
DRAFT DRAFT DRAFT

January 2021 1

 2

SQLite Data Recovery Specification, Test Assertions 3

and Test Cases 4

 5

 6

Version 1.0 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

34

 2 of 13

35

 3 of 13

Abstract 36

 37

This specification defines requirements, test assertions and test cases for basic methods of 38

recovering and reporting evidence as contained within SQLite databases. This also includes their 39

associated journal mode log files. The specification does not address more advanced methods of 40

recovery of data as stored in these files. Today, millions of different applications reside on 41

smartphones, computers, and IoT devices that all store data in this format. 42

 43

This document defines SQLite forensic data recovery tool requirements. These requirements are 44

used to derive test assertions, statements of conditions that are then checked after a test case is run. 45

Each test assertion is covered by one or more test cases consisting of a test protocol and the 46

expected test results. The test case protocol specifies detailed procedures for setting up the test, 47

executing the test, and measuring the test results. 48

 49

Comments and feedback are welcome. This document, and future revisions, are available for 50

download at: https://www.cftt.nist.gov/SQLite_Forensic_Tools.htm. 51

52

https://www.cftt.nist.gov/SQLite_Forensic_Tools.htm

 4 of 13

TABLE OF CONTENTS 53

 54

1 Introduction ... 5 55

2 Purpose .. 5 56

3 Scope ... 5 57

4 Definitions ... 6 58

5 Requirements ... 7 59

5.1 Required Features .. 7 60

5.2 Optional Features ... 7 61

6 Test Assertions .. 7 62

6.1 Core Assertions .. 7 63

6.2 Optional Test Assertions .. 8 64

7 SQLite Forensics Tool Test Cases .. 9 65

 66

 67

 5 of 13

1 Introduction 68

There is a critical need in the law enforcement community to ensure the reliability of computer 69

forensic tools. A capability is required to ensure that forensic tools consistently produce accurate, 70

repeatable, and objective test results. The goal of the Computer Forensic Tool Testing (CFTT) project 71

at the National Institute of Standards and Technology (NIST) is to establish a methodology for testing 72

computer forensic tools by the development of functional specifications, test procedures, test criteria, 73

and test sets. The results provide the information necessary for toolmakers to improve tools, for users 74

to make informed choices about acquiring and using computer forensics tools, and for interested 75

parties to understand the tools’ capabilities. This approach for testing computer forensic tools is based 76

on well-recognized international methodologies for conformance testing and quality testing. This 77

project is further described at http://www.cftt.nist.gov/. 78

 79

The Computer Forensics Tool Testing (CFTT) program is a joint project of the Department of 80

Homeland Security (DHS) Science and Technology Directorate, and the National Institute of 81

Standards and Technology. 82

2 Purpose 83

This specification defines requirements, test assertions and test cases for SQLite Data Recovery 84

(SDR) Forensics Tools capable of performing the following tasks: 85

 86

1. Displaying recovered SQLite database information to the user, 87

2. identify, categorize, and report upon Write-Ahead Log (WAL) and Rollback Journal data, 88

3. and sequence wal journal data. 89

 90

The requirements are used to derive test assertions, statements of conditions that are checked after a 91

test case is run. Each test assertion is covered by one or more test cases consisting of a test protocol 92

and the expected test results. The test case protocol specifies detailed procedures for setting up the 93

test, executing the test, and measuring the test results. 94

3 Scope 95

The scope of this specification is limited to software tools capable of presenting recovered data stored 96

within SQLite databases. This also includes stand-alone SQLite forensic tools that provide additional 97

functionality. This specification is general and capable of being adapted to other database formats 98

should they become more widely used. 99

 100

The intended audience for this document is forensic examiners with an existing basic knowledge of 101

SQLite. This document does not address every detail about how SQLite works. Rather, the scope of 102

this material is at a higher level. Should the reader be interested in additional file format details they 103

can be found at: www.sqlite.org or they should seek specialized SQLite forensics training. 104

 105

The topics covered within this specification addresses recovered SQLite data. The reporting of active 106

SQLite data is commonplace in modern mobile forensic tools and therefore, covered in Mobile Device 107

Forensic Tool Specification, Test Assertions and Test Cases. 108

http://www.sqlite.org/

 6 of 13

4 Definitions 109

This glossary defines terms used within this document. 110

 111

Active Data – Table information that comprises the current state of the database (and all associated 112

journal mode files) as of the latest successful commit. 113

Binary Large OBject (BLOB) – A Binary Large Object is a string of binary data stored as a single 114

entity within a database management system. BLOB’s can typically be images, audio, plist or 115

other multimedia objects. 116

Commit – This SQLite command is the transactional command used to save changes invoked by a 117

transaction to the database. 118

Data Element – Data contained in a single cell of a row in the table of a given SQLite database. 119

