
 Page i of 116

NISTIR 7297-A

FS-TST 2.0: Forensic Software

Testing Support Tools
Test Plan, Test Design Specifications, and Test Case Specification

April 25, 2005

Serban I. Gavrila
VDG Inc.

NIST
Technology Administration

U.S. Department of Commerce

 Page ii of 116

 Page iii of 116

Abstract

This NIST Internal Report deals with Release 2.0 of a software package, Forensic
Software Testing Support Tools (FS-TST 2.0), developed to aid the testing of disk
imaging tools typically used in forensic investigations. The package includes programs
that initialize disk drives, detect changes in disk content, and compare pairs of disks. This
Internal Report consists of three parts.

This is Part A, Test Plan, Test Design Specifications, and Test Case Specification. It
covers the planning, design, and specification of testing of FS-TST 2.0. The setup of disk
drives and the testing is to be performed in the Linux environment; however, some tests
will require interaction with the MS-DOS operating system.

Part B, Test Summary Report, is a companion document. It reports the result of testing the
FS-TST 2.0 package according to Part A. Two programs might have had slightly more
convenient behavior in erroneous cases, but no anomalies were found in testing.

Part C, Code Review Report, is an additional companion document. It covers the planning
and specification of reviewing all the source code in the package and reports the results
of the code reviews. Nothing was found in the code reviews that should cause invalid
results, that is, that should lead to an imaging tool with systematic errors being
incorrectly passed as adhering to the assertions.

The intended audience for this document should be familiar with the Linux operating
system, computer operation, and computer hardware components such as hard drives.

Keywords: Computer forensic tool; disk imaging; software testing; testing support tools;
FS-TST.

Certain trade names and company products are mentioned in the text or identified. In no
case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products are necessarily
the best available for the purpose.

 Page iv of 116

Table of Contents

Introduction...1

Section A: FS-TST Test Plan..2

A1 Introduction ...2
A1.1 Objectives ...2
A1.2 Background...2
A1.3 Scope...2
A1.4 References ..2

A2 Test Items...2

A3 Features to be tested ..2
A3.1 Common functional features...2
A3.2 Individual program features/requirements ..4

A4 Approach..7

A5 Pass/fail criteria...7

A6 Test deliverables ...8

A7 Test tasks...8

A8 Environmental needs ..8
A8.1 Hardware ...8
A8.2 Software ..9

Section B: FS-TST Test Design Specification ..10
B1 diskwipe Test Design Specification...10
B2 partab Test Design Specification...12
B3 diskchg Test Design Specification ..14
B4 seccmp Test Design Specification ..17
B5 partcmp Test Design Specification..19
B6 diskcmp Test Design Specification ...21
B7 corrupt Test Design Specification ...22
B8 logsetup Test Design Specification...23
B9 logcase Test Design Specification ..24

 Page v of 116

B10 adjcmp Test Design Specification ...25
B11 sechash Test Design Specification ...28
B12 diskhash Test Design Specification ..30
B13 Disk Logging Test Design Specification ...31

Section C: FS-TST Test Case Specifications..32
C1 diskwipe Test Case Specifications ..32
C2 partab Test Case Specifications ..41
C3 diskchg Test Case Specifications..48
C4 seccmp Test Case Specifications..66
C5 partcmp Test Case Specifications ...75
C6 diskcmp Test Case Specifications...83
C7 corrupt Test Case Specifications...88
C8 logsetup Test Case Specifications ..93
C9 logcase Test Case Specifications..94
C10 adjcmp Test Case Specifications...95
C11 sechash Test Case Specifications...101
C12 diskhash Test Case Specifications..112

 Page vi of 116

Page 1 of 116

Introduction
The Computer Forensics Tool Testing (CFTT) project at the National Institute of
Standards and Technology (NIST), an agency of the United States Department of
Commerce, provides a measure of confidence in the software tools used in computer
forensic investigations. This document focuses on a class of tools called disk-imaging
tools that copy or “image” hard disk drives. Forensic Software Testing Support Tools
version 2.0 (FS-TST 2.0) is a software package that supports the testing of disk imaging
tools. FS-TST 2.0 includes 10 tools that perform hard disk initialization, faulty disk
simulation, hard disk comparisons, extraction of information from a hard disk, and
copying of disks or disk partitions.

This document covers the planning and specification of testing the tools included in the
FS-TST 2.0 package.

A portion of this work was funded by the National Institute of Justice (NIJ) through an
interagency agreement with the NIST Office of Law Enforcement Standards.

Page 2 of 116

Section A: FS-TST Test Plan

A1 Introduction

A1.1 Objectives
A test plan for FS-TST should support the following objectives:

(1) To detail the activities required to prepare for and conduct the testing of FS-TST.
(2) To define the sources of the information used to prepare the plan.
(3) To define the test tools and environment needed to conduct the FS-TST tests.

A1.2 Background
The Software Conformance and Diagnostics Testing (SCDT) Division of NIST has
developed a software package called Forensic Software Testing Support Tools (FS-TST)
version 2.0, comprising tools used in testing of disk imaging tools, which, in turn, are
used in forensic investigations. Testing the FS-TST tools provides a degree of confidence
in using them to test the disk imaging tools.

A1.3 Scope
The test plan covers:

(1) Testing of the functionality of FS-TST, as described in document [FST-RDU-20] -

see section A1.4 References below.
(2) Testing FS-TST compliance with requirements stated in document [FST-RDU-20].

A1.4 References
The following documents were used as sources of information for the test plan:

1. FS-TST: Forensic Software Testing Support Tools. Requirements, Design Notes, and

User Manual. Version 2.0, February 2005 (FST-RDU-20).
2. IEEE Standard for Software Test Documentation, IEEE Std. 829-1998 (IEEE-01).

A2 Test Items

The items to be tested are the tools included in FS-TST 2.0, namely: diskwipe, corrupt,
adjcmp, diskcmp, partcmp, logcase, logsetup, partab, diskchg, and seccmp.

A3 Features to be tested
This section describes the features/requirements of each tool that need to be tested. Most
of the support tools share common functionality. These common requirements and
features are described once for all tools and then referenced as needed.

A3.1 Common functional features
A3.1.1 Hard disk drive logging

Page 3 of 116

A program required to do disk logging must record the following information in the
specified log file for the specified disk drive:

1. The type of the hard disk drive interface - IDE or non-IDE (SCSI).
2. The disk geometry, i.e., maximum allowed cylinder value, maximum allowed

head value, number of sectors per track, and total number of sectors.
3. The disk drive model number and serial number.

A3.1.2 Program execution logging
A program required to do program execution logging must record:

1. The program name, version number, source file creation date and time, and
compile date and time.

2. The support library name, version number, source file creation date and time, and
compile date and time.

3. The header file name, version number, and source file creation date and time.
4. The command line (including command line options).
5. The date and time program execution begins and ends, and the elapsed time.
6. The test case ID.
7. The name of the computer where the program is executed.
8. A user supplied comment.
9. Either start a new log file or append to an existing log file.
10. Print a summary of the program command line and command line options, then

exit.

A3.1.3 Partition table logging
A program required to do partition table logging must record the following information
for the partition table of the specified disk drive in the specified log file:

1. For each partition table entry in the master boot record partition table and each
partition table in any extended partition, print the following: starting LBA
address, partition length, starting cylinder/head/sector address, ending
cylinder/head/sector address, bootable flag, partition code (in hexadecimal).

2. For common partition types (FAT12, FAT16, FAT32, extended, Linux ext2,
Linux swap, and NTFS) print a descriptive string, e.g., Fat32 for type code 0x0B.

A3.1.4 Comparison logging
A program that compares a source to a destination is required to do comparison logging.
A source or destination is defined to be a block of contiguous disk sectors. A source or
destination can be an entire disk, a disk partition, or a block of sectors located between
two partitions. The source is assumed to have been initialized by diskwipe with the
source fill byte, and the destination is assumed to have been initialized by diskwipe with
the destination fill byte.

1. Summarize corresponding sectors of the source and destination with counts of the
sectors compared, sectors matching, sectors differing and the total number of
bytes that are different. Note that if large disk drives with few matching bytes are

Page 4 of 116

compared, then the total number of differing bytes may exceed the maximum
integer that can be represented by a variable. In this case, overflow is permitted
without notification.

2. If the source and destination are not the same size, log the size of each and the
difference in size.

3. If the destination is larger than the source, categorize the excess sectors according
to the following: zero fill (every byte is zero), diskwipe-style fill, and other
contents. The diskwipe-style fill is actually three categories: source fill byte,
destination fill byte, and other fill byte.

4. For each category, the first few sectors belonging to the category are logged. A
contiguous block of sectors is logged as a hyphen-separated pair of integers, i.e.,
start sector - last sector.

A3.1.5 Error reporting
The following requirements apply to all programs except as noted under each program.

1. If the command line parameters are not valid, print an error message indicating
the problem, print a summary of the program command line and command line
options, then exit.

2. If any I/O operation fails, print a diagnostic message and exit.
3. If any I/O operation fails, the content of the log file is undefined (the log file

should be considered corrupt).

A3.2 Individual program features/requirements

A3.2.1 diskwipe features
1. Log the specified hard disk drive.
2. Log the program execution.
3. Allow specification of at least three log file names: one for a source disk, one for a

destination disk, and one for a media disk.
4. Write the specified content from Table 2 of document FST-RDU-20 to each disk

sector of the specified drive.
5. By default, use the number of heads obtained from the BIOS extensions; however,

optionally allow specification of the number of heads to override the value from
BIOS.

A3.2.2 partab features
1. Log the specified hard disk drive.
2. Log the program execution.
3. For each partition table entry in the master boot record partition table and each

partition table in any extended partition, print the following: starting LBA address,
partition length, starting C/H/S address, ending C/H/S address, bootable flag, partition
type code (in hexadecimal).

4. For common partition types (FAT12, FAT16, FAT32, extended, Linux Ext2, Linux
swap, NTFS) print a distinctive string, e.g., “Fat32” for FAT32 partitions.

Page 5 of 116

5. Use a different log file name for each hard disk drive.
6. Log (optionally by command line control) a unique identification for each partition

that can be used by the partcmp tool to select partitions for comparison.
7. Log (optionally by command line control) empty partition table entries.

A3.2.3 diskchg features
1. Log the specified hard disk drive.
2. Log the program execution.
3. Allow specification of disk sector addresses in either CHS or LBA format.
4. Set every byte of a specified sector to zero.
5. For a specified sector s, a specified address a (possibly not the same as the specified

sector), a specified disk geometry, and a specified fill value, fill sector s with the
contents of a diskwipe style fill using a as the address value for the fill. In other
words, set sector s to the contents that diskwipe would use for the sector at location a
on a disk with the specified geometry using the specified fill value.

6. For a specified sector, a specified offset within the sector, and a specified value, set
the byte at the offset within the sector to the specified value.

7. For a specified hard drive, a specified sector, a specified offset within the sector, and
a specified count count, log the contents of count bytes from the specified sector
starting at the specified offset.

8. Allow interactive examination of sector contents.
9. Use a different log file name for each function.

A3.2.4 seccmp features
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. If the sectors to compare are not diskwipe style filled or zero filled, log any

differences between the source sector and the destination sector.
5. diskwipe style filled sectors or zero filled sectors are logged with no need for

comparison.
6. Allow specification of an alternate log file name.

A3.2.5 partcmp features
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. Log the comparison between the source partition and the destination partition.

A3.2.6 diskcmp features
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. Log the comparison between the source drive and the destination drive.
5. If there is a read error the comparison results are undefined.

Page 6 of 116

6. If there are any read errors, then continue scanning the disk and log a count of the
number of tracks with read errors on each disk.

A3.2.7 corrupt features
1. Log the program execution.
2. Change a specified byte at a specified location in a specified file to a specified value.
3. Log the original value at the specified location.
4. Log the new value at the specified location.

A3.2.8 logsetup features
1. Record the following: disk label, host computer, operator, operating system loaded,

date and time.

A3.2.9 logcase features
1. Record the following: Test case ID, host computer, operator, source disk drive,

destination disk drive, other disk drive, date and time.

A3.2.10 adjcmp features
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. Log the partition table for the specified hard drive.
5. For each disk, assign each sector to a contiguous block of sectors, called a disk chunk,

such that each disk chunk is assigned to one of the following chunk categories: a
sector contained within a partition, a sector contained within a partition boot track,
the unallocated sectors between two partitions, or unallocated sectors after the last
partition on the disk.

6. Record the location of each disk chunk in the log file.
7. Allow specification of corresponding disk chunks between the source hard drive and

the destination hard drive. (A disk chunk on the source drive is compared to the
corresponding disk chunk on the destination drive.)

8. Log the correspondence between source disk chunks and destination disk chunks, i.e.,
for each disk chunk on the source drive, log the disk chunk on the destination that the
source disk is to be compared to.

9. Log the comparison between each pair of corresponding disk chunks.
10. For any destination disk chunks that have no corresponding source chunk categorize

the sectors of the disk chunk according to the following: zero fill (every byte is zero),
diskwipe style fill, and other contents. The diskwipe style fill is actually three
categories: source fill byte, destination fill byte and any other fill byte. For each
category, the first few (up to some arbitrary limit) sectors belonging to the category
are logged. A contiguous block of sectors is logged as a hyphen separated pair of
integers (start sector - last sector).

11. Log a summary as follows:

- Number of boot tracks, total number of sectors assigned to boot tracks, and
number of boot track sectors that do not compare equal.

Page 7 of 116

- Number of partitions, total number of sectors assigned to some partition, and
number of corresponding partition sectors that do not compare equal.

- Number of unallocated chunks with a corresponding unallocated chunk,
number of sectors in this category and number of corresponding sectors that
do not compare equal.

- Number of excess sectors in destination chunks that have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Number of sectors in destination chunks that do not have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Total number of source sectors and total number of destination sectors.

A3.2.11 sechash features
1. Compute a SHA-1 for a specified block of continuous sectors from the designated

hard drive.
2. Log the computed hash value.
3. Allow the specification of at least two log file names, one for reference before a tool

is run and one for comparison after a tool is run.
4. Log the specified hard drive.
5. Log the program execution

A3.2.12 diskhash features
1. Compute a SHA-1 for the designated hard drive.
2. Log the computed hash value.
3. Allow the specification of at least two log file names, one for reference before a tool

is run and one for comparison after a tool is run.
4. Log the specified hard drive.
5. Log the program execution

A4 Approach
Testing personnel will develop the test cases and procedures, based on the list of features
for which each tool will be tested, the applicable FS-TST documentation (FST-RDU-20),
and the manner in which the tool will be used. The tools will be tested to ensure that their
behavior corresponds to that outlined in the documentation. In the test cases developed,
the value logged will be compared with known values acquired by other methods.

A5 Pass/fail criteria
If a tool tested does not possess one or more of the features listed for that tool, then the
tool will fail the test. The tool will also fail the test if inaccuracies are found in the logs
produced by that tool. Otherwise, the tool will pass the test.

Page 8 of 116

A6 Test deliverables

Test documentation:
(1) FS-TST Test Plan
(2) FS-TST Test Design Specifications
(3) FS-TST Test Case Specifications
(4) FS-TST Test Summary Report

Test scripts:
(1) Scripts used to prepare the environment for and launch the test procedures.
(2) Scripts used to extract information selectively from the log files.

A7 Test tasks
Task Predecessor Tasks
1. Prepare test plan FS-TST design, requirements, functional

specifications
2. Prepare test design specifications Task 1
3. Prepare test case specifications Task 2
4. Prepare test procedure specifications Task 3
5. Obtain hardware and software required
for testing the software item

Task 4

6. Execute test procedure for the software
item

Task 5

7. Observe results of testing Task 6
8. Repeat tasks 5-7 until all items have
been tested

Task 7

9. Prepare test summary report Task 8

A8 Environmental needs

A8.1 Hardware

A8.1.1 Host Computers
The following computers were available for testing:

Name BIOS HDD Slots
McMillan Extended 3 IDE + 2 SCSI
Frank Extended 2 IDE + 2 SCSI + 2 SATA

Page 9 of 116

A8.1.2 Hard Disk Drives
The following hard disk drives were used for testing:

Label Model Interface Sectors GB
3B MAG3091L SUN9.0G SCSI 17,689,266 8
7F MAXTOR 6L040J2 IDE 78,177,792 40
80 WDC WD800BB-00CAA1 IDE 156,301,488 80
81 WDC WD800BB-00CAA1 IDE 156,301,488 80
82 WDC WD800BB-00CAA1 IDE 156,301,488 80
CC SEAGATE ST336705LC SCSI 71,687,370 34
10B WDC WD2500JD-22F SATA 488,397,168 250

A8.2 Software
Besides the software tools being tested, a variety of other software tools are needed in
order to prepare the test cases (e.g., to create partitions), or to provide a means of
evaluating the test results (e.g., an alternative way of computing a disk hash). The
following software was available as testing support:

Partition Magic ® Pro, Version 6.0, PowerQuest Corporation.
Disk Editor (diskedit), Version 8.0, Symantec Corporation.
Disk Editor (diskedit), Norton Utilities 2002, Symantec Corporation.
Red Hat Linux 8.2 Operating System.
Fedora Core 3 (Red Hat) Operating System.
NIST Forensics Software Testing Support Tools FS-TST 1.0 (for DOS)
NIST Computer Forensic Reference Data Sets (CFReDS) script cal-drive.csh (see
http://www.cfreds.nist.gov/) and two variants of this script, cal-drive-count.csh and cal-
drive-count-seek.csh.

http://www.cfreds.nist.gov/

Page 10 of 116

Section B: FS-TST Test Design Specification

B1 diskwipe Test Design Specification

B1.1 Features to be tested
1. Log the specified hard disk drive (see section A3.1.1).
2. Log the program execution (see section A3.1.2).
3. Allow specification of at least three log file names: one for a source disk, one for a

destination disk, and one for a media disk.
4. Write the specified content from Table 2 of document FST-RDU-20 to each disk

sector of the specified drive.
5. By default, use the number of heads obtained from the BIOS extension. Optionally

allow specification of the number of heads to override the value from BIOS.

B1.2 Approach refinements
Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

Several test cases will be created to test that diskwipe logs the program execution
correctly. The -comment option will be used with one-word or multi-word comments. It
will also be checked that when not used, the tool will ask the user to enter a comment to
be logged. A test case will verify that a log file is created when none is present, another
that log records are appended when a log file is already present, and another that the old
log file will be destroyed and a new file created when diskwipe is run with the -new_log
option. We will also test the creation of a log file with a given name. Some test cases will
be used to test that the -h option makes diskwipe print its usage mode on the stdout.

The approach to testing the third feature will be to use the three command line options
-src, -dst, and -media, and verify that each log file name is unique.

