
April 2021 1

 2

SQLite Data Recovery Specification, Test 3

Assertions, and Test Cases 4

 5

 6

Version 1.0 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

34

 2 of 13

Disclaimer 35

 36

Certain commercial entities, equipment, or materials may be identified in this document in order to 37

describe an experimental procedure or concept adequately. Such identification is not intended to 38

imply recommendation or endorsement by the National Institute of Standards and Technology, nor 39

is it intended to imply that the entities, materials, or equipment are necessarily the best available for 40

the purpose.41

 3 of 13

Abstract 42

 43

This specification defines requirements, test assertions, and test cases for basic methods of 44

recovering and reporting evidence as contained within SQLite databases. This also includes their 45

associated journal mode log files. The specification does not address more advanced methods of 46

recovery of data as stored in these files. Today, millions of different applications reside on 47

smartphones, computers, and IoT devices that all store data in this format. 48

 49

This document defines SQLite forensic data recovery tool requirements. These requirements are 50

used to derive test assertions, statements of conditions that are then checked after a test case is run. 51

Each test assertion is covered by one or more test cases consisting of a test protocol and the 52

expected test results. The test case protocol specifies detailed procedures for setting up the test, 53

executing the test, and measuring the test results. 54

 55

Thanks and appreciation to Sam Brothers for his collaboration with co-authoring the SQLite Data 56

Recovery and assistance in designing SQLite datasets for testing purposes. 57

 58

Comments and feedback are welcome. This document, and future revisions, are available for 59

download at: https://www.cftt.nist.gov/SQLite_Forensic_Tools.htm. 60

61

https://www.cftt.nist.gov/SQLite_Forensic_Tools.htm

 4 of 13

TABLE OF CONTENTS 62

 63

1 Introduction ... 5 64

2 Purpose .. 5 65

3 Scope ... 5 66

4 Definitions ... 6 67

5 Requirements ... 7 68

5.1 Required Features .. 7 69

5.2 Optional Features ... 7 70

6 Test Assertions .. 7 71

6.1 Core Assertions .. 7 72

6.2 Optional Test Assertions .. 8 73

7 SQLite Forensics Tool Test Cases .. 9 74

 75

 76

 5 of 13

1 Introduction 77

There is a critical need in the law enforcement community to ensure the reliability of computer 78

forensic tools. A capability is required to ensure that forensic tools consistently produce accurate, 79

repeatable, and objective test results. The goal of the Computer Forensic Tool Testing (CFTT) project 80

at the National Institute of Standards and Technology (NIST) is to establish a methodology for testing 81

computer forensic tools by the development of functional specifications, test procedures, test criteria, 82

and test sets. The results provide the information necessary for toolmakers to improve tools, for users 83

to make informed choices about acquiring and using computer forensics tools, and for interested 84

parties to understand the tools’ capabilities. This approach for testing computer forensic tools is based 85

on well-recognized international methodologies for conformance testing and quality testing. This 86

project is further described at http://www.cftt.nist.gov/. 87

 88

The Computer Forensics Tool Testing (CFTT) program is a joint project of the Department of 89

Homeland Security (DHS) Science and Technology Directorate, and the National Institute of 90

Standards and Technology. 91

2 Purpose 92

This specification defines requirements, test assertions, and test cases for SQLite Data Recovery 93

(SDR) Forensics Tools capable of performing the following tasks: 94

 95

1. Displaying recovered SQLite database information to the user, 96

2. identifying, categorizing, and reporting upon Write-Ahead Log (WAL) and Rollback Journal 97

data, and 98

3. sequencing wal journal data. 99

 100

The requirements are used to derive test assertions, statements of conditions that are checked after a 101

test case is run. Each test assertion is covered by one or more test cases consisting of a test protocol 102

and the expected test results. The test case protocol specifies detailed procedures for setting up the 103

test, executing the test, and measuring the test results. 104

3 Scope 105

The scope of this specification is limited to software tools capable of presenting recovered data stored 106

within SQLite databases. This also includes stand-alone SQLite forensic tools that provide additional 107

functionality. This specification is general and capable of being adapted to other database formats 108

should they become more widely used. 109

 110

The intended audience for this document is forensic examiners with an existing basic knowledge of 111

SQLite. This document does not address every detail about how SQLite works. Rather, the scope of 112

this material is at a higher level. Should the reader be interested in additional file format details they 113

can be found at: www.sqlite.org or they should seek specialized SQLite forensics training. 114

 115

The topics covered within this specification addresses recovered SQLite data. The reporting of active 116

SQLite data is commonplace in modern mobile forensic tools and therefore, covered in Mobile Device 117