Journal Mode – Functionality that provides rollback abilities in accordance with Atomic, 120

Consistent, Isolated, and Durable (ACID) transactions. This refers to either a -journal or -wal 121

file. 122

Journal Sequencing – Ordering of transactions within the -wal journal file and any related data in 123

the database. 124

Page – A fixed-size contiguous block of data within an SQLite database, WAL, or journal file. The 125

size of a page is a power of two between 512 and 65,536 bytes. All pages within a database are 126

of the same size. 127

Recoverable Row – This refers to row data in the SQLite database and its associated journal mode 128

file that is no longer active. Either through row deletion or row modification. 129

Recovered Data – Table information that is not part of the current state of the database and all 130

associated journal mode file(s) as of the latest commit. 131

Rollback Journal – This file is associated with an SQLite database that holds information used to 132

restore the database to its previous state during a transaction while in journal mode. The setting 133

of the journal_mode PRAGMA can be used to determine if a rollback journal is being used. 134

This file resides in the same folder as the database and has the string “-journal” appended to its 135

filename. 136

SQLite – SQLite is an embedded SQL relational database engine that implements a self-contained, 137

serverless, zero-configuration, transactional SQL database engine. 138

Table – A data structure that organizes information into rows and columns. It can be used to store 139

and display data in a structured format. 140

Vacuum – A command that rebuilds the database file, repacking it into a minimal amount of disk 141

space. When a vacuum occurs, data may be overwritten or deleted. 142

WAL Timelining – See Journal Sequencing. 143

Write-Ahead Log (WAL) – A file that records SQLite transactions that have been committed, but 144

not yet applied to the database. This file is in the same directory as the database with the string “-145

wal“ appended to its filename. As of version 3.7.0 (dated 7/21/2010) this file type is the most 146

commonly used method when SQLite journaling mode is enabled. 147

 7 of 13

5 Requirements 148

This section lists the SQLite Data Recovery Tool requirements. There are requirements for core 149

features that all tools must meet and requirements for optional features as well. The requirements 150

for optional features only apply if the tool supports the feature. 151

5.1 Required Features 152

The following requirements shall be met by all tools: 153
 154
SFT-CR-01. The tool shall not modify the files being analyzed. 155

SFT-CR-02. The tool shall report the database configuration parameters pertinent to data recovery. 156

SFT-CR-03. The tool shall report the schema structure of the database tables. 157

SFT-CR-04. The tool shall report the data content of all recovered rows of any table in the 158

database. 159

SFT-CR-05. The tool shall report the source for all recovered data elements. 160

 161

5.2 Optional Features 162

 163

SFT-RO-01. The tool shall report additional schema data within the database for all recovered data. 164

SFT-RO-02. The tool shall report the metadata for all recovered rows. 165

SFT-RO-03. The tool shall report the detailed metadata for all recovered data elements. 166

SFT-RO-04. The tool shall be able to perform journal sequencing (or wal timelining) of the 167

associated -wal journal mode file. 168

 169

6 Test Assertions 170

Here is a set of test assertions based on the requirements: 171

 172

6.1 Core Assertions 173

 174

Assertion Req

SFT-CA-01. The MD5 (or SHA-1) hash value of the database, and associated journal

mode file (e.g., -journal, -wal) shall not be altered between when analysis

begins, and analysis is complete.

CR-01

SFT-CA-02. The associated journal mode file (e.g., -journal, -wal) shall not be deleted

after analysis is complete.

CR-01

SFT-CA-03. The tool shall interpret the SQLite Page Size (in bytes). CR-02

SFT-CA-04. The tool shall report the SQLite Journal Mode (write version) CR-02

SFT-CA-05. The tool shall report the SQLite Journal Mode (read version) CR-02

SFT-CA-06. The tool shall report the number of pages in the database CR-02

SFT-CA-07. The tool shall report the SQLite database text encoding. CR-02

SFT-CA-08. The tool shall report all table names for each table within the database. CR-03

SFT-CA-09. The tool shall report all column names for each table in the database. CR-03

SFT-CA-10. The tool shall report the number of rows for each table in the database. CR-03

 8 of 13

SFT-CA-11. The tool shall report on all recoverable rows that are contained within the

database.

CR-04

SFT-CA-12. The tool shall report on all recoverable rows that are contained within the

associated journal mode file (e.g., -journal, -wal).