The fourth feature will be tested over a variety of hardware configurations. The disk
sector addressing method, BIOS type, and hard drive type will be varied. Several sectors
from the beginning and end of the first, last, and two arbitrary cylinders will be checked
for correct syntax and content using a commercial tool (e.g., diskedit).

The approach to testing feature 5 will be to run diskwipe using the -heads option with a
different number of heads than the one obtained from the BIOS.

Page 11 of 116

B1.3 Test Identification

Case Id Description/Options used Features tested
dkw-01 -comment w 1, 2, 3, 4
dkw-02 -new_log

-comment “w1 …”
-noask

1, 2, 3, 4

dkw-03 -noask
-dst
-heads n

1, 2, 3, 4, 5

dkw-04 -noask
-src

1, 2, 3, 4

dkw-05 -noask
-media

1, 2, 3, 4

dkw-06 -noask
-log_name x

1, 2, 3, 4

dkw-07 -noask
-src
-log_name x

1, 2, 3, 4

dkw-08 -noask
-media
-new_log
-log_name x

1, 2, 3, 4

dkw-09 -serial ATA disk
-new_log
-noask

1, 2, 3, 4

dkw-10 No arguments, wrong arguments, -h
(alone or with other options on the
command line)

2

Page 12 of 116

B2 partab Test Design Specification

B2.1 Features to be tested
1. Log the specified hard disk drive.
2. Log the program execution.
3. Log the partition table (see section A3.1.3).
4. Use a different log file name for each hard drive.
5. Log (optionally by command line control) a unique identification for each partition

that can be used by the partcmp tool to select partitions for comparison.
6. Log (optionally by command line control) empty partition table entries.

B2.2 Approach refinements
Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 2 will be to run partab using different combinations of
command line options and verifying that the proper information is logged in the log file.
For example, we will verify that the user is prompted for a descriptive comment when
running partab without the -comment option; also, we will verify that the comment is
logged correctly when running partab with the -comment option followed by a single-
word or multi-word comment. We will test whether partab correctly appends the log
records to an existing log file, or creates a new file if the option -new-log is used. We will
use the -h option to test whether partab displays a usage mode.

The approach to testing feature 3 will be to use the diskchg tool or another disk editor
like PartitionMagic to collect the relevant partition information from the partition table(s)
of the hard drive. The output of partab can then be compared with the information
collected by the other tools. Testing will consist of running partab on hard disks with a
variety of partition types and number of partitions. We will use partition types supported
(FAT16, FAT32, extended, NTFS, Linux ext2, and Linux swap) as well as not supported
by partab (e.g., HPFS). The tester will visually inspect the information logged by partab.

To test for uniqueness in log file names (feature 4), we will run partab on hard drives
with different interfaces mounted as devices with different names (e.g., /dev/hdb,
/dev/sda) and we will inspect the names of the log file created for each hard drive for
uniqueness.

The approach to testing for uniqueness of partition identifiers (feature 5) will be to run
partab on hard disk drives with multiple primary and/or logical partitions. The tester will
visually check that the log file created contains entries for each of the partitions and that
for each partition there is assigned a unique identifier. This test will be performed with
and without the -all option to determine that unique identifiers are assigned when
extended partition entries are logged as well as when they are not.

Page 13 of 116

The approach to testing logging of empty partition table entries will be to run partab on
hard drives with various numbers of primary and logical partitions that have or do not
have empty entries, and ensure that partab correctly logs them.

B2.3 Test Identification

Case Id Partitions Description/Options Features
ptb-01 None -all

-comment w
1, 2

ptb-02 -primary FAT -all
-comment “w1…”
-new_log

1, 2, 3, 4, 5, 6

ptb-03 -primary FAT32 -all
-interactive comment
-append log

1, 2, 3, 4, 5, 6

ptb-04 -primary NTFS -all
-log_name x
-interactive comment

1, 2, 3, 4, 5, 6

ptb-05 -primary FAT32
huge
-primary Linux
ext2
-primary Linux
swap

-all
-log_name x

1,2,3,4,5,6

ptb-06 -primary FAT
-primary FAT32
hidden
-primary HPFS

-all
-new_log
-log_name x

1,2,3,4,5,6

ptb-07 -multiple
extended and
logical partitions

-all
-new_log

1,2,3,4,5,6

ptb-08 -no arguments
-or incorrect syntax
-or -h alone
-or -h with other options

2

Page 14 of 116

B3 diskchg Test Design Specification

B3.1 Features to be tested
1. Log the specified hard disk drive.
2. Log the program execution.
3. Allow specification of disk sector addresses in either CHS or LBA format.
4. Set every byte of a specified sector to zero.
5. For a specified sector s, a specified address a (possibly not the same as the specified

sector), a specified disk geometry, and a specified fill value, fill sector s with the
contents of a diskwipe style fill using a as the address value for the fill. In other
words, set sector s to the contents that diskwipe would use for the sector at location a
on a disk with the specified geometry using the specified fill value.

6. For a specified sector, a specified offset within the sector, and a specified value, set
the byte at the offset within the sector to the specified value.

7. For a specified hard drive, a specified sector, a specified offset within the sector, and
a specified count count, log the contents of count bytes from the specified sector
starting at the specified offset.

8. Allow interactive examination of sector contents.
9. Use a different log file name for each function.

B3.2 Approach refinements
Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 2 will be to run diskchg using most combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 3 will be to run diskchg using both CHS and LBA sector
addresses for each function, and observing whether the results are identical.

The approach to testing feature 4 will be to run diskchg using the -zero option, then using
diskedit and/or diskchg itself to examine the bytes of the specified sector.

The approach to testing feature 5 will be to run diskchg using the -fill option, and
specifying different combinations of sector addresses, fill addresses, disk geometries
(zero and non-zero number of heads), and fill values. The resulting sector contents will be
compared with the contents of the sector at the fill address as written by diskwipe, using
diskedit and/or diskchg itself to display those contents.

The approach to testing feature 6 will be to run diskchg using the -write option for
different sector addresses, offsets, and values, then examining the byte at that offset
within the specified sector by using diskedit and/or diskchg itself.

Page 15 of 116

The approach to testing feature 7 will be to run diskchg using the -read option for
different sector addresses, offsets, and counts, then comparing the logged results with the
values displayed by diskedit.

The approach to testing feature 8 will be to run diskchg using the -exam option, entering
different sector addresses when prompted, and comparing the logged results with those
displayed by diskedit and/or those displayed by the function /read of diskchg itself.

The approach to testing feature 9 will be to check whether the name of the log file
produced by diskchg for each of the functions -read, -exam, -fill, -write, -zero, is unique
for that function.

B3.3 Test Identification

Case Id Description/Options Features
dch-01 -delete all log files

-comment w
-exam using LBA addresses of arbitrary sectors
including the first and last
-exam using CHS addresses of same sectors

1, 2, 3, 8, 9

dch-02 -append log records to log file created in previous
case by not using -new_log
-comment “w1 …”
-exam using LBA/CHS addresses of arbitrary sectors

1, 2, 3, 8, 9

dch-03 -new_log
-use interactive comment
-exam using LBA/CHS address of sectors outside
the target disk range

1, 2, 3, 8, 9

dch-04 -read using LBA address of an arbitrary sector 1, 2, 3, 7, 9
dch-05 -new_log

-read using CHS address of same sector with offset
too large

1, 2, 3, 7, 9

dch-06 -new_log
-read using LBA/CHS with length too large

1, 2, 3, 7, 9

dch-07 -new_log
-read using LBA/CHS with offset+length too large

1, 2, 3, 7, 9

dch-08 -new_log
-read using LBA/CHS outside disk range

1, 2, 3, 7 9

dch-09 -new_log
-fill using CHS and detected geometry (heads 0)
-read same sector

1, 2, 3, 5, 9

dch-10 -new_log
-fill using LBA of same sector and detected
geometry (heads = detected number of heads/sector)

1, 2, 3, 5, 9

Page 16 of 116

dch-11 -new_log
-fill using LBA of same sector, a new geometry, and
another value
-read or -exam same sector

1, 2, 3, 5, 9

dch-12 -new_log
-write using LBA
-read or -exam same sector

1, 2, 3, 6, 9

dch-13 -new_log
-write using CHS of same sector
-read or -exam sector

1, 2, 3, 6, 9

dch-14 -new_log
-write using LBA or CHS, offset too large

1, 2, 3, 6, 9

dch-15 -new_log
-write using LBA or CHS of sector outside disk
range

1, 2, 3, 6, 9

dch-16 -zero using LBA of first sector
-read or -exam sector

1, 2, 3, 4, 9

dch-17 -log_name
-zero using CHS of last sector
-read or -exam sector

1, 2, 3, 4, 9

dch-18 -log_name with same name as before
-zero using LBA of arbitrary sector
-read or -exam sector

1, 2, 3, 4, 9

dch-19 -log_name with same name as before
-new_log
-zero using LBA or CHS of sector outside disk range

1, 2, 3, 4, 9

dch-20 -h 2

Page 17 of 116

B4 seccmp Test Design Specification

B4.1 Features to be tested
1. Log the specified source drive.
2. Log the specified destination drive
3. Log the program execution.
4. If the sectors to compare are not diskwipe-style filled or zero filled, log any

differences between the source sector and the destination sector.
5. diskwipe-style filled sectors or zero filled sectors are logged with no need for

comparison.
6. Allow specification of an alternate log file name.

B4.2 Approach refinements
Features 1 and 2 will pass the test if and only if for each of the above test cases the C/H/S
values recorded in the log file are reasonable. Note that verifying the correctness of the
disk geometry is not straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 3 will be to run seccmp using different combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run seccmp using source and destination
sectors that are not both diskwipe-style filled or both zero, and checking whether the
differences are logged.

The approach to testing feature 5 will be to run seccmp using source and destination
sectors that are both diskwipe style filled or zero filled, and check whether they are
logged without comparison.

The approach to testing feature 6 will be to run seccmp using the -log_name option
followed by an alternate log file name.

B4.3 Test Identification

Case Id Description/Options Features
scm-01 -comment w

-compare first disk sectors, not diskwipe- or zero-
filled

1, 2, 3, 4

scm-02 -append log records
-comment “w1 …”
-compare last disk sectors, diskwipe-filled

1, 2, 3, 5

scm-03 -new_log
-try comparing sectors outside range

1, 2, 3

scm-04 -new_log
-same source fill value and destination fill value
-interactively enter sector addresses

1, 2, 3, 4, 5

Page 18 of 116

-sectors diskwipe-filled, all combinations of real fill
values
-when real source fill value equals real destination
fill value, consider sectors with same or different
headers

scm-05 -new_log
-different source fill value and destination fill value
-interactively enter sector addresses
-sectors diskwipe-filled, all combinations of real fill
values
-when real source fill value equals real destination
fill value, consider sectors with same or different
headers

1, 2, 3, 4, 5

scm-06 -log_name
-interactively enter sector addresses
-combinations of diskwipe/zero, diskwipe/not
diskwipe and not zero, zero/zero, zero/not diskwipe
and not zero, for source/destination sectors

1,2, 3, 4, 5, 6

scm-07 -h 3

Page 19 of 116

B5 partcmp Test Design Specification

B5.1 Features to be tested
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. Log the comparison between the source partition and the destination partition.

B5.2 Approach refinements
Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 3 will be to run partcmp using different combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run partcmp using various source and
destination partitions, with different or equal sizes and the same or different contents, on
hard drives with various interfaces, and checking the reported differences against the
known ones. In general, in the setup of each test case, we will copy the smaller partition
onto the larger one and modify a few predetermined sectors of the copy.

B5.3 Test Identification

Case Id Description/Options Features
pcm-01 -compare big primary FAT32 partitions

-src is smaller than dst
-same contents on the smaller length
-comment w
-interactive partition selection.

1, 2, 3, 4

pcm-02 -compare big primary FAT32
-src is bigger than dst
-src, dst have almost same contents on the smaller
length
-new_log
-comment “w1 …”
-select
-boot

1, 2, 3, 4

pcm-03 -compare primary Linux Ext2 partitions
-src is bigger than dst
-same contents on the smaller length
-comment “w1 …”
-interactive partition selection
-append the log records
-interactive comment

1, 2, 3, 4

Page 20 of 116

-boot
pcm-04 -compare logical FAT32 partitions

-src, dst have same size and contents
-use alternate log file name (-log_name)
-interactive selection
-interactive comment
-boot

1, 2, 3, 4

pcm-05 -compare logical FAT32 partitions
-src, dst have the same size
-src, dst have almost same contents
-append log records to log file with alternate name
-interactive selection
-interactive comment
-boot

1, 2, 3, 4

pcm-06 -compare logical FAT16 partitions
-src is smaller than dst
-same contents on the smaller length
-new log file with alternate name is created when -
log_name and -new_log are both used
-interactive selection
-interactive comment
-boot

1, 2, 3, 4

pcm-07 -select with partition index pointing to empty entries 1, 2, 3, 4
pcm-08 -select with invalid partition indexes 1, 2, 3, 4
pcm-09 -h option in various ways. 1, 2, 3, 4

Page 21 of 116

B6 diskcmp Test Design Specification

B6.1 Features to be tested
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. Log the comparison between the source drive and the destination drive.
5. If there is a read error the comparison results are undefined.
6. If there are any read errors, then continue scanning the disk and log a count of the

number of tracks with read errors on each disk.

B6.2 Approach refinements
Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable.

The approach to testing feature 3 will be to run diskcmp using different combinations of
command line options and verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run diskcmp using various models and sizes
of source and destination hard disk drives, whose contents before comparison is known,
and checking the reported differences against the known ones. In general, the drives will
be prepared for comparison by copying the smaller one onto the bigger one, and
modifying sectors at predetermined addresses.

B6.3 Test Identification

Case Id Description/Options Features
dcm-01 -source disk size > destination disk size

-same contents on the smaller size
-comment w
-no log file present.

1, 2, 3, 4

dcm-02 -source disk size < destination disk size
-almost same contents on the smaller size
-comment “w1 …”
-append the log records

1, 2, 3, 4

dcm-03 -same size source and destination disks
-diskwipe-style filled with same value, same geometry
-a few different sectors
-new_log
-interactive comment.

1, 2, 3, 4

dcm-04 -same size source and destination disks
-diskwipe-style filled with different values
-a few equal sectors
-alternate log file name using -log_name

1, 2, 3, 4

dcm-05 -h 1, 2, 3, 4, 5, 6

Page 22 of 116

B7 corrupt Test Design Specification

B7.1 Features to be tested
1. Log the program execution.
2. Change a specified byte at a specified location in a specified file to a specified value.
3. Log the original value at the specified location.
4. Log the new value at the specified location.

B7.2 Approach refinements
The approach to testing feature 1 will be to run corrupt using different combinations of
command line options and verifying that the proper information is logged in the log file.
We will launch corrupt with and without the -comment option, to verify that it accepts
and logs one-word comments, multi-word comments, and interactively entered
comments. We will launch corrupt with and without the -new_log option, to verify that
the tool creates a new, default log file, or appends the log records to an existing one.
Also, we will test whether corrupt displays its usage mode when prompted by the -h
option.

Regarding features 2, 3, and 4, we will specify valid offsets in the image file, and observe
whether corrupt alters the byte at the specified offset and logs the original and new value.
To test that the tool only alters the desired byte, we will make a reference copy of the
image file, then run corrupt, and then compare the modified image file to the reference
copy. We will use the Linux command cmp to perform the comparison. We will also
specify invalid offsets and observe whether corrupt detects the invalid offset.

B7.3 Test Identification

Case Id Description Features
cor-01 -alter first byte of an image file

-comment -w
1, 2, 3, 4

cor-02 -alter the last byte of an image file
-comment “w1…”
-append the log to the existing.

1, 2, 3, 4

cor-03 -alter a byte of an image file
-new_log.

1, 2, 3, 4

cor-04 -alter a byte of an image file
-log_name.

1, 2, 3, 4

cor-05 -specify an offset outside the image file range.
-new_log.

1, 2

cor-06 -h 1, 2, 3, 4

Page 23 of 116

B8 logsetup Test Design Specification

B8.1 Features to be tested
1. Record the following: disk label, host computer, operator, operating system loaded,

date and time.

B8.2 Approach refinements
The approach to testing feature 1 will be to run logsetup using arguments as specified in
the FS-TST Version 2.0 documentation and observe whether the information provided
through the command line arguments plus the current date and time extracted from the
OS are correctly logged.

B8.3 Test Identification

Case Id BIOS Disk

type
Description Features

lgs-01 N/A N/A Run logsetup with 4 string
arguments: the hard disk
drive, the host computer,
operator, OS.

1

Page 24 of 116

B9 logcase Test Design Specification

B9.1 Features to be tested
1. Record the following: Test case ID, host computer, operator, source disk drive,

destination disk drive, other disk drive, date and time.

B9.2 Approach refinements
The approach to testing feature 1 will be to run logcase using arguments as specified in
the FS-TST Version 2.0 documentation and observe whether the information provided
through the command line arguments plus the current date and time extracted from the
OS are correctly logged.

B9.3 Test Identification

Case Id BIOS Disk

type
Description Features

Lgc-01 N/A N/A Run logcase with 6 string
arguments: test case ID, the
host computer, operator,
source disk, destination disk,
media disk.

1

Page 25 of 116

B10 adjcmp Test Design Specification

B10.1 Features to be tested
1. Log the specified source drive.
2. Log the specified destination drive.
3. Log the program execution.
4. Log the partition table for the specified hard drive.
5. For each disk, assign each sector to a contiguous block of sectors, called a disk chunk,

such that each disk chunk is assigned to one of the following chunk categories: a
sector contained within a partition, a sector contained within a partition boot track,
the unallocated sectors between two partitions, or unallocated sectors after the last
partition on the disk.

6. Record the location of each disk chunk in the log file.
7. Allow specification of corresponding disk chunks between the source hard drive and

the destination hard drive. (A disk chunk on the source drive is compared to the
corresponding disk chunk on the destination drive.)

8. Log the correspondence between source disk chunks and destination disk chunks, i.e.,
for each disk chunk on the source drive, log the disk chunk on the destination that the
source disk is to be compared to.

9. Log the comparison between each pair of corresponding disk chunks.
10. For any destination disk chunks that have no corresponding source chunk categorize

the sectors of the disk chunk according to the following: zero fill (every byte is zero),
diskwipe style fill, and other contents. The diskwipe style fill is actually three
categories: source fill byte, destination fill byte and any other fill byte. For each
category, the first few (up to some arbitrary limit) sectors belonging to the category
are logged. A contiguous block of sectors is logged as a hyphen separated pair of
integers (start sector - last sector).

11. Log a summary as follows:
- Number of boot tracks, total number of sectors assigned to boot tracks, and

number of boot track sectors that do not compare equal.
- Number of partitions, total number of sectors assigned to some partition, and

number of corresponding partition sectors that do not compare equal.
- Number of unallocated chunks with a corresponding unallocated chunk,

number of sectors in this category and number of corresponding sectors that
do not compare equal.