Forensic Tool Specification, Test Assertions, and Test Cases. 118

http://www.sqlite.org/

 6 of 13

4 Definitions 119

This glossary defines terms used within this document. 120

 121

Active Data – Table information that comprises the current state of the database (and all associated 122

journal mode files) as of the latest successful commit. 123

Binary Large OBject (BLOB) – A Binary Large Object is a string of binary data stored as a single 124

entity within a database management system. BLOB’s can typically be images, audio, plist or 125

other multimedia objects. 126

Commit – This SQLite command is the transactional command used to save changes invoked by a 127

transaction to the database. 128

Data Element – Data contained in a single cell of a row in the table of a given SQLite database. 129

Journal Mode – Functionality that provides rollback abilities in accordance with Atomic, 130

Consistent, Isolated, and Durable (ACID) transactions. This refers to either a -journal or -wal 131

file. 132

Journal Sequencing – Ordering of transactions within the -wal journal file and any related data in 133

the database. 134

Page – A fixed-size contiguous block of data within an SQLite database, WAL, or journal file. The 135

size of a page is a power of two between 512 and 65,536 bytes. All pages within a database are 136

of the same size. 137

Recoverable Row – This refers to row data in the SQLite database and its associated journal mode 138

file that is no longer active. Either through row deletion or row modification. 139

Recovered Data – Table information that is not part of the current state of the database and all 140

associated journal mode file(s) as of the latest commit. 141

Rollback Journal – This file is associated with an SQLite database that holds information used to 142

restore the database to its previous state during a transaction while in journal mode. The setting 143

of the journal_mode PRAGMA can be used to determine if a rollback journal is being used. 144

This file resides in the same folder as the database and has the string “-journal” appended to its 145

filename. 146

SQLite – SQLite is an embedded SQL relational database engine that implements a self-contained, 147

serverless, zero-configuration, transactional SQL database engine. 148

Table – A data structure that organizes information into rows and columns. It can be used to store 149

and display data in a structured format. 150

Vacuum – A command that rebuilds the database file, repacking it into a minimal amount of disk 151

space. When a vacuum occurs, data may be overwritten or deleted. 152

WAL Timelining – See Journal Sequencing. 153

Write-Ahead Log (WAL) – A file that records SQLite transactions that have been committed, but 154

not yet applied to the database. This file is in the same directory as the database with the string “-155

wal“ appended to its filename. As of version 3.7.0 (dated 7/21/2010) this file type is the most 156

commonly used method when SQLite journaling mode is enabled. 157

 7 of 13

5 Requirements 158

This section lists the SQLite Data Recovery Tool requirements. There are requirements for core 159

features that all tools must meet and requirements for optional features as well. The requirements 160

for optional features only apply if the tool supports the feature. 161

5.1 Required Features 162

The following requirements shall be met by all tools: 163
 164
SFT-CR-01. The tool shall not modify the files being analyzed. 165

SFT-CR-02. The tool shall report the database configuration parameters pertinent to data recovery. 166

SFT-CR-03. The tool shall report the schema structure of the database tables. 167

SFT-CR-04. The tool shall report the data content of all recovered rows of any table in the 168

database. 169

SFT-CR-05. The tool shall report the source for all recovered data elements. 170

 171

5.2 Optional Features 172

 173

SFT-RO-01. The tool shall report additional schema data within the database for all recovered data. 174

SFT-RO-02. The tool shall report the metadata for all recovered rows. 175

SFT-RO-03. The tool shall report the detailed metadata for all recovered data elements. 176

SFT-RO-04. The tool shall be able to perform journal sequencing (or wal timelining) of the 177

associated -wal journal mode file. 178

 179

6 Test Assertions 180

Here is a set of test assertions based on the requirements: 181

 182

6.1 Core Assertions 183

 184

Assertion Req

SFT-CA-01. The MD5 (or SHA-1) hash value of the database and associated journal

mode file (e.g., -journal, -wal) shall not be altered between when analysis

begins and analysis is complete.

CR-01

SFT-CA-02. The associated journal mode file (e.g., -journal, -wal) shall not be deleted

after analysis is complete.

CR-01

SFT-CA-03. The tool shall interpret the SQLite Page Size (in bytes). CR-02

SFT-CA-04. The tool shall report the SQLite Journal Mode (write version) CR-02

SFT-CA-05. The tool shall report the SQLite Journal Mode (read version) CR-02

SFT-CA-06. The tool shall report the number of pages in the database CR-02

SFT-CA-07. The tool shall report the SQLite database text encoding. CR-02

SFT-CA-08. The tool shall report all table names for each table within the database. CR-03

SFT-CA-09. The tool shall report all column names for each table in the database. CR-03

SFT-CA-10. The tool shall report the number of rows for each table in the database. CR-03

 8 of 13

SFT-CA-11. The tool shall report on all recoverable rows that are contained within the

database.

