
An Alternate Methodology for
Validating Hardware Write Block

Devices

AAFS – 23 February 2012

Ben Livelsberger
NIST
Information Technology Laboratory
CFTT Project

Disclaimer

Certain trade names and company products are mentioned in
the text or identified. In no case does such identification
imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that
the products are necessarily the best available for the purpose.

Overview

Federated Testing

Validating Hardware Write Blockers - Usual
Method

NIST HWB Test Tools

Interesting Discoveries

Conclusion

Sponsors

Federated Testing at NIST

NIST is exporting its tool testing expertise and
methods

Benefits
A common test methodology
Time savings & peer-reviewed test reports

CFTT Strength – Formal, well researched test
methods

CFTT Weakness – Limited resources for testing

Write block drive

Attempt write to drive

Attempt to format drive

Check if drive changed

Validating Hardware Write
Blockers – Usual Method

Problem - OSes Implement
Multiple Write Commands

ATA drives:
Most OSes default to using READ & WRITE
DMA commands

Some drives < 128 GB: implement WRITE
DMA, but not WRITE DMA EXT

Drives > 128 GB: need EXT command set
(WRITE DMA EXT) to fully access drives

Older drives: only implement PIO (WRITE
SECTORS & WRITE SECTORS EXT)

Possible Write Commands

T10 Technical Committee,
http://www.t10.org/ - 20 SCSI write
commands

T13 Technical Committee,
http://www.t13.org/ - 17 ATA write
commands

Wanted a way to test write blockers using all 17
ATA and all 20 SCSI write commands

NIST Approach – ataraw library

ataraw 0.2.1 http://afflib.org/downloads/ataraw-0.2.1.tar.gz

Kyle Sanders – Masters student at Naval Post Graduate
School

uses the Linux SG_IO ioctl, to pass SCSI/ATA command
packets to Linux SCSI Generic driver

Extended ataraw library to implement more ATA and SCSI
commands (ATA specs 4-8, SCSI RBC-2)

4 SCSI reads, 4 SCSI writes

12 ATA reads, 15 ATA writes

Commands Implemented
Reads Commands
(SCSI)

C4h READ
MULTIPLE

Write Commands
(SCSI)

3Dh WRITE DMA FUA
EXT

08h READ 6
22h READ LONG

A0h WRITE 6
CCh WRITE DMA
QUEUED

28h READ 10
C9h READ DMA w/o
retries 2Ah WRITE 10

36h WRITE DMA
QUEUED EXT

A8h READ 12
23h READ LONG w/o
retries AAh WRITE 12 C5h WRITE MULTIPLE

88h READ 16
21h READ SECTOR(S)
w/o retries 8Ah WRITE 16

39h WRITE MULTIPLE
EXT

7Fh READ 32 25h READ DMA EXT 7Fh WRITE 32 CEh WRITE MULTIPLE
FUA EXT

26h READ DMA
QUEUED EXT

3Ah WRITE STREAM
DMA EXT

Reads Commands
(ATA)

29h READ MULTIPLE
EXT

Write Commands
(ATA)

3Bh WRITE STREAM
EXT

C8h READ DMA
25h READ SECTOR(S)
EXT

30h WRITE
SECTORS

CBh WRITE DMA W/O
RETRIES

C7h READ DMA
QUEUED

2Ah READ STREAM
EXT

34h WRITE
SECTORS EXT

31h WRITE SECTORS
W/O RETRIES

20h READ SECTOR(S)

2Ah READ STREAM
DMA EXT CAh WRITE DMA 3Ch WRITE VERIFY

35h WRITE DMA

Implementation – try_read,
try_write, write_verify

try_write – send every ATA or SCSI write
command to unique LBAs (based on the
command’s opcode) on drive

try_read – send all the ATA or SCSI read
commands to a drive

write_verify – read sectors from a hard drive to
measure which, if any, write commands were
able to write to the drive

Testing a Blocker with the NIST
programs

1. For each hard drive interface supported by the write block
(e.g., ATA,SAS,SATA), initialize a drive to known content

2. Calculate a “before” reference hash for each drive

3. For each permutation of host-to-blocker and blocker-to-
drive interfaces execute the try_read and try_write programs

4. Calculate an “after” reference hash for each drive

5. Execute write_verify for each drive. Use the write_verify
output along with the reference hashes to measure whether
any sectors on the test drives have changed.

Advantages of the NIST
Approach

Ability to validate your write block with multiple
write commands

Know which commands you’ve validated your
blocker for

Know which, if any, commands your blocker fails
for

try_write and try_read have been validated for the
eSATA, FireWire, and USB interfaces in Ubuntu
11.10

Notes of Interest – defense in
depth

“/dev/sdd: Read-only file system”

First layer of defense: the firmware logic that
blocks writes and passes reads

Second layer: advertising the protected drive as
read-only

Modern OSes try to enforce “read-only”; older
versions of Linux do not

Test Results – how good is your
write block?

Tested 3 write blockers from 3 leading manufactures
using the NIST tools

For one blocker, one sector of our drives kept changing

For the USB interface, the blocker let me write content
to the drive using the WRITE 16 command

Reason to fret?
defense in depth
All the OSes I’ve tested use the WRITE 10 command
2008 firmware version; now it’s fixed

Conclusion

Federated Testing – exporting test materials

The usual method for write blocker testing is
incomplete

The NIST hardware write block test tools
addresses those problems

Good product design with defense in depth

Important for you to validate your write block
devices

2/22/2012 AAFS 2008 16

Project Sponsors

National Institute of Justice (Major funding)

Homeland Security (Major funding)

FBI (Additional funding)

Department of Defense, DCCI (Equipment and
support)

Federal, State & Local agencies (Technical input)

NIST/OLES (Program management)

Contacts

Ben Livelsberger www.cftt.nist.gov

livebe01@nist.gov cftt@nist.gov

Sue Ballou, Office of Law Enforcement Standards

susan.ballou@nist.gov

NIST tools, http://www.cftt.nist.gov/###.tar.gz

Questions?

	An Alternate Methodology for Validating Hardware Write Block Devices
	Disclaimer
	Overview
	Federated Testing at NIST
	Validating Hardware Write Blockers – Usual Method
	Problem - OSes Implement Multiple Write Commands
	Possible Write Commands
	NIST Approach – ataraw library
	Commands Implemented
	Implementation – try_read, try_write, write_verify
	Testing a Blocker with the NIST programs
	Advantages of the NIST Approach
	Notes of Interest – defense in depth
	Test Results – how good is your write block?
	Conclusion
	Project Sponsors
	Contacts
	Questions?