- Number of excess sectors in destination chunks that have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Number of sectors in destination chunks that do not have a corresponding
source chunk, number of sectors that have every byte set to zero, and number
of remaining sectors.

- Total number of source sectors and total number of destination sectors.

Page 26 of 116

B10.2 Approach refinements
Features 1 and 2 will pass the test if and only if for each of the above test cases the C/H/S
values recorded in the log file are reasonable. Note that verifying the correctness of the
disk geometry is not straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 3 will be to run adjcmp using different combinations of
command line options and different layouts of the source and destination disks and
verifying that the proper information is logged in the log file.

The approach to testing feature 4 will be to run adjcmp using different layouts of the
source and destination disks and verifying that the partition map logged by adjcmp is
identical to the one indicated by a tool like PartitionMagic.

The approach to testing features 5 and 6 will be to run adjcmp using different disk
layouts, and verifying that adjcmp correctly distinguishes and categorizes the disk chunks
according to the definition of a disk chunk in feature 5. Also, that adjcmp logs correctly
the location of each chunk. We will use a tool like PartitionMagic to identify the chunks
independently.

The approach to testing feature 7 is to run adjcmp using the -assign option on the
command line and to observe whether adjcmp allows the user to interactively assign
source chunks to destination chunks.

The approach to testing feature 8 is to run adjcmp using automatic or interactive chunk
assignment on different disk layouts and observing whether the chunk assignment is
correctly reported.

The approach to testing feature 9 is to run adjcmp using corresponding source and
destination chunks whose characteristics are known (for example, with the sector
contents known, being set up a priori by using a tool like diskchg or a commercial disk
editor), then comparing the report to known statistics about the chunks.

The approach to testing feature 10 is to set up the disk layouts such that the destination
disk has chunks that do not correspond to any source chunk, then set up the sector
contents of such a chunk using diskwipe or diskchg or a commercial disk editor. Then run
adjcmp and compare the report about that destination chunks with what we already know
about them.

The approach to testing feature 11 is to examine the adjcmp report and to compare the
summary to data about the disks and disk chunks extracted from other information
sources, such as PartitionMagic, disk editors, diskchg, or diskwipe.

Page 27 of 116

B10.3 Test Identification

Case Id Description Features
acm-01 -create multiple primary and logical partitions on each

disk
-delete all previous log files
-use -comment with one-word comment
-use the -layout option.

1-6

acm-02 -use -new_log to test creation of a new log file.
-use -comment with a multi-word comment
-use automatic assignment of disk chunks
-equal partitions
-in-excess destination chunks.

1-11

acm-03 -append the log records to existing log file
-enter comment interactively
-use -assign for manual assignment of disk chunks.

1-11

acm-04 -use -log_name to create a log file with alternate name
-in-excess source chunks
-partitions have well-determined different sectors..

1-11

acm-05 -use large primary/logical partitions on source and
destination disks
-use -new_log
-use manual assignment (-assign) of source U chunks to
a “don’t care” destination chunk
-use source and destination chunks with src > dst and src
< dst.

1-11

acm-06 -use -h option to display the usage mode. 3

Page 28 of 116

B11 sechash Test Design Specification

B11.1 Features to be tested
1. Compute a SHA-1 for a specified block of continuous sectors from the designated

hard drive.
2. Log the computed hash value.
3. Allow the specification of at least two log file names, one for reference before a tool

is run and one for comparison after a tool is run.
4. Log the specified hard drive.
5. Log the program execution.

B11.2 Approach refinements
The approach to testing feature 1 and 2 is to use another application to compute the SHA-
1 hash of the specified sector block and to verify that sechash writes the correct hash
valued in the log file.

The approach to testing feature 3 is to run sechash with the options -before, -after, and
-log_name, and to check whether it creates log files with different names for each option.

Feature 4 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 5 will be to run sechash using different combinations of
command line options, including various start and end sector addresses, and verifying
that the proper information is logged in the log file.

B11.3 Test Identification
In this table, N is the last sector of the disk.

Case Id Description/Options Features
shs-01 -comment w

-before
1, 2, 3, 4, 5

shs-02 -comment “w1 …”
-before
-first 0
-last N
-hash md5sum

1, 2, 3, 4, 5

shs-03 -new_log
-after
-first 0
-last N
-hash sha1sum

1, 2, 3, 4, 5

shs-04 -after
-first 0
-last N

1, 2, 3, 4, 5

Page 29 of 116

-hash sha1sum
shs-05 -log_name <name>

-after
-first 0
-last 0
-hash sha1sum

1, 2, 3, 4, 5

shs-06 -log_name <name> (same as before)
-new_log
-first 0
-last 0
-hash md5sum

1, 2, 3, 4, 5

shs-07 -before
-new_log
-first N
-last N

1,2, 3, 4, 5

shs-08 -before
-new_log
-first N
-last N
-hash md5sum

1, 2, 3, 4, 5

shs-09 -before
-new_log
-first m (with 0 <= m)
-last k (with m < k <= N)

1, 2, 3, 4, 5

shs-10 -before
-new_log
-first m (with 0 <= m)
-last k (with m < k <= N)

1,2, 3, 4, 5

shs-11 -before
-new_log
-first m (with 0 <= m <= N)
-last k (with m > k)

2

shs-12 -before
-new_log
-first m (with m > N)
-last k (with k > m)

2

shs-13 -before
-new_log
-first m (with m <= N)
-last n (with n > N)

2

shs-14 -h 5

Page 30 of 116

B12 diskhash Test Design Specification

B12.1 Features to be tested
1. Compute a SHA-1 for the designated hard disk drive.
2. Log the computed hash value.
3. Allow specification of at least two log file names, one for reference before a tool is

run, and one for comparison after a tool is run.
4. Log the specified hard drive.
5. Log the program execution.

B12.2 Approach refinements
The approach to testing feature 1 and 2 is to use another application to compute the SHA-
1 hash of the specified hard disk drive and to verify that diskhash writes the correct hash
valued in the log file.

The approach to testing feature 3 is to run diskhash with the options -before, -after, and -
log_name, and to check whether it creates log files with different names for each option.

Feature 4 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that verifying the correctness of the disk
geometry will not be straightforward. Therefore, reasonable values are deemed correct.

The approach to testing feature 5 will be to run diskhash using different combinations of
command line options, including various start and end sector addresses, and verifying
that the proper information is logged in the log file.

B12.3 Test Identification

Case Id Description/Options Features
dhs-01 -comment w

-before
1, 2, 3, 4, 5

dhs-02 -comment “w1 …”
-before

1, 2, 3, 4, 5

dhs-03 -new_log
-before

1, 2, 3, 4, 5

dhs-04 -after 1, 2, 3, 4, 5
dhs-05 -log_name <name>
dhs-06 -log_name <name> (same as before) 3, 4, 5
dhs-07 -log_name <name> (same as before)

-new_log
1,2, 3, 4, 5

dhs-08 -h 5

Page 31 of 116

B13 Disk Logging Test Design Specification

B13.1 Features to be tested
1. The disk geometry, i.e., maximum allowed cylinder value, maximum allowed head

value, number of sectors per track and total number of sectors.
2. The model number and serial number.
3. The disk interface IDE/non-IDE.

B13.2 Approach refinements
The approach to testing that hard disk drives are being logged correctly will be to run
relevant FS-TST tools on hard disk drives of various types (IDE, SCSI, SATA) and
models and observe whether the tools record the correct information about the hard disk
in the log file.

B13.3 Test Identification
Most FS-TST tools must log one or more hard disk drives. Consequently, we selected
several test cases from the tools’ test design specifications.

Case Id Disk

type
Features

Dkw-01 SCSI 1, 2, 3
Dkw-04 IDE 1, 2, 3
Dkw-09 SATA 1, 2, 3

B13.4 Feature pass/fail criteria
Feature 1 will pass the test if and only if for each of the above test cases the C/H/S values
recorded in the log file are reasonable. Note that we expect that verifying the correctness
of the disk geometry will not be straightforward. Therefore, reasonable C/H/S values will
be deemed correct.

Feature 2 will pass the test if and only if in each test case, the recorded model and serial
number are identical to the ones provided by the manufacturer.

Feature 3 will pass the test if and only if in all cases the chosen tool detects the disk
interface correctly.

Page 32 of 116

Section C: FS-TST Test Case Specifications
Rather than giving complete setup information for each test case, many test cases rely on
conditions created by a preceeding test case. These are documented in the test case
dependencies. The test cases may be run in any order that respects the dependencies.

C1 diskwipe Test Case Specifications

C1.1 Dkw-01

C1.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4. We will test:
- Whether diskwipe correctly displays a summary of the command line arguments and
options.
- Whether data about the program, support libraries if any, and header files if any (name,
version, creation, compile, and execution times), are correctly displayed.
- Whether the hard disk drive we select to be wiped is correctly logged (type of interface
IDE/non-IDE, geometry, model and serial numbers).
- Whether diskwipe creates a new log file on the log disk with the default name for a
destination disk.
- Whether the one-word comment supplied on the command line with the -comment
option is logged correctly.
- Whether all other required information (see section A3.1.2) is correctly logged.
- Whether the hard disk is wiped out correctly, by displaying sectors from the beginning,
middle, and the end of the disk using a commercial tool like diskedit, or the -exam
function of the diskchg tool.

C1.1.2 Test setup
On the computer used for testing, mount the hard disk with the Linux OS. We assume
that the FS-TST 2.0 tools reside on the same disk and that the same disk will be used as
log disk.
Mount the test hard disk in a slot of the test computer. We assume that the test hard disk
is a SCSI disk externally labeled “CC”, and that the slot we selected is associated with
the Linux device /dev/sda. If you use other disk/slot, modify the diskwipe command line
accordingly.
Boot up to Linux and delete all log files from the current directory.

C1.1.3 Test case dependencies
None.

C1.1.4 Procedure
Run diskwipe with the mandatory arguments and with the option -comment <comment>,
where <comment> is one-word comment:

diskwipe dkw-01 mcmillan serban /dev/sda CC -comment
Wipeout

Page 33 of 116

Use the ls command and a text editor to examine the log file’s existence, prescribed
name, and contents.
Use diskedit or the -exam function of the diskchg tool to examine the sectors of the
wiped hard disk. (Note: you need to reboot in MS-DOS in order to run the disk editor
tool).

C1.1.5 Expected results
The user is asked for confirmation before wiping the disk.
A log file named “wipedlog.txt” is created on the log disk in the current directory (by
default, diskwipe should consider the disk as a destination disk, hence the “d” in the file
name). The comment is logged.
The log file contains the correct information required by features 1 and 2.
The first few sectors and the last few sectors of the first cylinder, the first few sectors of
the second cylinder, the first few sectors and the last few sectors of the last cylinder on
the wiped disk have the required format (see Table 2 of the FST-RDU-20 document).

C1.2 Dkw-02

C1.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 of the diskwipe tool, as in the
case dkw-01, with the following differences for feature 2:
- We will test whether diskwipe creates a new log file with the name specific to a
destination disk when we specify the -new_log option, even though a log file with the
same name already exists.
- We will test whether a multi-word comment supplied on the command line with the
-comment option is correctly logged.
We also will test the effect of the -noask option on the program execution.

C1.2.2 Test setup
Use the test setup of case dkw-01.

C1.2.3 Test case dependencies
Dkw-01 (in order to have its log file present on the log disk).

C1.2.4 Procedure
Run diskwipe using the options -new_log, -comment followed by a multi-word comment
(not containing quotes, but included in quotes), and -noask:

diskwipe dkw-02 mcmillan serban /dev/sda CC -new_log -
comment "Wiping a disk with 0xCC" -noask

Use the ls command and a text editor to examine the log file’s existence, prescribed
name, and contents.
Use diskedit or the -exam function of the diskchg tool to examine the wiped hard disk’s
sectors. (Note: you need to reboot in MS-DOS in order to run the disk editor tool.)

Page 34 of 116

C1.2.5 Expected results
The user is no longer prompted for confirmation before wiping the disk.
The old log file “wipedlog.txt” is deleted and a new log file with the same name is
created on the log disk in the current directory.
The comment is logged correctly.
The log file contains the correct information required by feature 2.
The first few sectors and the last few sectors of the first cylinder, the first few sectors of
the second cylinder, the first few sectors and the last few sectors of the last cylinder on
the wiped disk have the required format (see Table 2 of the FST-RDU-20 document).

C1.3 Dkw-03

C1.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 of the diskwipe tool.
Specifically, in this case we will test:
- Whether diskwipe prompts the user for a comment when no comment is supplied on the
command line.
- Whether diskwipe appends the log records to the log file created in dkw-02; we will
designate the hard disk drive explicitly as a destination drive by using the -dst option, and
we will force appending the log by not using the -new_log option.
- Whether diskwipe correctly fills the sectors according to new disk geometry specified
by the -heads option.

C1.3.2 Test setup
Use the setup of dkw-01.

C1.3.3 Test case dependencies
Dkw-02. Do not delete the log file created in the case dkw-02, in order to append the log
to it.

C1.3.4 Procedure
Run diskwipe using the -dst, -noask, -heads options:

diskwipe dkw-03 mcmillan serban /dev/sda CC -dst -noask -
heads 200

Use the ls command and a text editor to examine the log file’s existence (and name), and
contents.
Use diskedit or the -exam function of the diskchg tool to examine the wiped hard disk’s
sectors.

Computing the C/H/S address of a sector in a given geometry from the LBA address of
that sector may help the user to check whether diskwipe correctly filled the sectors. Here
is the algorithm to convert LBA to C/H/S:

S = LBA % 63 + 1;
T = LBA / 63;

Page 35 of 116

H = T % heads;
C = T / heads;

where heads is the number of heads per cylinder. The algorithm assumes that each track
has 63 sectors. As an example, the sector 6/1/1 in the geometry with heads=255 has the
LBA = 6 * 255 * 63 + 1 * 63 + 1 - 1 = 96453. Let’s compute its C/H/S address for a new
geometry with heads = 200:

S = 96453 % 63 + 1 = 1;
T = 96453 / 63 = 1531;
H = 1531 % 200 = 131;
C = 1531 / 200 = 7.

Thus, sector 6/1/1 in a geometry with 255 heads and 63 sectors per track becomes sector
7/131/1 in a geometry with 200 heads and 63 sectors per track.

Use the -exam or -read function of the diskchg tool with the LBA=96453. diskchg will
display the actual C/H/S address (it should be 6/1/1) and the contents of that sector.
Check whether the sector’s header contains the values 7/131/1 and 96453 (in the format
prescribed by Table 2 of the tool specifications document.)

C1.3.5 Expected results
The user is prompted for a comment. The user is not prompted for confirmation.
The log is appended to the log file “wipedlog.txt” created in the previous case.
The comment is logged.
The log file contains the correct information required by features 1, 2.
The sectors have the required format (see Table 2 of the FST-RDU-20 document), where
the sector header uses the new geometry for the CHS part.

C1.4 Dkw-04

C1.4.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4, and especially whether
diskwipe creates a log file with a special name for a source hard disk.

C1.4.2 Test setup
Similar to the setup of case dkw-01, but we will use an IDE disk (labeled “7F”) as source
hard disk drive and assume that it will be recognized as /dev/hdb in the Linux system. If
you use other hard drive slot, modify the command line accordingly.

C1.4.3 Test case dependencies
None.

C1.4.4 Procedure
Run diskwipe with the -src and -noask options:

diskwipe dkw-04 mcmillan serban /dev/hdb 7F -src -noask

Page 36 of 116

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.
Use diskedit or the -exam function of the diskchg tool to examine the wiped hard disk’s
sectors.

C1.4.5 Expected results
The user is prompted for a comment, but not for confirmation.
A new log file “wipeslog.txt” is created on the log disk.
The comment is logged correctly.
The log file contains the correct information required by features 2.
The sectors are correctly filled.

C1.5 Dkw-05

C1.5.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4, and especially whether
diskwipe creates a log file with a special name for a media hard disk.

C1.5.2 Test setup
Use the setup of dkw-04.

C1.5.3 Test case dependencies
None.

C1.5.4 Procedure
Run diskwipe using the options -noask and -media:

diskwipe dkw-05 mcmillan serban /dev/hdb 7F -noask -media

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.
Use diskedit or the -exam function of the diskchg tool to examine the wiped hard disk’s
sectors.

C1.5.5 Expected results
The user is prompted for a comment but not for confirmation.
A new log file “wipemlog.txt” is created on the log disk.
The comment is logged.
The log file contains the correct information required by features 2.
The sectors of the media disk are correctly filled.

Page 37 of 116

C1.6 Dkw-06

C1.6.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4, and especially whether
diskwipe creates a log file with a name given on the command line in the -log_name
option for a destination disk (instead of the default name wipedlog.txt).

C1.6.2 Test setup
Mount for example the SCS hard disk drive labeled “3B” in a slot on the test computer,
for example “McMillan”, such that it will be recognized as the Linux device /dev/sda.
Reboot to Linux.

C1.6.3 Test case dependencies
None.

C1.6.4 Procedure
Run diskwipe using the options -noask and -log_name:

diskwipe dkw-06 mcmillan serban /dev/sda 3B -noask -
log_name dkwlog.txt

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Use diskedit or diskchg to examine the wiped hard disk’s sectors.

C1.6.5 Expected results
diskwipe prompts the user for a comment but not for confirmation.
diskwipe creates a new log file “dkwlog.txt” on the log disk.
diskwipe logs the comment and the correct information required by feature 2.
diskwipe fills the sectors of the target disk correctly.

C1.7 Dkw-07

C1.7.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4, and especially whether
diskwipe appends the log for a source disk to a log file with an alternate name when that
file already exists.

C1.7.2 Test setup
Use the setup of Dkw-06.

C1.7.3 Test case dependencies
Dkw-06. Do not delete the log file with alternate name created in the case dkw-06.

C1.7.4 Procedure
Run diskwipe using the options -noask, -src, and -log_name. Use the same log file name
as in dkw-06. Use a different fill character than in the case dkw-06.

Page 38 of 116

diskwipe dkw-07 mcmillan serban /dev/sda 4B -noask -src -
log_name dkwlog.txt

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.
Use diskedit or diskchg to examine the wiped hard disk’s sectors.

C1.7.5 Expected results
diskwipe asks the user to confirm the alternate log file name, because he/she also
specified the -src option.
diskwipe prompts the user for a comment but not for confirmation.
The log is appended to the old log file “dkwlog.txt”, even though the log file was created
for a destination disk and the user specified a source disk.
diskwipe logs the comment, the correct information required by feature 2, fills correctly
the sectors of the target disk.

C1.8 Dkw-08

C1.8.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4, and especially whether
diskwipe creates a new log file with a name given on the command line in the -log_name
option, even though a log file with the same name exists and the -new_log option is used.

C1.8.2 Test setup
Use the setup of Dkw-06.