CR-04

SFT-CA-12. The tool shall report on all recoverable rows that are contained within the

associated journal mode file (e.g., -journal, -wal).

CR-04

SFT-CA-13. The tool shall report the source file name for each recovered data element. CR-05

 185

6.2 Optional Test Assertions 186

 187

Test Assertions for Optional Features Req

SFT-AO-01. The tool shall report all CREATE TABLE statements for each table in

the database.

RO-01

SFT-AO-02. The tool shall report the data type for each column within each table in

the database.

RO-01

SFT-AO-03. The tool shall report which column is the primary key for each table in

the database.

RO-01

SFT-AO-04. The tool shall report if the row was recovered because of a deletion or

an update within the database.

RO-02

SFT-AO-05. The tool shall report if the row was recovered because of a deletion or

an update in the associated journal mode file (e.g., -journal, -wal).

RO-02

SFT-AO-06. The tool shall report the file offset for each recovered data element

presented.

RO-03

SFT-AO-07. The tool shall report the table name for each recovered data element

presented.

RO-03

SFT-AO-08. The tool shall be able to present the sequence of transactions in the

associated -wal file.

RO-04

 188

 9 of 13

7 SQLite Forensics Tool Test Cases 189

 190

Core Test Cases Assert

SFT-01. SQLite header parsing.

This test case verifies that the tool provides the following (5) attributes as

contained in the SQLite header:

▪ Page Size

▪ Journal Mode Information

▪ Number of Pages

▪ Text Encoding (i.e., UTF-8, UTF-16 Little Endian, and UTF-16 Big

Endian)

Note: Header results will remain consistent when journal_mode is set to any of the

following: DELETE, MEMORY, OFF, PERSIST or TRUNCATE.

Test Actions: SFT-01-UTF8-WAL – Create SQLite file with specified parameters.

1. SQLITE3 SFT-01-UTF8-WAL.sqlite

2. PRAGMA journal_mode = WAL

3. PRAGMA encoding = 'UTF-8';

4. PRAGMA page_size = 4096;

5. Create Table

6. Create 100 Rows of Data within Table

7. .quit

8. Read header and validate: Page Size, Journal Mode, Number of Pages, and

Encoding.

9. If files have changed, investigate each set of test actions to determine where the

change occurred.

Test Actions: SFT-01-UTF16BE-PERSIST – Create SQLite file with specified

parameters.

1. SQLITE3 SFT-01-16BE-PERSIST.sqlite

2. PRAGMA journal_mode = PERSIST

3. PRAGMA encoding = 'UTF-16be';

4. PRAGMA page_size = 1024;

5. Create Table

6. Create 100 Rows of Data within Table

7. .quit

8. Read header and validate: Page Size, Journal Mode, Number of Pages, and

Encoding.

9. If files have changed, investigate each set of test actions to determine where the

change occurred.

Test Actions: SFT-01-UTF16LE-OFF – Create SQLite file with specified parameters.

1. SQLITE3 SFT-01-16LE-OFF.sqlite

2. PRAGMA journal_mode = OFF

CA-01

CA-03

CA-04

CA-05

CA-06

CA-07

 10 of 13

3. PRAGMA encoding = 'UTF-16le';

4. PRAGMA page_size = 8192;

5. Create Table

6. Create 100 Rows of Data within Table

7. .quit

8. Read header and validate: Page Size, Journal Mode, Number of Pages, and

Encoding.

9. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Data reported matches data contained within header as

specified in each test action.

SFT-02. SQLite Schema Reporting.

This test case verifies that the tool provides a listing of all:

1. Tables

2. Column names for each table

3. Row information for each table

Test Actions: SFT-02 – Schema Reporting

1. Using SFT-01-UTF8-WAL.sqlite, SFT-01-UTF16BE-PERSIST and SFT-01-

UTF16LE-OFF

2. Read table data and validate: Table Names, Column Names, and number of

rows.

3. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Data reported matches data contained within the database as

specified in each test action.

CA-01

CA-08

CA-09

CA-10

SFT-03. SQLite Recoverable Rows

This test case verifies that the tool reports the file name (e.g., source) and

recovered information for all recoverable rows (e.g., deleted and updated):

▪ SQLite database file

▪ SQLite database journal mode file (e.g., -journal, -wal)

Test Actions: SFT-03-PERSIST – Create SQLite file with an associated -journal file.