CR-04

SFT-CA-13. The tool shall report the source file name for each recovered data element. CR-05

 175

6.2 Optional Test Assertions 176

 177

Test Assertions for Optional Features Req

SFT-AO-01. The tool shall report all CREATE TABLE statements for each table in

the database.

RO-01

SFT-AO-02. The tool shall report the data type for each column within each table in

the database.

RO-01

SFT-AO-03. The tool shall report which column is the primary key for each table in

the database.

RO-01

SFT-AO-04. The tool shall report if the row was recovered because of a deletion or

an update within the database.

RO-02

SFT-AO-05. The tool shall report if the row was recovered because of a deletion or

an update in the associated journal mode file (e.g., -journal, -wal).

RO-02

SFT-AO-06. The tool shall report the file offset for each recovered data element

presented.

RO-03

SFT-AO-07. The tool shall report the table name for each recovered data element

presented.

RO-03

SFT-AO-08. The tool shall be able to present the sequence of transactions in the

associated -wal file.

RO-04

 178

 9 of 13

7 SQLite Forensics Tool Test Cases 179

 180

Core Test Cases Assert

SFT-01. SQLite header parsing.

This test case verifies that the tool provides the following (5) attributes as

contained in the SQLite header:

▪ Page Size

▪ Journal Mode Information

▪ Number of Pages

▪ Text Encoding (i.e., UTF-8, UTF-16 Little Endian, and UTF-16 Big

Endian)

Test Actions: SFT-01-UTF8-WAL – Create SQLite file with specified parameters.

1. SQLITE3 SFT-01-UTF8-WAL.sqlite

2. PRAGMA journal_mode = WAL

3. PRAGMA encoding = 'UTF-8';

4. PRAGMA schema.page_size = 4096;

5. Create Table

6. Create 100 Rows of Data within Table

7. .quit

8. Read header and validate: Page Size, Journal Mode, Number of Pages, and

Encoding.

9. If files have changed, investigate each set of test actions to determine where the

change occured.

Test Actions: SFT-01-UTF16BE-PERSIST – Create SQLite file with specified

parameters.

1. SQLITE3 SFT-01-16BE-PERSIST.sqlite

2. PRAGMA journal_mode = PERSIST

3. PRAGMA encoding = 'UTF-16be';

4. PRAGMA schema.page_size = 1024;

5. Create Table

6. Create 100 Rows of Data within Table

7. .quit

8. Read header and validate: Page Size, Journal Mode, Number of Pages, and

Encoding.

9. If files have changed, investigate each set of test actions to determine where the

change occured.

Test Actions: SFT-01-UTF16LE-OFF – Create SQLite file with specified parameters.

1. SQLITE3 SFT-01-16LE-OFF.sqlite

2. PRAGMA journal_mode = OFF

3. PRAGMA encoding = 'UTF-16le';

4. PRAGMA schema.page_size = 8192;

5. Create Table

CA-01

CA-03

CA-04

CA-05

CA-06

CA-07

 10 of 13

6. Create 100 Rows of Data within Table

7. .quit

8. Read header and validate: Page Size, Journal Mode, Number of Pages, and

Encoding.

9. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Data reported matches data contained within header as

specified in each test action.

SFT-02. SQLite Schema Reporting.

This test case verifies that the tool provides a listing of all:

1. Tables

2. Column names for each table

3. Row information for each table

Test Actions: SFT-02 – Schema Reporting

1. SQLITE3 SFT-02.sqlite

2. Create Table with at least (5) columns

3. Create 100 Rows of Data within Table

4. Read table data and validate: Table Names, Column Names, and number of

rows.

5. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Data reported matches data contained within the database as

specified in each test action.

CA-01

CA-08

CA-09

CA-10

SFT-03. SQLite Recoverable Rows

This test case verifies that the tool reports the file name (e.g., source) and

recovered information for all recoverable rows (e.g., deleted and updated):

▪ SQLite database file

▪ SQLite database journal mode file (e.g., -journal, -wal)

Test Actions: SFT-03-PERSIST – Create SQLite file with an associated -journal file.

1. SQLITE3 SFT-03-PERSIST.sqlite

2. PRAGMA journal_mode = PERSIST

3. Create Table

4. Create 10,000 rows of data within table

5. Delete 100 rows (randomly)

6. Modify 100 rows (randomly)

7. Hard Stop (e.g., CTRL + C)

8. Perform SQLite database recovery

9. Validate reporting of 100 deleted rows and 100 modified rows.

CA-01

CA-02

CA-11

CA-12

 11 of 13

10. If files have changed, investigate each set of test actions to determine where the

change occured.