C1.8.3 Test case dependencies
Dkw-06 or dkw-07. Do not delete the log file created in those cases.

C1.8.4 Procedure
Run diskwipe using the options -noask, -new_log, and -log_name with the same log file
name as in dkw-06 or dkw-07. Use a different fill character:

diskwipe dkw-08 mcmillan serban /dev/sda 5B -noask -new_log
-log_name dkwlog.txt

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.
Use diskedit or diskchg to examine the wiped hard disk’s sectors.

C1.8.5 Expected results
diskwipe prompts the user for a comment but not for confirmation.
diskwipe deletes the old log file “dkwlog.txt” and creates a new log file with the same
name.
It logs the comment and the correct information required by feature 2.
diskwipe correctly fills the sectors of the target disk.

Page 39 of 116

C1.9 Dkw-09

C1.9.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on a very large Serial ATA
hard disk drive.

C1.9.2 Test setup
On the computer used for testing, mount a SATA hard disk drive, for example the one
labeled “10B” (capacity 250GB). Reboot to Linux. On the machine we used (“frank”),
the OS recognized the hard disk drive as device /dev/sda. We assume that the FS-TST 2.0
tools reside on the boot disk, which will also be used as log disk.

C1.9.3 Test case dependencies
None.

C1.9.4 Procedure
Run diskwipe with the mandatory arguments and with the option -new_log, -noask:

diskwipe dkw-09 frank serban /dev/sda AA -new_log -noask

Use the ls command and a text editor to examine the log file’s existence, prescribed
name, and contents.
Use diskedit or the -exam function of the diskchg tool to examine the sectors of the
wiped hard disk.

C1.9.5 Expected results
diskwipe prompts the user for a comment. It creates a log file “wipedlog.txt”, logs the
command, the comment, the hard disk drive to be initialized, fills correctly the sectors,
and logs the program execution.

C1.10 Dkw-10

C1.10.1 Purpose
The purpose of this test case is to test feature 2 when diskwipe is run with no arguments,
with incorrect arguments, or with the -h option.

C1.10.2 Test setup
None.

C1.10.3 Test case dependencies
None.

C1.10.4 Procedure
Run diskwipe with no arguments and capture its output on the standard output into a file.
Run diskwipe with incorrect arguments and append its standard output to the same file.

Page 40 of 116

Run diskwipe with the -h option alone on the command line and append its standard
output to the same file.
Run diskwipe with the -h option together with other options on the command line and
append its standard output to the same file.

diskwipe > output.txt
diskwipe dkw-10 mcmillan serban /dev/hdb 7F -logname >>
output.txt
diskwipe -h >> output.txt
diskwipe dkw-10 mcmillan serban /dev/sda CC -h >>
output.txt

Use a text editor to examine the contents of output.txt.

C1.10.5 Expected results
diskwipe displays its usage mode in each case.

Page 41 of 116

C2 partab Test Case Specifications

C2.1 Ptb-01

C2.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 6 on a hard disk drive
without partitions. We will use the -all option to log the empty entries of the partition
table. We will use a one-word comment introduced by the -comment option on the
command line.

C2.1.2 Test setup
We distinguish two cases: the partition table does not exist; and the partition table does
exist but all entries are empty.
To set up the first case, reboot the test computer to Linux and zero the first sector of the
test hard disk drive using the diskchg.
To set up the second case, reboot the test computer to MS-DOS using the FS-TST1.0
boot diskette, then use PartitionMagic to create a partition, then delete all partitions on
the test hard disk. Reboot to Linux.

C2.1.3 Test case dependencies
None.

C2.1.4 Procedure
For the first case - no partition table - run partab using the options -all and -comment
followed by a one-word comment (assume that we selected a SCSI disk drive as target,
identified as device /dev/sda):

partab ptb-01 mcmillan serban /dev/sda CC -all -comment
NoTable

For the second case - a partition table with only empty entries - run partab again using
the same log file to append the log records:

partab ptb-01 mcmillan serban /dev/sda CC -all -comment
EmptyTable

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit and/or Partition Magic to examine the partition table.

C2.1.5 Expected results
A (new) log file “pt-sda-log.txt” is created on the log disk.
The comment is logged.
The log file contains the correct information required by features 1 and 2.
If the partition table exists, 4 empty entries should be displayed. If the partition table does
not exist, an error message should be logged.

Page 42 of 116

C2.2 Ptb-02

C2.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, 5, and 6 for a disk with a primary
FAT16 partition. We will test whether partab correctly logs the partition table entries as
prescribed in the FS-TST specifications. We will also use the option -all to log the empty
entries. We will test whether partab creates a new log file even though a log file with the
same name exists, by using the option -new_log. We will also test whether a multi-word
comment entered on the command line is correctly logged.

C2.2.2 Test setup
On the same target disk as in the case ptb-01 create a primary FAT16 partition using
PartitionMagic (you need to first boot to MS-DOS). Reboot to Linux.

C2.2.3 Test dependencies
Ptb-01.

C2.2.4 Procedure
Run partab using the options -all, -new_log, and -comment followed by a multi-word
comment:

partab ptb-02 mcmillan serban /dev/sda CC -new_log -all -
comment “Primary FAT16 partition”

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit and/or Partition Magic to examine the hard disk’s partition table(s).

C2.2.5 Expected results
A new log file “pt-sda-log.txt” is created on the log disk, even though a log file with the
same name existed.
The comment is logged.
The log file contains the correct information required by features 1 and 2.
The partition table entries (feature 3) are correctly displayed. Each partition receives a
unique ID number.
The empty partition table entries (feature 6) are also displayed.

C2.3 Ptb-03

C2.3.1 Purpose
The purpose of this test is to test features 1, 2, 3, 4, 5, and 6 on a disk with a primary
FAT32 partition. Among other things, we will test whether partab appends the log
records to the existing log file for the specified disk, and whether partab prompts the user
to enter a comment.

C2.3.2 Test setup
Delete all existing partitions and create a primary FAT32 partition on the target disk used
in Ptb-02, by using PartitionMagic (you need to boot first to MS-DOS). Reboot to Linux.

Page 43 of 116

C2.3.3 Test dependencies
Ptb-02, in order to use the same log file to append the log records.

C2.3.4 Procedure
Run partab:

partab ptb-03 mcmillan serban /dev/sda CC -all

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit and/or Partition Magic to examine the target disk’s partition table(s).

C2.3.5 Expected results
partab appends the log to the log file named pt-sda-log.txt.
An interactively entered comment is correctly logged.
The target hard disk is correctly logged.
The log file contains the correct information required by feature 2.
The partition table entries (feature 3) are correctly displayed; each entry is given a unique
id.
The empty partition table entries (feature 6) are also displayed.

C2.4 Ptb-04

C2.4.1 Purpose
The purpose of this test is to test features 1, 2, 3, 4, 5, and 6 on an IDE disk with a
primary NTFS partition. Among other things, we will test whether partab creates a log
file with the name specified on the command line using the option -log_name.
We will also test whether the default log file name depends on the target hard disk drive,
by running again partab without the -log_name option.

C2.4.2 Test setup
Insert the target disk (for example the IDE disk externally labeled “7F”) in a slot
corresponding to the Linux device /dev/hdb. Create a primary NTFS partition using
PartitionMagic (you need to boot first to MS-DOS for that). Reboot to Linux.

C2.4.3 Test dependencies
None.

C2.4.4 Procedure
Run partab using the options -all and -log_name:

partab ptb-04 mcmillan serban /dev/hdb 7F -all -log_name
ptblog.txt

Then run partab again without the -log_name option:

partab ptb-04 mcmillan serban /dev/hdb 7F -all

Page 44 of 116

Use the ls command and a text editor to examine the log files’ existence and contents.
Use diskedit and/or Partition Magic to examine the hard disk’s partition table(s).

C2.4.5 Expected results
First partab command creates a new log file with the name “ptblog.txt”.
The user is prompted for a comment.
The disk, the comment, and all information required by feature 2 are correctly logged.
The partition table entries (feature 3) are correctly displayed and given unique ids.
The empty partition table entries (feature 6) are also displayed.

The second partab command creates a log file with the name “pt-hdb-log.txt”, with a
similar content.

C2.5 Ptb-05

C2.5.1 Purpose
The purpose of this test is to test features 1, 2, 3, 4, 5, and 6 on an IDE disk that contains
a large (> 8GB) primary FAT32 partition, primary Linux Ext2 partition, and a Linux
swap partition. We intend also to test log whether partab appends the log to an existing
log file with the name specified in the -log_name option.

C2.5.2 Test setup
On the same target disk drive as in Ptb-04, create the large FAT32, Linux ext2, and Linux
swap partitions using PartitionMagic (you need to boot first to MS-DOS for that). Reboot
to Linux.

C2.5.3 Test dependencies
Ptb-04.

C2.5.4 Procedure
Run partab using the options -all and -log_name with the same alternate file name as in
ptb-04:

partab ptb-05 mcmillan serban /dev/hdb 7F -all -log_name
ptblog.txt

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit and/or Partition Magic to examine the hard disk’s partition table.

C2.5.5 Expected results
partab appends the log to the old log file “ptblog.txt” created in the previous case.
The user is prompted for a comment.
The comment, the disk drive, and all information required by feature 2 are correctly
logged.
The partition table entries (feature 3) are correctly displayed. Note that it is possible that
the C/H/S start and end addresses of the partitions can be written incorrectly in the

Page 45 of 116

partition table entries if they extend beyond cylinder 1024. partab should display the
values it finds in the table.
The empty partition table entries (feature 6) are also displayed.

C2.6 Ptb-06

C2.6.1 Purpose
The purpose of this test is to test features 1, 2, 3, 4, 5, and 6 on a disk drive with a
primary FAT16, primary FAT32 hidden, and a HPFS partition. Among other things, we
will test whether a new log file with the name specified in the -log_name option is
created when the option -new_log is used, even though the file existed from a previous
case.

C2.6.2 Test setup
On the same target disk drive used in the case ptb-05, reboot to MS-DOS, and use
PartitionMagic to delete all partitions and to create: a primary FAT16, a primary FAT32
hidden, a primary HPFS hidden, and a primary unformatted partition. Reboot to Linux.

C2.6.3 Test dependencies
Ptb-05.

C2.6.4 Procedure
Run partab using the options -all, -new_log, and log_name with the same alternate log
file name as in ptb-05:

partab ptb-06 mcmillan serban /dev/hdb 7F -all -new_log -
log_name ptblog.txt

Use the dir command and a text editor to examine the log file’s existence and contents.
Use diskedit and/or Partition Magic to examine the hard disk’s partition table(s).

C2.6.5 Expected results
A new log file with the name “ptblog.txt” is created, even though a log file with the same
name already exists.
The user is prompted for a comment.
The comment, the drive properties, and all information required by feature 2 are correctly
logged.
The partition table entries (feature 3) are correctly displayed, with the type of hidden
partitions specified as “unknown” or “other”.
The empty partition table entries (feature 6) are also displayed.

Page 46 of 116

C2.7 Ptb-07

C2.7.1 Purpose
The purpose of this test is to test features 1, 2, 3, 4, 5, and 6 on a SCSI disk drive with
multiple extended and logical partitions. Among other things, we will test whether the
name of the log file is unique for the target disk drive.

C2.7.2 Test setup
On a target disk drive mounted as device /dev/sda for example, create multiple primary
and logical partitions, for example a primary FAT32, a primary Linux Ext2, and a
primary extended partition which contains logical partitions FAT16, FAT32, and NTFS.
Reboot to Linux.

C2.7.3 Test dependencies
None.

C2.7.4 Procedure
Run partab using the options -all and -new_log:

partab ptb-07 mcmillan serban /dev/sda CC -all -new_log

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit and/or diskchg to examine the hard disk’s partition table(s).

C2.7.5 Expected results
A new log file with the name “pt-sda-log.txt” is created.
The user is prompted for a comment.
The comment, the drive properties, and all information required by feature 2 are correctly
logged.
The partition table entries (feature 3) are correctly displayed. The empty partition table
entries (feature 6) are also displayed.

C2.8 Ptb-08

C2.8.1 Purpose
The purpose of this test is to test feature 2, namely how partab behaves when its
command line contains no arguments, or contains incorrect arguments, or one of the
options is -h.

C2.8.2 Test setup
Boot to Linux.

C2.8.3 Test dependencies
None.

Page 47 of 116

C2.8.4 Procedure
Run partab with no arguments on the command line and capture its standard output to a
file. Then run partab with incorrect arguments, with -h as the only argument, or with -h
together with other arguments on the command line. Append the standard output to the
same file.

partab > output.txt
partab ptb-08 mcmillan serban /dev/hdb 7F -logname >>
output.txt
partab -h >> output.txt
partab ptb-08 mcmillan serban /dev/sda CC -h >> output.txt

C2.8.5 Expected results
partab displays its usage mode.

Page 48 of 116

C3 diskchg Test Case Specifications

C3.1 dch-01

C3.1.1 Purpose
The purpose of this test case is to test diskchg’s features 1, 2, 3, 8, and 9 on the target
computer.

C3.1.2 Test setup
Select and insert a SCSI hard disk (for example, the one labeled “CC”) into the drive that
will be identified as the device /dev/sda. Boot to Linux; we assume that the Linux OS
disk also contains the FS-TST tools executables. It will also be the log disk.

C3.1.3 Test case dependencies
None.

C3.1.4 Procedure
Delete all log files from the log disk.
Wipe out the target hard disk (device /dev/sda) using 0xCC as the fill value:

diskwipe dch-01 mcmillan serban /dev/sda CC

Run diskchg using a one-word comment, and the -exam option to start an interactive
examination of the disk contents:

diskchg dch-01 mcmillan serban /dev/sda -exam -comment
Examine

When prompted, enter the LBA addresses of the first sector (0), last sector (extract this
information from diskwipe’s log file; for example, in case of the disk “CC”, this is
71687369), and other arbitrary sectors. Then enter the CHS addresses of the same sectors.

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Use diskedit to display the same sectors and compare results.

C3.1.5 Expected results
A (new) log file with the name characteristic for the hard disk drive and the -exam
function (“cg-sda-xlog.txt”) is created on the log disk.
The comment is logged.
The log file contains the correct information required by feature 2.
diskchg correctly converts the LBA addresses to C/H/S addresses.
All sectors are displayed correctly (use diskedit and diskwipe to assess correctness).

Page 49 of 116

C3.2 dch-02

C3.2.1 Purpose
The purpose of this test case is to test diskchg’s features 1, 2, 3, 8, and 9 on the target
computer (especially: appending the log records to an existing log file, logging of a
multi-word comment, and the correctness of the -exam function).

C3.2.2 Test setup
Use the setup of case dch-01.

C3.2.3 Test dependencies
dch-01, in order to have the log file for the same disk and function (-exam) present.

C3.2.4 Procedure
Run this test case after dch-01.
Run diskchg using a multi-word comment, and the -exam option to start an interactive
examination of the disk contents:

diskchg dch-02 mcmillan serban /dev/sda -exam -comment
"Examining sectors, appending log"

When prompted, enter the CHS addresses of contiguous sectors from the end of a track
and the beginning of the next track. Then enter the LBA addresses of the same sectors.
Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Use diskedit to display same sectors and compare results.

C3.2.5 Expected results
The log records are appended to the log file created in the case dch-01 (named cg-sda-
xlog.txt).
The comment is logged.
The log file contains the correct information required by feature 2.
diskchg correctly converts the C/H/S addresses to LBA addresses.
The sectors are displayed correctly (use diskedit to assess correctness).

C3.3 dch-03

C3.3.1 Purpose
The purpose of this test case is to test diskchg’s features 1, 2, 3, 8, and 9 on the target
computer.

C3.3.2 Test setup
Use the setup of case dch-01.

C3.3.3 Test dependencies
dch-01 or dch-02, in order to have the log file for the same disk and function (-exam)
present.

Page 50 of 116

C3.3.4 Procedure
Run this test case after dch-01 or dch-02.
Run diskchg using the -exam option to start an interactive examination of the disk
contents, and the -new_log option to delete the previous log file for the -exam function.
Do not use -comment, in order to test interactive comments:

diskchg dch-03 mcmillan serban /dev/sda -new_log -exam

When prompted, enter the LBA or CHS address of a sector outside the range of the test
hard disk drive (for example, you may use the LBA address 71687370 or greater for the
disk labeled “CC”).
Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C3.3.5 Expected results
A new log file with the name cg-sda-xlog.txt is created, even though a log file with the
same name already existed.
The user is prompted for a comment and the comment is logged.
The log file contains the correct information required by feature 2.
diskchg logs the fact that the sector address is invalid or displays a read error.

C3.4 dch-04

C3.4.1 Purpose
The purpose of this test case is to test diskchg’s features 1, 2, 3, 7, and 9 on the target
computer.

C3.4.2 Test setup
Use the setup of case dch-01.

C3.4.3 Test dependencies
None.

C3.4.4 Procedure
Run diskchg with the -read option to read and display a (portion of a) specified sector of
the hard disk drive. Enter the sector address in the LBA format:

diskchg dch-04 mcmillan serban /dev/sda -read 80388 0 32

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit to display the same sector.

C3.4.5 Expected results
The user is prompted for a comment.
A new log file cg-sda-rlog.txt is created.
The user is prompted for a comment, which is logged.
The log file contains the correct information required by feature 2.

Page 51 of 116

diskchg correctly converts the LBA address to C/H/S format.
diskchg correctly displays the specified number of bytes starting at the specified offset
within the specified sector. Use diskedit to assess correctness.

C3.5 dch-05

C3.5.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 7, and 9 on the target computer.

C3.5.2 Test setup
Use the setup of case dch-01.

C3.5.3 Test dependencies
None.

C3.5.4 Procedure
Run diskchg using the -new_log option and the -read option with the C/H/S address of
the same sector as in the dch-04 case, but with an offset too large for the capacity of a
sector:

diskchg dch-05 mcmillan serban /dev/sda -new_log -read
5/1/1 640 32

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit to display the same sector.

C3.5.5 Expected results
diskchg created a new log file cg-sda-rlog.txt
diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg resets the offset to zero, then correctly displays the specified number of bytes
starting at the reset offset within the specified sector. Use diskedit and diskwipe
documentation to assess correctness.

C3.6 dch-06

C3.6.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 7, and 9 on the target computer.

C3.6.2 Test setup
Use the setup of case dch-01.

C3.6.3 Test dependencies
None.

Page 52 of 116

C3.6.4 Procedure
Run diskchg using the -new_log option and the -read option with a length too large for
the capacity of a sector, to read and display a (portion of a) specified sector of the hard
disk drive:

diskchg dch-06 mcmillan serban /dev/sda -read 5/1/1 0 1024
-new_log

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit to display the same sector.