1. SQLITE3 SFT-03-PERSIST.sqlite

2. PRAGMA journal_mode = PERSIST

3. Create Table

4. Create ~2,000 rows of data within table

5. Delete 100 rows (randomly)

6. Modify 100 rows (randomly)

7. Perform SQLite database recovery

CA-01

CA-02

CA-11

CA-12

 11 of 13

8. Validate reporting of 100 deleted rows and 100 modified rows.

9. If files have changed, investigate each set of test actions to determine where the

change occurred.

Test Actions: SFT-03-WAL – Create SQLite file with an associated -wal file.

1. SQLITE3 SFT-03-WAL.sqlite

2. PRAGMA journal_mode = WAL

3. Create Table

4. Create ~2,000 rows of data within table

5. Modify 100 rows (randomly)

6. BEGIN TRANSACTION; Delete 100 rows (randomly) END TRANSACTION;

7. Stop the SQLite process (i.e., close command/console window or CTRL-C)

8. Perform SQLite database recovery

9. Validate reporting of 100 deleted rows and 100 modified rows.

10. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Data reports deleted and modified row data as specified in each

test action.

SFT-04. SQLite Data Element metadata

This test case verifies that the tool reports the file name (e.g., source) for all

recovered data elements:

▪ SQLite database file

▪ SQLite database journal mode file (e.g., -journal, -wal)

Test Actions: SFT-04 – PERSIST

1. Using SFT-03-PERSIST.sqlite and SQLITE3 SFT-03-PERSIST.sqlite-journal

2. Perform SQLite database recovery

3. Verify that tool reports the file name (e.g., source) where each recoverable data

element is located.

4. If files have changed, investigate each set of test actions to determine where the

change occurred.

Test Actions: SFT-04 – WAL

1. Using SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Verify that tool reports the file name (e.g., source) where each recoverable data

element is located.

4. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Data reports deleted and modified row data as specified in each

test action.

CA-01

CA-02

CA-13

 12 of 13

 191

Optional Test Cases

SFT-05. SQLite schema data reporting

This test case verifies that the tool reports the SQLite metadata for all create

table statements and type (e.g., Storage Class, datatype, or affinity) for each

column, and that it identifies which column is the primary key for each table in

the database.

Test Actions: SFT-05 – Schema Reporting

1. SQLITE3 SFT-05.sqlite

2. Create Table with at least (6) columns: Primary Key, Int, Float, Text, Blob,

Boolean

3. Create 100 Rows of Data within Table

4. Read table data and report all create table statements, associated column types,

and the primary key for each table.

5. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Data reported matches data contained within the database as

specified in each test action.

CA-01

AO-01

AO-02

AO-03

SFT-06. Recovered row metadata

This test case verifies that the tool reports the recovered row because of either

a deletion or an update within the database file, or the associated journal mode

file (e.g., -journal, -wal).

Test Actions: SFT-06 – PERSIST

1. Using SFT-03-PERSIST.sqlite and SQLITE3 SFT-03-PERSIST.sqlite-journal

2. Perform SQLite database recovery

3. Tool reports the file name (e.g., source) and if the row was the result of an

update or a deletion.

4. If files have changed, investigate each set of test actions to determine where the

change occurred.

Test Actions: SFT-06 – WAL

1. Using SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Tool reports the file name (e.g., source) and if the row was the result of an

update or a deletion.

4. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Recovered information matches the actions from each test case.

CA-01

CA-02

AO-04

AO-05

SFT-07. SQLite recovered data information CA-01

CA-02

 13 of 13

This test case verifies that the tool reports the following metadata for all

recoverable data elements:

1. Offset within the file

2. Identify the table name associated with the row

Test Actions: SFT-07 – PERSIST

1. Using SFT-03-PERSIST.sqlite and SQLITE3 SFT-03-PERSIST.sqlite-journal

2. Perform SQLite database recovery

3. Tool reports the offset and length of the data within the payload for each

recovered cell.

4. Tool reports the table name for each row of recovered data.

5. If files have changed, investigate each set of test actions to determine where the

change occurred.

Test Actions: SFT-07 – WAL

1. Using SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Tool reports the offset and length of the data within the payload for each

recovered cell.

4. Tool reports the table name for each row of recovered data.

5. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Recovered metadata matches the actions from each test case.

AO-06

AO-07

SFT-08. Journal sequencing/wal timelining

This test case verifies that the tool reports the sequence of transactions in the

associated -wal file.

Test Actions: SFT-08 – WAL

1. Using SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Order recovered transactions within the -wal journal file.

4. If files have changed, investigate each set of test actions to determine where the

change occurred.

Conformance Indicator: Recovered data is sequenced matching the chronological

actions executed during testing (SFT-08-WAL).

CA-01

CA-02

AO-08

 192

