 4 specifying and output location on the protected drive

6. Save a screen shot of the test results in the folder created in step 2

6.7. Windows NOTEPAD application test

Test SWB-30 is conducted using the Windows NOTEPAD text editor

1. Login to the test system.

2. Create a folder on an unprotected drive to record the results of the test

3. Configure the write blocker to protect the drive under test.

4. Invoke the NOTEPAD text editor and create a one line test file.

5. Execute the NOTEPAD SAVE AS operation specifying and output location on the protected drive

6. Save a screen shot of the test results in the folder created in step 2

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� Certain trade names and company products are mentioned in the text or identified. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

xviii
ii
Test Suite Users Guide

 1/11/08 at 9:21 AM

[image: image20.png]_1261315830.doc

User Mode

Kernel Mode

Application

Class Driver

Function Driver

Bus Driver

SWB Driver

_1261315862.doc

User Mode

Kernel Mode

Application

Class Driver

Function Driver

Bus Driver

_1261315744.doc

User Mode

Kernel Mode

Test Suite Application

Build KERNEL IRP from User data

Test Suite Lower Filter Driver

(Catcher.sys)

Complete IRP and return “PASSED” status

Yes

Test

IRP

?

SWB Driver

Test Suite Upper Filter Driver

(Pitcher.sys)

Test

IRP

?

Yes

No

No