C3.6.5 Expected results
diskchg creates a new log file with a name characteristic for the -read function (“cg-sda-
rlog.txt”) is created. diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg resets the length to 16, then correctly displays min(16, 512-offset) bytes starting
at the specified offset within the specified sector. Use diskedit and diskwipe
documentation to assess correctness.

C3.7 dch-07

C3.7.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 7, and 9 on the target computer.

C3.7.2 Test setup
Use the setup of case dch-01.

C3.7.3 Test dependencies
None.

C3.7.4 Procedure
Run diskchg using the -new_log option and the -read option with valid offset and length
values, but with offset+count too large, to read and display a (portion of a) specified
sector of the hard disk drive:

diskchg dch-07 mcmillan serban /dev/sda -read 5/1/1 256 400
-new_log

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit to display the same sector.

C3.7.5 Expected results
diskchg creates a new log file with a name characteristic for the -read function (“cg-sda-
rlog.txt”). diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.

Page 53 of 116

diskchg correctly displays only the bytes starting at the specified offset up to the end of
the specified sector. Use diskedit and diskwipe documentation to assess correctness.

C3.8 dch-08

C3.8.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 7, and 9 on the target computer.

C3.8.2 Test setup
Use the setup of case dch-01.

C3.8.3 Test dependencies
None.

C3.8.4 Procedure
Run diskchg using the -new_log option and the -read option with an invalid sector
address (for example, 71687370 or greater for the disk labeled “CC”):

diskchg dch-08 mcmillan serban /dev/sda -new_log -read
71687370 0 512

Use the ls command and a text editor to examine the log file’s existence and contents.

C3.8.5 Expected results
diskchg creates a new log file with a name characteristic for the -read function (“cg-sda-
rlog.txt”). diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg logs the fact that the sector address is invalid or displays a read error.

C3.9 dch-09

C3.9.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 5, 9 on the target computer.
Mainly, we intend to test whether diskchg correctly fills a sector when using the -fill
option with the detected disk geometry expressed through the value 0 for the heads
argument.

C3.9.2 Test setup
Use the setup of case dch-01.

C3.9.3 Test dependencies
None.

C3.9.4 Procedure
Run diskchg three times:

Page 54 of 116

(1) using the -new_log option and the -read option to read and display the initial content
of a sector specified by its C/H/S address (called later the destination sector):

diskchg dch-09 mcmillan serban /dev/sda -new_log -read
5/1/1 0 32

(2) using the -new_log and -fill options to fill the destination sector as the source sector in
the geometry reported by BIOS (use 0 as the value of the parameter heads) and with a
different fill value:

diskchg dch-09 mcmillan serban /dev/sda -new_log -fill
5/1/1 6/1/1 0 BB

(3) using the -read option to read the destination sector after filling:

diskchg dch-09 mcmillan serban /dev/sda -read 5/1/1 0 32

Use the ls command and a text editor to examine the log files’ names and contents.
Use diskedit to display the specified sectors and compare the reported values with the
logged ones.

C3.9.5 Expected results
diskchg creates a new log file with a name characteristic for the -read function (“cg-sda-
rlog.txt”) when run the first time; the second and fourth times, diskchg appends the log to
the existing log file. diskchg creates a new log file with a name characteristic for the -fill
function (“cg-sda-flog.txt”) when run the third time.
diskchg prompts the user for comments, which are logged.
diskchg logs the correct information required by feature 2.
diskchg correctly converts the C/H/S addresses to LBA.
diskchg correctly fills and displays the specified sector. Use diskedit and diskwipe
documentation to assess correctness.

C3.10 dch-10

C3.10.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 5, 9 on the target computer. It is
very similar to the case dch-09; the only difference is that we instruct diskchg to use the
detected geometry by specifying that geometry explicitly in the heads parameter, instead
of letting diskchg discover it.

C3.10.2 Test setup
Use the setup of case dch-01.

C3.10.3 Test dependencies
None.

Page 55 of 116

C3.10.4 Procedure
Run diskchg four times:

(1) using the -new_log option and the -read option to read and display the initial content
of a sector specified by its C/H/S address (called later the destination sector):

diskchg dch-10 mcmillan serban /dev/sda -new_log -read
5/1/1 0 32

(2) using the -new_log and -fill options to fill the destination sector as the source sector in
the geometry reported by BIOS given explicitly on the command line as the value of the
parameter heads and a different fill value (in the following command we assumed that the
geometry detected is 255 heads/cyl):

diskchg dch-10 mcmillan serban /dev/sda -new_log -fill
5/1/1 6/1/1 255 AA

(3) using the -read option to read the destination sector after filling:

diskchg dch-10 mcmillan serban /dev/sda -read 5/1/1 0 32

Use the ls command and a text editor to examine the log files’ names and contents.
Use diskedit to display the specified sectors and compare the reported values with the
logged ones.

C3.10.5 Expected results
diskchg creates a new log file with a name characteristic for the -read function (“cg-sda-
rlog.txt”) when run the first time; the second and fourth times, diskchg appends the log to
the existing log file. diskchg creates a new log file with a name characteristic for the -fill
function (“cg-sda-flog.txt”) when run the third time.
diskchg prompts the user for comments, which are logged.
diskchg logs the correct information required by feature 2.
diskchg correctly converts the C/H/S addresses to LBA.
diskchg correctly fills and displays the specified sector. Use diskedit and diskwipe
documentation to assess correctness.

C3.11 dch-11

C3.11.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 5, 9 on the target computer.
Mainly, we intend to test whether diskchg correctly fills a sector when using the -fill
option with a disk geometry different from the one detected.

C3.11.2 Test setup
Use the setup of the case dch-01.

Page 56 of 116

C3.11.3 Test dependencies
None.

C3.11.4 Procedure
Run diskchg three times:

(1) using the -read option to read and display the initial contents of the target/destination
sector of the hard disk drive:

diskchg dch-11 mcmillan serban /dev/sda -new_log -read
5/1/1 0 32

(2) using -new_log and the -fill option to fill the target sector with the contents of the
source sector in a geometry different from that detected:

diskchg dch-11 mcmillan serban /dev/sda -new_log -fill
5/1/1 6/1/1 200 DD

(3) using the -read option to read the destination sector after filling:

diskchg dch-11 mcmillan serban /dev/sda -read 5/1/1 0 32

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sectors and compare the reported values with the
logged ones. Compare the contents of the target and source sectors.

C3.11.5 Expected results
diskchg creates a new log file with a name characteristic for the -read function (“cg-sda-
rlog.txt”) when run the first time; the second and fourth times, diskchg appends the log to
the existing log file. diskchg creates a new log file with a name characteristic for the -fill
function (“cg-sda-flog.txt”) when run the third time.
diskchg prompts the user for comments, which are logged.
diskchg logs the correct information required by feature 2.
diskchg correctly converts the C/H/S addresses to LBA.
diskchg correctly fills and displays the specified sector. Use diskedit and diskwipe
documentation to assess correctness. The first 26 bytes (containing the sector’s CHS and
LBA address) of the source and target sectors should be identical. The rest of the target
sector should be filled with 0xDD.

C3.12 dch-12

C3.12.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 6, and 9 on the target computer,
when we instruct diskchg to change the value of a certain byte of a sector specified by its
LBA address by using the -write option.

Page 57 of 116

C3.12.2 Test setup
Use the setup of the case dch-01.

C3.12.3 Test dependencies
None.

C3.12.4 Procedure
Run diskchg three times:

(1) using -new_log and the -read option to read and display the initial contents of a
specified sector of the hard disk drive:

diskchg dch-12 mcmillan serban /dev/sda -new_log -read
80388 0 32

(2) using -new_log and the -write option with a LBA address to set a specified byte of
that sector to a specified value, e.g., 0xCE:

diskchg dch-12 mcmillan serban /dev/sda -new_log -write
80388 26 CE

(3) using the -read option to read the specified sector after setting:

diskchg dch-12 mcmillan serban /dev/sda -read 80388 0 32

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sector and compare the reported value with the
logged one.

C3.12.5 Expected results
diskchg creates a new log file with a name characteristic for the invoked diskchg function
each time the -new_log option is used; otherwise, diskchg appends the log to the existing
log file.
diskchg prompts the user for a comment if the -comment option is not used and logs the
comment.
diskchg logs the correct information required by feature 2.
diskchg correctly translates the LBA address to C/H/S.
The specified byte (in our example the byte at offset 26 within the sector 5/1/1) has the
value 0xCE. The rest of that sector is unchanged.

C3.13 dch-13

C3.13.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 6, and 9 on the target computer,
when we instruct diskchg to change the value of a certain byte of a sector specified by its
C/H/S address when using the -write option.

Page 58 of 116

C3.13.2 Test setup
Use the setup of the case dch-01.

C3.13.3 Test dependencies
None.

C3.13.4 Procedure
Run diskchg three times:

(1) using -new_log and the -read option to read and display the initial contents of a
specified sector of the hard disk drive:

diskchg dch-13 mcmillan serban /dev/sda -new_log -read
5/1/1 0 32

(2) using -new_log and the -write option with a C/H/S address to set a specified byte of
that sector to a specified value, e.g., 0xCE:

diskchg dch-13 mcmillan serban /dev/sda -new_log -write
5/1/1 26 CE

(3) using the -read option to read the specified sector after setting:

diskchg dch-13 mcmillan serban /dev/sda -read 5/1/1 0 32

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sector and compare the reported value with the
logged one.

C3.13.5 Expected results
diskchg creates a new log file with a name characteristic for the invoked diskchg function
each time the -new_log option is used; otherwise, diskchg appends the log to the existing
log file.
diskchg prompts the user for a comment if the -comment option is not used and logs the
comment.
diskchg logs the correct information required by feature 2.
The specified byte (in our example the byte at offset 26 within the sector 5/1/1) has the
value 0xCE. The rest of that sector is unchanged.

C3.14 dch-14

C3.14.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 6, and 9 on the target computer,
when we instruct diskchg to change the value of a certain byte of a sector specified by its
C/H/S address when using the -write option with an invalid byte offset.

Page 59 of 116

C3.14.2 Test setup
Use the setup of the case dch-01.

C3.14.3 Test dependencies
None.

C3.14.4 Procedure
Run diskchg using the -new_log and the -write option with a C/H/S or LBA address, and
a byte offset too large for the sector capacity:

diskchg dch-14 mcmillan serban /dev/sda -new_log -write
5/1/1 640 CF

Use the ls command and a text editor to examine the log file name and contents.

C3.14.5 Expected results
diskchg creates a new log file cg-sda-wlog.txt.
diskchg prompts the user for a comment and logs the comment.
diskchg logs the fact that the byte offset is too large and exits.

C3.15 dch-15

C3.15.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 6, and 9 on the target computer,
when we instruct diskchg to change the value of a certain byte of a sector whose address
is invalid, i.e., outside the disk range.

C3.15.2 Test setup
Use the setup of the case dch-01.

C3.15.3 Test dependencies
None.

C3.15.4 Procedure
Run diskchg using the -new_log and the -write option with a C/H/S or LBA address that
specifies a sector outside the hard disk range:

diskchg dch-15 mcmillan serban /dev/sda -new_log -write
71687370 26 DD

Use the ls command and a text editor to examine the log file name and contents.

C3.15.5 Expected results
diskchg creates a new log file cg-sda-wlog.txt.
diskchg prompts the user for a comment and logs the comment.
diskchg logs the fact that the sector address is outside the valid range, or reports a read
error and terminates.

Page 60 of 116

C3.16 dch-16

C3.16.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 9 on the target computer,
when we zero the first sector of the disk by using diskchg’s -zero option with the LBA
address of the sector.

C3.16.2 Test setup
Mount a IDE disk, for example the one labeled “7F” in a slot of the test computer, such
that the corresponding Linux device is /dev/hdb. Reboot to Linux.

C3.16.3 Test dependencies
None.

C3.16.4 Procedure
Run diskchg twice:

(1) using the -zero option to set to zero the first sector of the target hard disk drive:

diskchg dch-16 mcmillan serban /dev/hdb -zero 0

(2) using -new_log and the -read option to read and display the zeroed sector:

diskchg dch-16 mcmillan serban /dev/hdb -new_log -read 0 0
128

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sector and compare the reported value with the
logged one.

C3.16.5 Expected results
diskchg creates a log file with the name characteristic for the invoked diskchg function
and the device name each time the -new_log option is used or if a log file does not exist;
otherwise, the log is appended to the existing log file.
diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg correctly translates the LBA address to C/H/S.
diskchg correctly fills the specified sector with zeroes.

C3.17 dch-17

C3.17.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 9 on the target computer,
when we zero the last sector of the disk by using diskchg’s -zero option with the C/H/S
address of the sector and creating a log file with the name specified in the -log_name
option.

Page 61 of 116

C3.17.2 Test setup
Same as in dch-16.

C3.17.3 Test dependencies
None.

C3.17.4 Procedure
Run diskchg twice:

(1) using the -zero option to set to zero the last sector of the target hard disk drive, and
the -log_name option to set the log file name (in the command below we assumed that the
C/H/S address of the last sector is 4866/87/21; you may extract this information from the
value written by diskwipe in the last sector of the disk):

diskchg dch-17 mcmillan serban /dev/hdb -new_log -log_name
zerolog.txt -zero 4866/87/21

(2) using the -read option to read and display the zeroed sector. Also, use the -log_name
option with the same name so that the results are appended to the same log file:

diskchg dch-17 mcmillan serban /dev/hdb -log_name
zerolog.txt -read 4462/84/48 0 128

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sector and compare the reported value with the
logged one.

C3.17.5 Expected results
diskchg creates a log file “zerolog.txt”.
diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg correctly fills the specified sector with zeroes.
The second run of diskchg appends the log record to the zerolog.txt file.

C3.18 dch-18

C3.18.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 9 on the target computer,
when we zero an arbitrary sector of the disk by using diskchg’s -zero option with the
LBA address of the sector. We also test whether the -new_log and -log_name options
used together trigger the creation of a new log file of specified name when a log file with
the same name already exists.

C3.18.2 Test setup
Same as in dch-16.

Page 62 of 116

C3.18.3 Test dependencies
dch-17, in order for the log file “zerolog.txt” to exist.

C3.18.4 Procedure
Run diskchg twice:

(1) using the -zero option to set to zero a sector of the target hard disk drive, and the
-new_log and -log_name option to create a new log file with a specified name, even
though a log file with the same name was created in the previous case:

diskchg dch-18 mcmillan serban /dev/hdb -new_log -log_name
zerolog.txt -zero 80388

(2) using the -log_name with the same log file name as in the first run, and the -read
option to read and display the zeroed sector:

diskchg dch-18 mcmillan serban /dev/hdb -log_name
zerolog.txt -read 80388 0 128

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sector and compare the reported value with the
logged one.

C3.18.5 Expected results
diskchg creates a new log file “zerolog.txt”, even though it already existed.
diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg correctly fills the specified sector with zeroes.

C3.19 dch-19

C3.19.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 9 on the target computer,
when we try to zero a sector with an invalid LBA address.

C3.19.2 Test setup
Same as in dch-16.

C3.19.3 Test dependencies
None.

C3.19.4 Procedure
Run diskchg using the -zero option to set to zero a sector with an LBA address outside
the valid range of sectors for the target hard disk:

diskchg dch-19 mcmillan serban /dev/hdb -new_log -zero
78177792

Page 63 of 116

Use the ls command and a text editor to examine the log files names and contents.
Use diskedit to display the specified sector and compare the reported value with the
logged one.

C3.19.5 Expected results
diskchg creates a log file “zerolog.txt”.
diskchg prompts the user for a comment, which is logged.
diskchg logs the correct information required by feature 2.
diskchg reports that the sector address is invalid or a write error.

C3.20 dch-20

C3.20.1 Purpose
The purpose of this test case is to test diskchg’s features 1, 2, 3, 7, and 9 on a Serial ATA
hard disk drive of large capacity.

C3.20.2 Test setup
Mount a SATA disk (for example the one labeled “10B”) on the test computer (for
example “frank”). We assume the corresponding Linux device is /dev/sdb. Reboot to
Fedora Core 3, which runs on “frank”.

C3.20.3 Test dependencies
None.

C3.20.4 Procedure
Run diskchg three times with the -read option to read and display the first and last
sectors, and to try to read a sector beyond the disk range:

diskchg dch-20 frank serban /dev/sdb -read 0 0 32
diskchg dch-20 frank serban /dev/sdb -read 488397167 0 32
diskchg dch-20 frank serban /dev/sdb -read 488397168 0 32

Use the ls command and a text editor to examine the log file’s existence and contents.
Use diskedit to display the sectors, or trust diskwipe, if, as in our case, it was used to
initialize the disk prior to running diskchg.

C3.20.5 Expected results
diskchg prompts the user for comments.
A new log file cg-sdb-rlog.txt is created. The second and third commands append the
records to the same log file.
diskchg logs the correct information required by feature 2.
diskchg correctly converts the LBA address to C/H/S format.
diskchg correctly displays the specified number of bytes starting at the specified offset
within the specified sectors in the case of the first and second command. diskchg detects
and displays the attempt to read a sector outside the correct disk range.

Page 64 of 116

C3.21 dch-21

C3.21.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 6, and 9 on the target computer and
a Serial ATA hard disk drive of large capacity.

C3.21.2 Test setup
Use the setup of the case dch-20.

C3.21.3 Test dependencies
None.

C3.21.4 Procedure
Run diskchg with the -write option twice, in order to modify a byte of the first and last
sectors of the disk. Use the same log file:

diskchg dch-21 frank serban /dev/sdb -write 0 30 BB
diskchg dch-21 frank serban /dev/sdb -write 488397167 30 BB

Run diskchg twice with the -read option, in order to read the modified sectors. Use the
same log file:

diskchg dch-21 frank serban /dev/sdb -read 0 0 32 -new_log
diskchg dch-21 frank serban /dev/sdb -read 488397167 0 32

We can assess the correctness, because the disk was initialized using diskwipe prior to
this test.

C3.21.5 Expected results
diskchg creates a new log file with a name characteristic for the invoked diskchg function
and Linux device each time the -new_log option is used; otherwise, diskchg appends the
log to the existing log file.
diskchg prompts the user for comments if the -comment option is not used and logs the
comment.
diskchg logs the correct information required by feature 2.
diskchg correctly translates the LBA address to C/H/S.
The specified byte (in our example the byte at offset 30) is set to 0xBB in both sectors.
The rest of the sectors are unchanged.

C3.22 dch-22

C3.22.1 Purpose
The purpose of this test case is to test feature 2, namely whether diskchg displays its
usage mode when invoked with -h as one of its arguments.

C3.22.2 Test setup
None.

Page 65 of 116

C3.22.3 Test dependencies
None.

C3.22.4 Procedure
Run diskchg without arguments; using incorrect arguments; using the -h option alone on
the command line; and using the option -h together with other options on the command
line. Capture the standard output into a file:

diskchg > output.txt
diskchg dch-20 mcmillan serban /dev/sda -readlog 5/1/1 0 32
>> output.txt
diskchg -h >> output.txt
diskchg dch-20 mcmillan serban /dev/sda -h -read 5/1/1 0 32
>> output.txt

Examine the information displayed by diskchg on the standard output.