Test Actions: SFT-03-WAL – Create SQLite file with an associated -wal file.

1. SQLITE3 SFT-03-WAL.sqlite

2. PRAGMA journal_mode = WAL

3. Create Table

4. Create 10,000 rows of data within table

5. Delete 100 rows (randomly)

6. Modify 100 rows (randomly)

7. Hard Stop (e.g., CTRL + C)

8. Perform SQLite database recovery

9. Validate reporting of 100 deleted rows and 100 modified rows.

10. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Data reports deleted, and modified row data as specified in

each test action.

SFT-04. SQLite Data Element metadata

This test case verifies that the tool reports the file name (e.g., source) for all

recovered data elements:

▪ SQLite database file

▪ SQLite database journal mode file (e.g., -journal, -wal)

Test Actions: SFT-04 – PERSIST

1. Using SQLITE3 SFT-03-PERSIST.sqlite and SQLITE3 SFT-03-

PERSIST.sqlite-journal

2. Perform SQLite database recovery

3. Verify that tool reports the file name (e.g., source) where each recoverable data

element is located.

4. If files have changed, investigate each set of test actions to determine where the

change occured.

Test Actions: SFT-04 – WAL

1. Using SQLITE3 SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Verify that tool reports the file name (e.g., source) where each recoverable data

element is located.

4. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Data reports deleted, and modified row data as specified in

each test action.

CA-01

CA-02

CA-13

 12 of 13

 181

Optional Test Cases

SFT-05. SQLite schema data reporting

This test case verifies that the tool reports the SQLite metadata for, all create

table statements, type (e.g., Storage Class, datatype, or affinity) for each

column, and identify which column is the primary key for each table in the

database.

Test Actions: SFT-05 – Schema Reporting

1. SQLITE3 SFT-05.sqlite

2. Create Table with at least (5) columns: Primary Key, Int, Float, Text, Blob,

Boolean

3. Create 100 Rows of Data within Table

4. Read table data and report all create table statements, associated column types

and the primary key for each table.

5. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Data reported matches data contained within the database as

specified in each test action.

CA-01

AO-01

AO-02

AO-03

SFT-06. Recovered row metadata

This test case verifies that the tool reports the recovered row because of either

a deletion or an update within the database file, or the associated journal mode

file (e.g., -journal, -wal).

Test Actions: SFT-06 – PERSIST

1. Using SQLITE3 SFT-03-PERSIST.sqlite and SQLITE3 SFT-03-

PERSIST.sqlite-journal

2. Perform SQLite database recovery

3. Tool reports the file name (e.g., source) and if the row was the result of an

update or a deletion.

4. If files have changed, investigate each set of test actions to determine where the

change occured.

Test Actions: SFT-06 – WAL

1. Using SQLITE3 SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Tool reports the file name (e.g., source) and if the row was the result of an

update or a deletion.

4. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Recovered information matches the actions from each test case.

CA-01

CA-02

AO-04

AO-05

SFT-07. SQLite recovered data information CA-01

 13 of 13

This test case verifies that the tool reports the following metadata for all

recoverable data elements:

1. Offset within the file

2. Identify the table name associated with the row

Test Actions: SFT-07 – PERSIST

1. Using SQLITE3 SFT-03-PERSIST.sqlite and SQLITE3 SFT-03-

PERSIST.sqlite-journal

2. Perform SQLite database recovery

3. Tool reports the offset and length of the data within the payload for each

recovered cell.

4. Tool reports the table name for each row of recovered data.

5. If files have changed, investigate each set of test actions to determine where the

change occured.

Test Actions: SFT-07 – WAL

1. Using SQLITE3 SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Tool reports the offset and length of the data within the payload for each

recovered cell.

4. Tool reports the table name for each row of recovered data.

5. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Recovered metadata matches the actions from each test case.

CA-02

AO-06

AO-07

SFT-08. Journal sequencing/wal timelining

This test case verifies that the tool reports the sequence of transactions in the

associated -wal file.

Test Actions: SFT-08 – WAL

1. Using SQLITE3 SFT-03-WAL.sqlite and SQLITE3 SFT-03-WAL.sqlite-wal

2. Perform SQLite database recovery

3. Order recovered transactions within the -wal journal file.

4. If files have changed, investigate each set of test actions to determine where the

change occured.

Conformance Indicator: Recovered data is sequenced matching the chronological

actions executed during testing (SFT-08-WAL).

CA-01

CA-02

AO-08

 182