C3.22.5 Expected results
diskchg displays its usage information on the standard output.

Page 66 of 116

C4 seccmp Test Case Specifications

C4.1 scm-01

C4.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether seccmp creates a new
log file with the default name when no log file is present, correctly logs the hard disk
drives, a one-word comment entered on the command line, and the program execution.
Also, we want to test whether seccmp compares the sectors and logs the result according
to feature 4, when the sectors are not diskwipe-style- or zero-filled.

C4.1.2 Test setup
Select and insert a “source” and a “destination” disk (e.g., the disks labeled “CC”,
respectively “7F”) in the target computers’ drives. For the example disks, we assume that
the source disk “CC” will be the Linux device /dev/sda, and the destination disk “7F” will
be the Linux device /dev/hdb.
Boot up to Linux.

C4.1.3 Test case dependencies
None.

C4.1.4 Procedure
Delete all log files from the log disk (the Linux boot disk).

Use the -fill function of diskchg to fill first sector of each disk in diskwipe-style with
0xCC, 0x7F respectively. Then use the -write function of diskchg to modify the first
sector of each disk, so that the sector is not diskwipe-style-filled or zero-filled. For
example:

diskchg scm-01 mcmillan serban /dev/sda -fill 0 0 0 CC
diskchg scm-01 mcmillan serban /dev/sda -write 0 30 01
diskchg scm-01 mcmillan serban /dev/hdb -fill 0 0 0 7F
diskchg scm-01 mcmillan serban /dev/hdb -write 0 30 01

Run seccmp using a one-word comment and the -sector option specifying the first sector
of each disk:

seccmp scm-01 mcmillan serban /dev/sda CC /dev/hdb 7F -
sector 0 0 -comment CompareNonFilledSectors

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Use diskedit to display the source and destination sectors and compare results.

C4.1.5 Expected results
seccmp creates a log file with the name “seclog.txt” on the log disk.

Page 67 of 116

seccmp logs the comment and the correct information required by features 1, 2, 3.
seccmp correctly compares the sectors and logs all differences as required by feature 4.

C4.2 scm-02

C4.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 5 on the target computer and
selected hard disk drives. Specifically, we want to test whether seccmp appends the log
records to an existing log file, and correctly logs the hard disk drives, a multi-word
comment entered on the command line, and the program execution. Also, we want to test
whether seccmp compares diskwipe-style filled sectors and records the result according
to requirements.

C4.2.2 Test setup
Use the setup of test case scm-01. Do not delete the log file created by test case scm-01.

C4.2.3 Test case dependencies
scm-01.

C4.2.4 Procedure
Run this test case right after scm-01. Do no delete the log file. Fill the last sector of each
disk in diskwipe-style with 0xCC, 0x7F respectively. You may use the -fill function of
diskchg for that, like this:

diskchg scm-02 mcmillan serban /dev/sda -new_log -fill
71687369 71687369 0 CC
diskchg scm-02 mcmillan serban /dev/hdb -new_log -fill
78177791 78177791 0 CC

Run seccmp using the -comment option with a multi-word comment, and the -sector
option specifying the last sector of each disk:

seccmp scm-02 mcmillan serban /dev/sda CC /dev/hdb 7F -
sector 71687369 78177791 -comment “compare last sectors
diskwipe-filled”

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Use diskedit to display the source and destination sectors and compare results.

C4.2.5 Expected results
seccmp appends the log records to the log file “seclog.txt” created by the preceding test
case.
seccmp logs the comment and the correct information required by features 1, 2, 3.
seccmp determines that the sectors are diskwipe-style filled and different, and logs the
number of different bytes, as required by feature 5.

Page 68 of 116

C4.3 scm-03

C4.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3 on the target computer and the
selected hard disk drives. Specifically, we want to test whether seccmp creates a new log
file when instructed to do so by the -new_log option, correctly logs the hard disk drives,
prompts the user for a comment, and correctly logs the comment and the program
execution. We also test whether seccmp correctly detects sectors out of disk range.

C4.3.2 Test setup
Use the setup of test case scm-02. Do not delete the log file created by test case scm-02.

C4.3.3 Test case dependencies
scm-02.

C4.3.4 Procedure
Run this test case right after scm-02. Do no delete the log file created in that test case.

Run seccmp without the -comment option, with -new_log, and the -sector option
specifying sectors out of range for both the source and destination disks:

seccmp scm-03 mcmillan serban /dev/sda CC /dev/hdb 7F -
sector 71687370 78177792 -new_log

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C4.3.5 Expected results
seccmp creates a new log file of name “seclog.txt” even though a file with the same name
already exists.
seccmp prompts the user for a comment, which is logged.
seccmp logs the correct information required by features 1, 2, 3.
seccmp determines that the sector numbers are beyond the disk range and issues/logs an
error message.

C4.4 scm-04

C4.4.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
the selected hard disk drives. Specifically, we want to test whether seccmp prompts the
user for sector numbers and comment, compares and logs the correct result when both
source and destination sectors are diskwipe-style filled. We will use the same fill value
on the command line for both source and destination, over various combinations of actual
source and destination fill values. When the actual source and destination fill values are
identical, we will consider source and destination sectors with the same or different
header (i.e., LBA address).

Page 69 of 116

C4.4.2 Test setup
Use the hard disk drives labeled “CC” and “7F” as source and destination drive
respectively. Assume that the two disks have the same number of heads per track. Using
diskchg, fill the following sectors of the source disk in diskwipe-style with the specified
value:

Source sector (LBA) Actual source fill value
1000 CC
1001 CD

Using diskchg, fill the following sectors of the destination disk with the specified value:

Destination sector (LBA) Actual destination fill value
1000 CC
1001 CD
1002 CE
2000 CC
2001 CD

C4.4.3 Test case dependencies
None.

C4.4.4 Procedure
Run seccmp using the -new_log option, but not the -comment or -sector options. Use the
CC fill value on the command line for both source and destination:

seccmp scm-04 mcmillan serban /dev/sda CC /dev/hdb CC -
new_log

When prompted for sector LBA addresses, enter the following source and destination
sector addresses:

Source sector Destination sector Notes
1000 1000 Same actual source and destination fill values,

equal to the specified fill value (on the command
line), same sector headers.

1000 1001 Actual src = specified fill value, actual src !=
actual dst.

1001 1000 Actual src != specified fill value, actual src !=
actual dst.

1001 1002 Actual src != actual dst, actual src != specified fill
value, actual dst !=specified fill value.

1001 1001 Actual src = actual dst, actual src != specified fill
value, same sector headers.

1000 2000 Actual src = actual dst, actual src = specified fill

Page 70 of 116

value, different sector headers
1001 2001 Actual src = actual dst, actual src != specified fill

value, different sector headers.

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C4.4.5 Expected results
seccmp creates a new log file of name “seclog.txt”.
seccmp prompts the user for a comment, and logs the comment.
seccmp prompts the user for sector addresses.
seccmp logs the correct information required by features 1, 2, 3.
seccmp compares the specified sectors and logs the correct result, as required by features
4 and 5.

C4.5 scm-05

C4.5.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
the selected hard disk drives. Specifically, we want to test whether seccmp prompts the
user for sector numbers and comment, compares and logs the correct result when both
source and destination sectors are diskwipe-style filled. We will use different source and
destination fill values on the command line, over various combinations of actual source
and destination fill values. Whenever the actual source and destination fill values are
identical, we will consider source and destination sectors with the same or different
header (i.e., LBA and C/H/S addresses).

C4.5.2 Test setup
Use the hard disk drives labeled “CC” and “7F” as source and destination drive
respectively. Assume that the two disks have the same number of heads per track. Using
diskchg, fill the following sectors of the source disk in diskwipe-style with the specified
value:

Source sector (LBA) Actual source fill value
1000 CC
1001 CD
1002 7F

Using diskchg, fill the following sectors of the destination disk with the specified value:

Destination sector (LBA) Actual destination fill value
1000 CC
1001 CD
1002 7F
1003 7E
2000 CC

Page 71 of 116

2001 CD
2002 7F

C4.5.3 Test case dependencies
None

C4.5.4 Procedure
Run seccmp using the -new_log option, but not the -comment or -sector options. Use CC
as the source fill value and 7F as the destination fill value on the command line:

seccmp scm-05 mcmillan serban /dev/sda CC /dev/hdb 7F -
new_log

When prompted for sector LBA addresses, enter the following source and destination
sector addresses:

Source sector Destination sector Notes
1000 1000 Actual src = spec. src, actual dst != spec dst, actual

src = actual dst, same sector headers.
1000 1002 Actual src = spec src, actual dst = spec dst.
1000 1003 Actual src = spec src, actual src != actual dst.
1001 1001 Actual src != spec src, actual dst != spec dst, actual

src = actual dst, same sector headers.
1001 1002 Actual src != spec src, actual dst = spec dst, actual

src != actual dst.
1001 1003 Actual src != spec src, actual dst != spec dst, actual

src != actual dst.
1002 1002 Actual src != spec src, actual dst = spec dst, actual

src = actual dst, same sector headers.
1000 2000 Actual src = spec src, actual dst != spec dst, actual

src = actual dst, different sector headers
1001 2001 Actual src != spec src, actual dst != spec dst, actual

src = actual dst, different sector headers.
1002 2002 Actual src != spec src, actual dst = spec dst, actual

src = actual dst, different sector headers.

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C4.5.5 Expected results
seccmp creates a new log file of name “seclog.txt”.
seccmp prompts the user for a comment, and logs the comment.
seccmp prompts the user for sector addresses.
seccmp logs the correct information required by features 1, 2, 3.

Page 72 of 116

seccmp compares the specified sectors and logs the correct result, as required by features
4 and 5.

C4.6 scm-06

C4.6.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, 5, and 6 on the target computer
and the selected hard disk drives. Specifically, we want to test whether seccmp creates a
log file with a name specified in the -log_name option, prompts the user for sector
numbers and comment, and correctly compares sectors that have diskwipe-style filled,
zero-filled, or arbitrary contents. Note that both source and destination sectors with
diskwipe-style fill were covered in the previous two cases.

C4.6.2 Test setup
Use the hard disk drives labeled “CC” and “7F” as source and destination drive
respectively. Using diskchg’s functions -fill, -zero, and -write, prepare some sectors of
the source disk as specified in the following table:

Source sector (LBA) Value
1000 diskwipe-style filled with CC
1001 Zero
1002 Neither zero nor diskwipe-style

Using diskchg’s functions -fill, -zero, and -write, prepare some sectors of the source disk
as specified in the following table:

Destination sector (LBA) Actual destination fill value
2000 diskwipe-style filled with 7F
2001 Zero
2002 Neither zero nor diskwipe-style

C4.6.3 Test case dependencies
None

C4.6.4 Procedure
Run seccmp using the -log_name option, but not the -comment or -sector options. Use CC
as the source fill value and 7F as the destination fill value on the command line:

seccmp scm-06 mcmillan serban /dev/sda CC /dev/hdb 7F -
log_name log.txt

When prompted for sector LBA addresses, enter the following source and destination
sector addresses:

Page 73 of 116

Source sector Destination sector Notes
1000 2001 src diskwipe-style, dst zero.
1000 2002 src diskwipe-style, dst not diskwipe-style, not zero.
1001 2000 src zero, dst diskwipe-style.
1001 2001 Src zero, dst zero.
1001 2002 Src zero, dst not diskwipe-style, not zero.
1002 2000 Src not diskwipe style, not zero, dst diskwipe-

style.
1002 2001 Src not diskwipe style, not zero, dst zero.
1002 2002 Src not diskwipe style, not zero, dst not diskwipe-

style, not zero.

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C4.6.5 Expected results
seccmp creates a new log file of name “log.txt”.
seccmp prompts the user for a comment, and logs the comment.
seccmp prompts the user for sector addresses.
seccmp logs the correct information required by features 1, 2, 3.
seccmp compares the specified sectors and logs the correct result, as required by features
4 and 5.

C4.7 scm-07

C4.7.1 Purpose
The purpose of this test case is to test feature 3 of the seccmp tool. Specifically, we want
to test whether seccmp displays its usage mode when the seccmp command is invoked
with the -h option.

C4.7.2 Test setup
None.

C4.7.3 Test case dependencies
None.

C4.7.4 Procedure
Run seccmp in the following cases: without any argument, with incorrect arguments, with
the -h option single on the command line, and with the -h option together with correct
arguments on the command line, and redirect the standard output to a file:

seccmp > output.txt
seccmp scm-07 mcmillan serban /dev/sda CC -logname >>
output.txt

Page 74 of 116

seccmp -h >> output.txt
seccmp scm-07 mcmillan serban /dev/sda CC /dev/hdb 7F -h >>
output.txt

C4.7.5 Expected results
seccmp should issue its usage mode in each of the four cases.

Page 75 of 116

C5 partcmp Test Case Specifications

C5.1 pcm-01

C5.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether partcmp creates a new
log file with the default name when no log file is present, correctly logs the partitions,
prompts the user for the partition indexes, logs a one-word comment entered on the
command line, the program execution, and the comparison result when both partitions are
of type primary FAT32, the source partition is smaller than the destination partition and
the two partitions have the same contents on the length of the smaller one.

C5.1.2 Test setup
We present here the setup for this test case and other cases as well.
Select two hard disk drives, for example, the IDE hard disk labeled “7F” and the SCSI
hard disk labeled “CC”. Mount the disks in the test computer (e.g., McMillan) as DOS
drives 81 and 82 respectively. When we run Linux, the corresponding devices will be
/dev/hdb and /dev/sda respectively. Insert the CD containing the FS-TST v1.0 tools in the
CD drive. Boot up the computer from the FS-TST v1.0 boot diskette.

Use FS-TST v1.0 diskwipe tool to initialize the disk “7F” with 0x7F and the disk “CC”
with 0xCC. Use diskchg to zero the first sector of each disk. Use PartitionMagic to create
the following partitions:

On the disk labeled “7F” (mounted as DOS drive 81):

- a primary partition FAT32 of about 9GB;
- a primary partition Linux Ext2 of about 11GB;
- a logical partition FAT32 of about 203MB;
- a logical partition FAT16 of about 203MB.

On the disk labeled “CC” (mounted as DOS drive 82):
- a primary partition FAT32 of about 10GB;
- a primary partition Linux Ext2 of about 10GB;
- a logical partition FAT32 of the same size as the logical FAT32 on disk “7F”;
- a logical partition FAT16 of about 305MB.

Use FS-TST v1.0 seccopy to copy:

- the primary FAT32 on “7F” to the primary FAT32 on “CC”;
- the primary Linux Ext2 on “CC” to the primary Linux Ext2 on “7F”;
- the logical FAT32 on “7F” to the logical FAT32 on “CC”;
- the logical FAT16 on “7F” to the logical FAT16 on “CC”.

(Alternatively, you could reboot to Linux and use the dd tool to copy the partitions.)

Note: You can extract the LBA start address and the length of each partition by using the
PartitionMagic’s “Info” menu or the partab tool.

Page 76 of 116

Reboot to Linux. The disk drives “7F” and “CC” should be recognized as Linux devices
/dev/hdb and /dev/sda respectively.

C5.1.3 Test case dependencies
None.

C5.1.4 Procedure
Consider disk “7F” (/dev/hdb) as source and disk “CC” (/dev/sda) as destination. Run
partcmp to compare the source primary FAT32 partition to the destination primary
FAT32 partition (this is the case source smaller than destination, but with the same
contents on the smaller length). Use the -comment option with one-word comment, and
interactive selection of partitions. Use the same fill values as when we initialized the
disks at setup time.

partcmp pcm-01 mcmillan serban /dev/hdb 7F /dev/sda CC -
comment CompareLargeFAT32

When partcmp prompts the user for partition indexes, enter the indexes for the two
primary FAT32 partitions (extract the indexes from the partition tables displayed by
partcmp.)

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors reported by partcmp.

Note. partcmp should report the type of in-excess sectors of the destination partition
(whether they’re diskwipe-style filled, or zero-filled, etc.) You could run diskwipe on
each disk as part of the test setup to have each sector diskwipe-style filled, then zero a
few of them, or fill a few of them with another value by using the diskchg tool.

C5.1.5 Expected results
partcmp creates a log file with the default name “cmpptlog.txt” on the log disk (which is
the Linux OS disk).
partcmp logs the comment and the correct information required by features 1, 2, 3.
partcmp correctly displays the entries in each partition table.
partcmp logs the partitions to be compared, and the number and range of different and
equal sectors of the partitions. For the destination partition, which is larger than the
source partition, partcmp correctly categorizes the in-excess sectors.

C5.2 pcm-02

C5.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether partcmp creates a new
log file when using the -new_log option although a log file with the same default name
exists, logs a multi-word comment entered on the command line, correctly logs the
partitions, prompts the user for the partition indexes, logs the program execution and the
comparison result, when both partitions are of type primary FAT32, the source partition

Page 77 of 116

is bigger than the destination partition, and they have almost the same contents on the
length of the smaller one. We also want to compare the partitions’ boot tracks, by using
the -boot option.

C5.2.2 Test setup
Use the setup of pcm-01.

C5.2.3 Test case dependencies
pcm-01. Do not delete the log file created in the previous test case.

C5.2.4 Procedure
Consider disk “CC” (/dev/sda) as the source disk, and “7F” (/dev/hdb) as the destination
disk.
Run diskchg to zero, or to fill in diskwipe-style, or to change (write), a few sectors in the
primary FAT32 partition of the source disk (/dev/sda).

diskchg pcm-02 mcmillan serban /dev/sda -fill 1000 1000 0
AA
diskchg pcm-02 mcmillan serban /dev/sda -zero 2000
diskchg pcm-02 mcmillan serban /dev/sda -write 3000 30 AA

Run partcmp on the same partitions as in the case pcm-01, but reversing the roles of the
source and destination partitions. Use -boot to also compare the boot sectors, -comment
with a multi-word comment, and -select (we assume that the two primary FAT32
partitions have both index 1):

partcmp pcm-02 mcmillan serban /dev/sda CC /dev/hdb 7F -
select 1 1 -boot -comment "Compare FAT32 slightly
different, src > dst" -new_log

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors reported by partcmp.

C5.2.5 Expected results
partcmp creates a new log file with the name “cmpptlog.txt” on the log disk, even though
a file with the same name already exists.
partcmp logs the multi-word comment and the correct information required by features 1,
2, and 3.
partcmp logs the partitions to be compared, and the number and range of different and
equal sectors of the partitions, including the boot sectors.

C5.3 pcm-03

C5.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether partcmp appends the
log record to the existing log file, correctly logs the partitions, prompts the user for the

Page 78 of 116

partition indexes, prompts the user to enter a comment, logs the program execution and
the comparison result, when both partitions are of type primary Linux Ext2, the source is
larger than the destination, and they have the same contents on the smaller length.

C5.3.2 Test setup
Use the setup of test case pcm-01.

C5.3.3 Test case dependencies
pcm-02. Do not delete the log file created in that test case.

C5.3.4 Procedure
Run partcmp to compare the primary Linux Ext2 partitions, the source being on disk
“7F”:

partcmp pcm-03 mcmillan serban /dev/hdb 7F /dev/sda CC -
boot

When prompted, enter the indexes for the Linux Ext partitions. Use the ls command and a
text editor to examine the log file’s existence, name, and contents. Verify the count and
range of equal and different sectors reported by partcmp.

C5.3.5 Expected results
partcmp appends the log records to the log file with the name “cmpptlog.txt” created in
the previous case.
partcmp prompts the user for a comment, logs the comment and the correct information
required by features 1, 2, 3.
partcmp logs the partitions to be compared, and the number and range of different and
equal sectors of the partitions and their boot sectors.

C5.4 pcm-04

C5.4.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether partcmp creates a log
file with an alternate name specified in the -log_name option, and correctly compares two
logical FAT32 partitions with the same size and contents.

C5.4.2 Test setup
Use the setup of case pcm-01.

C5.4.3 Test case dependencies
None.

C5.4.4 Procedure
Run partcmp to compare the logical FAT32 partitions, the source being on the disk “7F”
(/dev/hdb):

Page 79 of 116

partcmp pcm-04 mcmillan serban /dev/hdb 7F /dev/sda CC -
boot -log_name pcmlog.txt

When prompted, enter the indexes for the logical FAT32 partitions (in our example, 4
and 4).
Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors reported by partcmp.

C5.4.5 Expected results
partcmp creates a new log file with the name “pcmlog.txt”.
partcmp prompts the user for a comment, logs the comment and the correct information
required by features 1, 2, 3.
partcmp logs the partitions to be compared, and the number and range of different and
equal sectors of the partitions. Actually, all sectors except the boot track sectors should
compare equal.

C5.5 pcm-05

C5.5.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether partcmp appends the
log records to a log file with an alternate name specified in the -log_name option, and
whether it correctly compares two logical FAT32 partitions with the same size and a few
different sectors.

C5.5.2 Test setup
Use the setup of pcm-01.

C5.5.3 Test case dependencies
pcm-04, in order to test appending records to the log file with alternate name created in
the previous case.

C5.5.4 Procedure
We will again compare the logical FAT32 partitions, keeping disk “7F” (/dev/hdb) as
source disk.
Run diskchg to fill a few sectors of the source logical FAT32 partition with some value
(not 0x7F) in diskwipe-style:

diskchg pcm-05 mcmillan serban /dev/hdb -fill 40966813
40966813 0 AA
diskchg pcm-05 mcmillan serban /dev/hdb -fill 40966813
40967813 0 AA
diskchg pcm-05 mcmillan serban /dev/hdb -fill 40966813
40968813 0 AA
diskchg pcm-05 mcmillan serban /dev/hdb -fill 40966813
40969813 0 AA

Page 80 of 116

Run partcmp to compare the logical FAT32 partitions, the source being on the disk “7F”
(/dev/hdb):

partcmp pcm-05 mcmillan serban /dev/hdb 7F /dev/sda CC -
log_name pcmlog.txt -boot

When prompted, enter the indexes for the logical FAT32 partitions (in our example, 4
and 4).
Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors reported by partcmp.

C5.5.5 Expected results
partcmp appends the log records to the log file with the alternate name “pcmlog.txt”
created in the previous test case.
partcmp prompts the user for a comment, logs the comment and the correct information
required by features 1, 2, 3.
partcmp logs the partitions to be compared, and the number and range of different and
equal sectors of the partitions. Actually, all sectors should compare equal, except the four
diskwipe-style filled and the boot track sectors.

C5.6 pcm-06

C5.6.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether partcmp creates a new
log file with an alternate name specified in the -log_name option although such file
already exists, and whether it correctly compares two logical FAT16 partitions with the
source size less than the destination, and the same contents on the smaller length.

C5.6.2 Test setup
Use the setup of pcm-01.

C5.6.3 Test case dependencies
pcm-05; do not delete the log file created in that test case.

C5.6.4 Procedure
Run partcmp to compare the logical FAT16 partitions, using the “7F” (/dev/hdb) disk as
source:

partcmp pcm-06 mcmillan serban /dev/hdb 7F /dev/sda CC -
boot -log_name pcmlog.txt -new_log

When prompted, enter the indexes for the logical FAT16 partitions (which in our
example are 6 and 6).
Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

Page 81 of 116

C5.6.5 Expected results
partcmp creates a new log file with the alternate name “pcmlog.txt”, even though a file
with the same name already exists.
partcmp prompts the user for a comment, logs the comment and the correct information
required by features 1, 2, 3.
partcmp logs the partitions to be compared, and the number and range of different and
equal sectors of the partitions. Actually, all sectors of the source partition should compare
equal to the destination’s sectors. partcmp should categorize the destination’s in-excess
sectors.

C5.7 pcm-07

C5.7.1 Purpose
The purpose of this test case is to test whether partcmp correctly detects invalid partition
indexes, for example indexes that point to empty partition table entries.

C5.7.2 Test setup
Use the setup of pcm-01.

C5.7.3 Test case dependencies
None.

C5.7.4 Procedure
Run partcmp and use the indexes 8 and 8, which point to empty partition table entries:

partcmp pcm-07 mcmillan serban /dev/hdb 7F /dev/sda CC -
boot -new_log -select 8 8

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C5.7.5 Expected results
partcmp detects the indexes point to empty entries, logs an error message, and terminates
execution.

C5.8 pcm-08

C5.8.1 Purpose
The purpose of this test case is to test whether partcmp correctly detects invalid partition
indexes, for example indexes that do not point to any partition.

C5.8.2 Test setup
Use the setup of pcm-01.

C5.8.3 Test case dependencies
None.

Page 82 of 116

C5.8.4 Procedure
Run partcmp and use the indexes 9 and 9, which do not point to any partition:

partcmp pcm-08 mcmillan serban /dev/hdb 7F /dev/sda CC -
boot -new_log -select 9 9

Use the ls command and a text editor to examine the log file’s existence, name, and
contents.

C5.8.5 Expected results
partcmp detects the indexes are invalid and terminates execution.

C5.9 pcm-09

C5.9.1 Purpose
The purpose of this test case is to test whether partcmp displays its usage when prompted
so by the -h option, or when invoked without arguments or with incorrect arguments.

C5.9.2 Test setup
None.

C5.9.3 Test case dependencies
None.

C5.9.4 Procedure
Run partcmp as shown below and capture its standard output into a file:

partcmp > output.txt
partcmp -h >> output.txt
partcmp pcm-09 mcmillan serban -h >> output.txt
partcmp pcm-09 mcmillan serban /dev/hdb 7F /dev/sda CC -h>>
output.txt

Use the ls command and a text editor to examine the content of the output.txt file.

C5.9.5 Expected results
In each run case, partcmp displays its usage mode.

Page 83 of 116

C6 diskcmp Test Case Specifications

C6.1 dcm-01

C6.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected IDE/SCSI hard disk drives. Specifically, we want to test whether diskcmp
creates a new log file with the default name when no log file is present, correctly logs the
drives, a one-word comment entered on the command line, the program execution, and
the comparison result when the source disk size is bigger than the destination disk size
and the disks have the same contents on the smaller size. Before running diskcmp, we
will copy the first n sectors of the source disk to the destination disk starting from address
0, where n is the total number of sectors of the destination disk (the smaller one).

C6.1.2 Test setup
Use “McMillan” as test computer, for example.
Select and insert an IDE hard disk (for example “7C”) as source and a SCSI hard disk
(for example “CC”) as destination, such that the source disk has a bigger size than the
destination disk. Assume that the disks will be recognized as Linux devices /dev/hdb and
/dev/sda respectively.
Reboot to Linux from the disk containing the Linux OS and the FS-TST v2.0 tools. Same
disk will be used as log disk. Use the dd command to copy the source disk contents onto
the destination disk on the smaller length:

dd bs=512 count=71687370 if=/dev/hdb of=/dev/sda

We assumed that the destination disk “CC” has a smaller size, 71687370 sectors, than the
source disk “7F”.

C6.1.3 Test case dependencies
None.

C6.1.4 Procedure
Delete all log files from the log disk. Run diskcmp to compare the two disks, using the
-comment option with a one-word comment:

diskcmp dcm-01 mcmillan serban /dev/hdb 7F /dev/sda CC -
comment DiskComparison

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors reported by diskcmp.

C6.1.5 Expected results
diskcmp creates a (new) log file with the name “cmplog.txt” on the log disk, logs the
comment and the other information required by features 1, 2, 3.

Page 84 of 116

diskcmp logs the hard drives to be compared, and the number and range of different and
equal disk sectors. Actually, diskcmp should report 71687370 equal sectors, no different
sectors, and in-excess sectors on the source disk.

C6.2 dcm-02

C6.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drives. Specifically, we want to test whether diskcmp appends the
log records to an existing log file with the default name, correctly logs the drives, a multi-
word comment entered on the command line, the program execution, and the comparison
result when the source disk is smaller than the destination disk and the disks have almost
the same contents on the smaller length.

C6.2.2 Test setup
Use the setup of test case dcm-01, with the difference that the SCSI disk “CC” will be the
source drive, and the IDE disk “7F” will be the source drive.

C6.2.3 Test case dependencies
dcm-01. Do not delete the log file created in the previous case.

C6.2.4 Procedure
Use the diskchg tool to modify a few sectors on the source disk “CC” (known as device
/dev/sda), among them the first and the last sectors of the disk. For example, fill those
sectors with 0xAA in diskwipe-style:

diskchg dcm-02 mcmillan serban /dev/sda -fill 0 0 0 AA
diskchg dcm-02 mcmillan serban /dev/sda -fill 1000000
1000000 0 AA
diskchg dcm-02 mcmillan serban /dev/sda -fill 2000000
2000000 0 AA
diskchg dcm-02 mcmillan serban /dev/sda -fill 71687369
71687369 0 AA

Run diskcmp to compare the two disks, using the -comment option with a multi-word
comment:

diskcmp dcm-02 mcmillan serban /dev/sda CC /dev/hdb 7F -
comment "Compare disks, src<dst, almost equal contents,
append log"

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors reported by diskcmp.

C6.2.5 Expected results
diskcmp appends the log records to the existing log file “cmplog.txt”, logs the multi-word
comment provided on the command line, logs the correct information required by

Page 85 of 116

features 1, 2, 3. diskcmp logs the hard drives to be compared, and the number and range
of different and equal sectors of the disks. Actually, in our setup and example, it should
report only 4 sectors different, and the rest of 71687366 equal, and it should categorize
the in-excess sectors of the destination drive: source byte filled, destination byte filled,
other byte filled, zero filled, and other.

C6.3 dcm-03

C6.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
two hard disk drives with the same size, filled with the same value in diskwipe-style, and
only a handful of different sectors at known addresses. Among other things, we will test
whether diskcmp will create a new log file when instructed by the option -new_log,
although a file with the same name already exists, and whether it allows the user to enter
a comment interactively.

C6.3.2 Test setup
Use “McMillan” as test computer, for example.
Select two (IDE) hard disks with the same capacity (e.g., the hard disk drives labeled
“82” and “80”) and mount them so that they will be recognized as devices /dev/hdb and
/dev/hdd. Reboot to Linux from the hard disk containing the Linux OS and the FS-TST
v2.0 tools. The same disk will also be used as log disk.

C6.3.3 Test case dependencies
dcm-02. Do not delete the log file created in the previous case.

C6.3.4 Procedure
Assuming both the source and destination drives use the same geometry (the number of
tracks/cylinder), use diskwipe to initialize both the source and destination disks with the
same value 0x82:

diskwipe dcm-03 mcmillan serban /dev/hdb 82 -src
diskwipe dcm-03 mcmillan serban /dev/hdd 82 -dst

If the geometry is different, use the -heads option with the same value for both disks.

Run diskchg a few times to fill, write, or zero a few sectors, among them the first and the
last:

diskchg dcm-03 mcmillan serban /dev/hdd -fill 0 0 0 AA
diskchg dcm-03 mcmillan serban /dev/hdd -write 156301487
511 AA
diskchg dcm-03 mcmillan serban /dev/hdd -zero 100000000

Run diskcmp to compare the two disks, using the -new_log option:

Page 86 of 116

diskcmp dcm-03 mcmillan serban /dev/hdb 82 /dev/hdd 82 -
new_log

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors.

C6.3.5 Expected results
diskcmp prompts the user for a comment, creates a new log file “cmplog.txt”, and logs
the comment. It logs the correct information required by features 1, 2, 3.
diskcmp logs the hard drives to be compared, and the number of equal and different
sectors. Actually, in our example of setup, only 3 sectors should be found different.

C6.4 dcm-04

C6.4.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
selected hard disk drives with the same size, when the disks are filled in diskwipe-style
with different values, and only a handful of sectors are equal. Among other things we will
test whether diskcmp creates a log file with an alternate name when we use the -log_name
option.

C6.4.2 Test setup
Mount two IDE disks with the same size (“82” and “80” respectively) in slots of the
“McMillan” computer, so that they will be recognized as devices /dev/hdb, /dev/hdd
respectively. Reboot to Linux.

C6.4.3 Test case dependencies
None.

C6.4.4 Procedure
Wipe out the disks with different values, using the same geometry with 255
heads/cylinder:

diskwipe dcm-04 mcmillan serban /dev/hdb 82 -heads 255 -
noask -new_log -src
diskwipe dcm-04 mcmillan serban /dev/hdd 80 -heads 255 -
noask -new_log -dst

Fill some sectors of the destination disk with the same value as the source disk, using the
-fill function of the diskchg tool and the same geometry as before:

diskchg dcm-04 mcmillan serban /dev/hdd -fill 1000000
1000000 255 82
diskchg dcm-04 mcmillan serban /dev/hdd -fill 2000000
2000000 255 82

Page 87 of 116

diskchg dcm-04 mcmillan serban /dev/hdd -fill 3000000
3000000 255 82

Run diskcmp with the -log_name option to compare the disks:

diskcmp dcm-04 mcmillan serban /dev/hdb 82 /dev/hdd 80 -
log_name diskcmplog.txt

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Verify the count of equal and different sectors. Verify whether diskcmp displays
any information about sectors filled in diskwipe-style.

C6.4.5 Expected results
diskcmp prompts the user for a comment, creates a new log file “diskcmplog.txt”, and
logs the comment. It logs the correct information required by features 1, 2, 3.
diskcmp logs the hard drives to be compared, and the number of equal and different
sectors. Actually, only 3 sectors should match.

C6.5 dcm-05

C6.5.1 Purpose
The purpose of this test case is to test feature 3 on the target computer, namely whether
diskcmp displays its usage mode when prompted by the -h option on the command line.

C6.5.2 Test setup
None.

C6.5.3 Test case dependencies
None.

C6.5.4 Procedure
Run diskcmp without arguments, with the -h option alone on the command line, with
incorrect arguments, and with correct arguments and the -h option on the command line,
and capture the standard output into a file:

diskcmp > output.txt
diskcmp -h >> output.txt
diskcmp dcm-05 mcmillan serban /dev/sda -logname >>
output.txt
diskcmp dcm-05 mcmillan serban /dev/sda CC /dev/hdb 7F -
new_log -h >> output.txt

Use the ls command and a text editor to examine the log file contents.

C6.5.5 Expected results
diskcmp displays its usage mode in each case.

Page 88 of 116

C7 corrupt Test Case Specifications

C7.1 cor-01

C7.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
selected hard disk drive. Specifically, we want to test whether corrupt creates a new log
file with the default name when no log file is present, correctly logs a one-word comment
entered on the command line, alters the first byte of the image file, logs the program
execution and the original and new byte values.

C7.1.2 Test setup
On the test computer, mount an IDE hard disk drive, large enough to accommodate an
image file in one of its IDE slots. This disk will be used as a media disk. In the test cases
that are described below, we assume that the computer is “McMillan”, the media disk is
the one labeled “80”, and it is mounted so that the corresponding Linux device is
/dev/hdd and the DOS drive is 82.
Boot to DOS and use PartitionMagic to create a Linux Ext2 partition on the media disk.
Reboot to Linux. According to our assumptions, the Ext2 partition will be seen as
/dev/hdd1. Mount this partition as /media, for example.
Create an image file “imgfile” on /media of a disk, for example of /dev/sda, by using the
dd command or a custom program, for example:

dd bs=512 if=/dev/sda of=/media/imgfile

Make a reference copy of the image file called “copy-of-imgfile” in the /media directory
by using the cp command.

Note. It is possible that the image file is truncated because Linux kernel limits on a file
size. In our examples we used an image file of about 17GB.

C7.1.3 Test case dependencies
None.

C7.1.4 Procedure
Run corrupt to alter the first byte of the image file:

corrupt cor-01 mcmillan serban /media/imgfile 0 41 -comment
AlterFirstByte

Run the cmp command to compare the altered image file to the reference copy:

cmp -l /media/imgfile /media/copy-of-imgfile > diff.txt

Note: the cmp command outputs the bytes that differ in octal; the byte offset starts from
1.

Page 89 of 116

C7.1.5 Expected results
corrupt creates a new log file with the name “corlog.txt” on the log disk.
corrupt logs the comment and the correct information required by features 1, 3, 4.
The altered image file and the reference copy differ only by the first byte.

C7.2 cor-02

C7.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
selected hard disk drive. Specifically, we want to test whether corrupt appends the log
records to the existing log file, correctly logs a multi-word comment entered on the
command line, alters the last byte of the image file, logs the program execution and the
original and new byte values.

C7.2.2 Test setup
Use the setup of cor-01.

C7.2.3 Test case dependencies
cor-01. Do not delete the previous log file in order to test whether corrupt appends the
log records to the existing log file.

C7.2.4 Procedure
Run corrupt to alter the last byte of the image file:

corrupt cor-02 mcmillan serban /media/imgfile 17247252479
41 -comment "Alter last byte, append log"

Run the cmp command to compare the altered image file to the reference copy:

cmp -l /media/imgfile /media/copy-of-imgfile > diff.txt

C7.2.5 Expected results
corrupt appends the log records to the previous log file corlog.txt.
corrupt logs the comment and the correct information required by features 1, 3, 4.
The altered image file and the reference copy differ only by the first (because of the test
case cor-01) and last byte.

C7.3 cor-03

C7.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drive. Specifically, we want to test whether corrupt creates a new
log file when instructed by the -new_log option, prompts the user to enter a comment,
alters a byte somewhere in the middle of an image file, logs the program execution and
the original and new byte values.

Page 90 of 116

C7.3.2 Test setup
Use the setup of cor-01.

C7.3.3 Test case dependencies
cor-02. Do not delete the previous log file in order to test whether corrupt creates a new
log file.

C7.3.4 Procedure
Run corrupt to alter a byte of the image file:

corrupt cor-03 mcmillan serban /media/imgfile 10000000000
41 -new_log

Run the cmp command to compare the altered image file to the reference copy:

cmp -l /media/imgfile /media/copy-of-imgfile > diff.txt

C7.3.5 Expected results
corrupt create a new log file corlog.txt, even though one with the same name existed.
corrupt prompts the user to enter a comment.
corrupt logs the comment, the original and new values of the byte at offset 10000000000.
The altered image file and the reference copy differ only by the bytes modified in the
cases cor-01, cor-02, cor-03.

C7.4 cor-04

C7.4.1 Purpose
The purpose of this test case is to test features 1, 2, 3, and 4 on the target computer and
the selected hard disk drive. Among other things, we want to test whether corrupt creates
a log file with an alternate name specified in the -log_name option.

C7.4.2 Test setup
Use the setup of cor-01.

C7.4.3 Test case dependencies
None.

C7.4.4 Procedure
Run corrupt to alter a byte of the image file:

corrupt cor-04 mcmillan serban /media/imgfile 10000000001
41 -log_name corruptlog

C7.4.5 Expected results
corrupt create a new log file corruptlog.txt.
corrupt prompts the user to enter a comment.

Page 91 of 116

corrupt logs the comment, the original and new values of the byte at the specified offset.

C7.5 cor-05

C7.5.1 Purpose
The purpose of this test case is to test whether corrupt detects that a byte offset is invalid,
i.e., outside the image file range.

C7.5.2 Test setup
Use the setup of cor-01.

C7.5.3 Test case dependencies
None.

C7.5.4 Procedure
Run corrupt and specify a byte offset outside the range of the image file. Capture the
stdout:

corrupt cor-05 mcmillan serban /media/imgfile 17247252480
41 -new_log

Examine the stdout for signs that corrupt has detected the invalid offset.

C7.5.5 Expected results
corrupt displays a warning about the invalid offset and rejects the request to alter the
byte.

C7.6 cor-06

C7.6.1 Purpose
The purpose of this test case is to test whether corrupt displays its usage mode when
instructed by the -h option.

C7.6.2 Test setup
None.

C7.6.3 Test case dependencies
None.

C7.6.4 Procedure
Run corrupt: without any argument, with incorrect arguments, with the -h option as the
only argument on the command line, and with the -h option together with other
arguments. Capture the standard output into a file:

corrupt > output.txt
corrupt cor-06 mcmillan serban /media/imgfile -logname -h
>> output.txt

Page 92 of 116

corrupt -h >> output.txt
corrupt cor-06 mcmillan serban /media/imgfile 41 -new_log -
h >> output.txt

C7.6.5 Expected results
corrupt displays its usage mode on the stdout in each case.

Page 93 of 116

C8 logsetup Test Case Specifications

C8.1 lgs-01

C8.1.1 Purpose
The purpose of this test case is to test whether logsetup correctly logs the information
about the setup of a source disk provided by the user in arguments on the command line,
namely the hard disk drive, the host computer, the operator, the operating system loaded
on the disk, and some options. Each argument is to be interpreted as a character string by
logsetup, so either the argument does not contain white space, or it may contain white
space and then it must be included in double quotes. logsetup simply copies the argument
to the log file it generates. The only logged information that is not provided by the user is
the current time and date.

C8.1.2 Test setup
None.

C8.1.3 Test case dependencies
None.

C8.1.4 Procedure
Run logsetup with some arguments:

logsetup CC:/dev/sda McMillan serban None

Observe whether the log file contains the arguments provided on the command line.

C8.1.5 Expected results
logsetup creates a new log file with the name “setup.txt” on the log disk. It logs the
following information: the hard disk drive (CC:/dev/sda), the host computer (McMillan),
the operator (serban), the operating system loaded on the disk (None). It adds the current
time and date.

Page 94 of 116

C9 logcase Test Case Specifications

C9.1 Lgc-01

C9.1.1 Purpose
The purpose of this test case is to test whether logcase correctly logs the information
about a test case provided by the user in arguments on the command line, namely the case
identifier, the host computer, the operator, the three disks that might be used (source,
destination, and media - each argument is mandatory). logcase simply copies the
argument to the log file it generates. The only logged information that is not provided by
the user is the current time and date.

C9.1.2 Test setup
None.

C9.1.3 Test case dependencies
None.

C9.1.4 Procedure
Run logcase:

logcase pcm-01 McMillan serban CC:/dev/sda 7F:/dev/hdb none

C9.1.5 Expected results
logcase creates a new log file with the name “case.txt” on the log disk. It logs the
following information: the test case identifier (pcm-01), the host computer (McMillan),
the operator (serban), the source disk (CC:/dev/sda), the destination disk (7F:/dev/hdb),
and the media disk (none) used in the test case. It adds the current time and date.

Page 95 of 116

 C10 adjcmp Test Case Specifications

C10.1 acm-01

C10.1.1 Purpose
The purpose of this test case is to test features 1-6 on the target computer and the selected
hard disk drives by specifying the -layout argument. Specifically, we want to test whether
adjcmp:

a. Creates a new log file when no log file is present.
b. Logs a one-word comment entered on the command line.
c. Logs the source and destination drives.
d. Logs the program execution.
e. Logs the partitions tables of each disk.
f. Correctly detects the disk layouts and records the location of each disk chunk.

C10.1.2 Test setup
On the test computer (for example “McMillan”), mount the IDE hard disk “7F” in a slot
as DOS drive 0x81 (source) and the SCSI hard disk “CC” in a slot as DOS drive 0x82
(destination). Insert the CD containing the FS-TST1.0 tools in the CD drive. Reboot the
computer from the FS-TST1.0 boot diskette.
Use PartitionMagic to create the following partitions on the source disk: primary FAT32
(approx. 3000MB), primary Linux Ext2 (approx. 2000MB), logical FAT16 (approx.
200MB), logical FAT32 (approx. 200MB), all separated by unallocated space.
Use PartitionMagic to create the following partitions on the destination disk: primary
FAT32 (same size as the primary FAT32 on the source disk), primary Linux Ext2 (same
size as the primary Linux Ext2 on the source disk), logical FAT16 (same size as the
logical FAT16 on the source disk), logical FAT32 (same size as the logical FAT32 on the
source disk), and logical NTFS (approx. 200MB), all separated by unallocated space.

Run seccopy to copy the source primary FAT32, primary Linux Ext2, logical FAT16,
logical FAT32 partitions onto the destination primary FAT32, primary Linux Ext2,
logical FAT16, and logical FAT32 partitions respectively.

Reboot to Linux.

C10.1.3 Test case dependencies
None.

C10.1.4 Procedure
Run adjcmp:

adjcmp acm-01 mcmillan serban /dev/hdb 7F /dev/sda CC -
layout -comment "Layout"

Use the ls command and a text editor to examine the presence and content of the log file
cmpalog.txt generated by adjcmp.

Page 96 of 116

C10.1.5 Expected results
adjcmp creates a new log file cmpalog.txt. adjcmp logs the comment, the source and
destination drives, the program execution, logs the partition tables of each disk, computes
and logs the location, size, and type (boot, partition, unallocated) of each disk chunk.

C10.2 acm-02

C10.2.1 Purpose
The purpose of this test case is to test features 1-6 and 8-11 on the target computer and
the selected hard disk drives. We use the -new_log option to test whether adjcmp creates
a new log file although a log file with the same name already exists. We use a multi-word
comment on the command line. We run adjcmp on disks where the partitions are
separated by unallocated space on both the source and destination disks, so that the first
few source and destination chunks of type P (partition) correspond in assignment. Also,
we prepared source and destination partitions that compare equal. We also want to test
how adjcmp categorizes in-excess destination chunks.

C10.2.2 Test setup
Use the setup of acm-01.

C10.2.3 Test case dependencies
acm-01, to test whether a new log file is created when the -new_log option is used and an
old log file exists.

C10.2.4 Procedure
Run adjcmp with the -new_log option and a multi-word comment:

adjcmp acm-02 mcmillan serban /dev/hdb 7F /dev/sda CC -
new_log -comment "Compare automatically assigned
partitions"

Use the ls command and a text editor to examine the presence and content of the log file
cmpalog.txt generated by adjcmp.

C10.2.5 Expected results
adjcmp creates a new log file cmpalog.txt. adjcmp logs the comment, the source and
destination drives, the program execution, the partition table entries of each disk,
computes the type, location, and size of the disk chunks, assigns the source to destination
chunks as expected, compares the chunks and logs the comparison results; given the
setup, first 4 partitions should compare equal. As the destination has chunks in excess,
adjcmp categorizes their sectors as described in the features. Finally, it logs a summary of
the comparison.

Page 97 of 116

C10.3 acm-03

C10.3.1 Purpose
The purpose of this test case is to test features 1-11 on the target computer and the
selected hard disk drives. In particular, we want to test:
- Whether adjcmp appends the log records to an existing log file.
- Whether adjcmp prompts the user for a comment when the -comment option is not used.
- Whether adjcmp lets the user to manually assign the source chunks to destination
chunks when we use the -assign option.

C10.3.2 Test setup
Use the setup of acm-01.

C10.3.3 Test case dependencies
acm-02. Thus, we will be able to test whether adjcmp appends the log to the existing log
file.

C10.3.4 Procedure
Run adjcmp:

adjcmp acm-03 mcmillan serban /dev/hdb 7F /dev/sda CC -
assign

When prompted, assign the source disk chunks to destination disk chunks:

 0 B 0 B
 1 P 1 P
 2 U 2 U
 3 P 3 P
 4 U 4 U
 5 b 8 b
 6 P 9 P
 7 U 10 U
 8 b 5 b
 9 P 6 P
10 U 7 U

Use the ls command and a text editor to examine the presence and content of the log file
cmpalog.txt generated by adjcmp.

C10.3.5 Expected results
adjcmp appends the log records to the existing log file cmpalog.txt created in the
previous test case. adjcmp prompts the user for a comment, logs the comment, the source
and destination drives, the program execution, logs the boot tracks, partitions and
unallocated space of each disk, prompts the user for chunk assignment, compares the
assigned chunks, and logs the results. This time, source chunks 6 and 9 should not
compare equal to destination chunks 9 and respectively 6.

Page 98 of 116

C10.4 acm-04

C10.4.1 Purpose
The purpose of this test case is to test features 1-11 on the target computer and the
selected hard disk drives. In particular, we want to test whether adjcmp allows the user to
specify an alternate log file name by using the -log_name option. We’ll use the same
disks as before, but reverse the source and destination to test how adjcmp treats in-excess
source chunks. Also, prior to running adjcmp we modify a few sectors in the partitions
that otherwise would have compared equal (we can use diskchg for that).

C10.4.2 Test setup
Use the setup of case acm-01.
Use diskchg to change a few sectors in each of the four partitions of the disk “7F”.

C10.4.3 Test case dependencies
None.

C10.4.4 Procedure
Run adjcmp using automatic assignment of disk chunks and the -log_name option:

adjcmp acm-04 mcmillan serban /dev/sda CC /dev/hdb 7F -
log_name adjcmplog.txt

Use the ls command and a text editor to examine the presence and content of the log file
adjcmplog.txt generated by adjcmp.

C10.4.5 Expected results
adjcmp creates a new log file adjcmplog.txt, prompts the user to enter a comment, logs
the comment, the source and destination drives, the program execution, logs the boot
tracks, partitions and unallocated space of each disk, automatically assigns the source
chunks to destination chunks, compares the assigned disk chunks, logs the comparison
results and a summary, as detailed in the features.

C10.5 acm-05

C10.5.1 Purpose
The purpose of this test case is to test features 1-11 on the target computer and the
selected hard disk drives, which contain large (>8MB) primary and/or logical partitions.
Also, we intend to examine how can the user manually assign source chunks of type P
(partitions) to destination chunks P when the source has unallocated space interspersed
with the partitions, while the destination does not.

C10.5.2 Test setup
Use a computer with extended BIOS, “McMillan” for example. Mount the IDE hard disk
“7F” as DOS drive 0x81 (source). Mount the SCSI hard disk “CC” as DOS drive 0x82
(destination). Insert the CD containing the Forensic Software Testing Support Tools v1.0

Page 99 of 116

in the CD drive. Reboot the computer from the FS-TSTv1.0 boot diskette. Use
PartitionMagic to create the following partitions on the source disk “7F”: primary FAT32
(10GB), Linux Ext2 (9GB), logical FAT16 (1000MB), logical FAT32 (9GB), all
separated through unallocated space.
Use PartitionMagic to create the following partitions on the destination disk “CC”:
primary FAT32 (9GB), Linux Ext2 (10GB), logical FAT16 (2000MB), and logical
FAT32 (8GB), without any unallocated space in-between.

Run seccopy to copy the smallest partition onto the corresponding partition (e.g., copy the
destination primary FAT32 onto the source primary FAT32 partition, etc.)

Reboot to Linux.

C10.5.3 Test case dependencies
None.

C10.5.4 Procedure
Run adjcmp:

adjcmp acm-05 mcmillan serban /dev/hdb 7F /dev/sda CC -
assign -new_log

When prompted, manually assign the chunks as follows, in order to avoid assigning
unallocated space to partitions:

 0 B 0 B
 1 P 1 P
 2 U 0 B
 3 P 2 P
 4 U 0 B
 5 b 3 b
 6 P 4 P
 7 U 0 B
 8 b 5 b
 9 P 6 P
 10 U 7 U

Use the ls command and a text editor to examine the presence and content of the log file
cmpalog.txt generated by adjcmp.

C10.5.5 Expected results
adjcmp creates a new log file cmpalog.txt, prompts the user to enter a comment, logs the
comment, the source and destination drives, the program execution, logs the boot tracks,
partitions and unallocated space of each disk, prompts the user for chunk assignment,
compares the disk chunks according to the assignment, logs the comparison results and a
summary, as detailed in the features. When a source chunks is smaller than the

Page 100 of 116

corresponding destination, the excess destination sectors are categorized as detailed in the
FS-TST 2.0 documentation.

C10.6 acm-06

C10.6.1 Purpose
The purpose of this test case is to test whether adjcmp displays its usage mode when
invoked with the -h option.

C10.6.2 Test setup
None.

C10.6.3 Test case dependencies
None.

C10.6.4 Procedure
Run adjcmp with the -h option and capture its standard output into a file:

adjcmp -h > outputlog.txt
adjcmp acm-06 mcmillan serban /dev/hdb 7F /dev/sda CC -h >>
outputlog.txt

Use a text editor to examine the content of the outputlog.log file.

C10.6.5 Expected results
adjcmp should display its usage mode only.

Page 101 of 116

C11 sechash Test Case Specifications

C11.1 shs-01

C11.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
the selected hard disk drive. Specifically, we want to test whether sechash creates a new
log file with the default name for the -before option when no log file is present, correctly
logs the hard disk drive, a one-word comment entered on the command line, and the
program execution. Also, we want to test whether omitting -first and -last options
defaults to hashing the entire disk, and whether by default sechash computes the SHA-1
hash of the requested block of sectors.

C11.1.2 Test setup
Select and insert the target disk drive into a slot of the test computer. For example,
assume that the target disk is the one externally labeled “CC” and it will be the Linux
device /dev/sda. Boot up to Linux. Use the script cal-drive.csh available from NIST’s
“Computer Forensic Reference Data Set” (CFReDS) project to write a certain pattern on
device /dev/sda whose SHA-1 and MD5 hashes are known. Invoke the cal-drive.csh
script as follows:

cal-drive.csh sda

Save the log file cal-log.txt written by the script for later comparisons with the hashes
computed by sechash.

C11.1.3 Test case dependencies
None.

C11.1.4 Procedure
Delete all log files from the log disk (the Linux boot disk).

Run sechash using a one-word comment and the -before option. Omit the -first, -last, and
-hash options:

sechash.csh shs-01 mcmillan serban /dev/sda CC -before -
comment HashEntireDisk

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the SHA-1 hash value computed by sechash to the hash value
computed by the cal-drive.csh script.

C11.1.5 Expected results
sechash creates a log file with the name “hashbsec.txt” on the log disk. sechash logs the
comment, computes the SHA-1 hash of the entire disk, and logs the correct information
required by features 1, 2, 4, 5.

Page 102 of 116

C11.2 shs-02

C11.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether sechash appends the log
records to an existing log file, correctly logs a multi-word comment entered on the
command line, and the program execution. Also, we want to test whether sechash
correctly computes the MD5 hash of the entire disk specified as a block of sectors.

C11.2.2 Test setup
Use the setup of test case shs-01. Do not delete the log file created by test case shs-01.

C11.2.3 Test case dependencies
shs-01.

C11.2.4 Procedure
Run this test case right after shs-01.

Run sechash using the -comment option with a multi-word comment, the -before option,
the -first and -last options specifying the first and last sector of the disk (you may extract
this information from the drive information logged in the previous case), and the -hash
option with the md5 function:

sechash.csh shs-02 mcmillan serban /dev/sda CC -before -
first 0 -last 71687369 -comment “Hash entire disk” -hash
md5sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the MD5 hash value computed by sechash to the hash value computed
by the cal-drive.csh script.

C11.2.5 Expected results
sechash appends the log records to the log file “hashbsec.txt” created in the preceding
test case. sechash logs the comment, computes the correct MD5 hash for the entire disk,
and logs the correct information required by features 1, 2, 4, and 5.

C11.3 shs-03

C11.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether sechash creates a log file
with the name characteristic for the -after option. Also, we want to verify that sechash
correctly computes the SHA-1 value of a modified disk contents. In order to do that, we
could use exactly the same modification we did for test case dhs-04 of diskhash,
assuming we had run that test case before the current one, and in both cases the script cal-
drive.csh has written the same pattern on the selected drive (actually we could run the test
cases dhs-04 and shs-03 consecutively, without modifying the disk in between).

Page 103 of 116

C11.3.2 Test setup
Use the setup of test case dhs-04.

C11.3.3 Test case dependencies
dhs-04 (for the setup and change to the disk contents, and the SHA-1 hash value).

C11.3.4 Procedure
Use diskchg to modify the last byte of the last sector of the selected disk in exactly the
same way as we did in test case dhs-04:

diskchg shs-03 mcmillan serban /dev/sda -write 71687369 511
46

Run sechash without the -comment option, but with -new_log, -after, -first, -last, and
-hash options, specifying the entire disk and SHA-1 hash:

sechash.csh shs-03 mcmillan serban /dev/sda CC -new_log
-after -first 0 -last 71687369 -hash sha1sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the SHA-1 hash value computed by sechash with the hash value
computed by diskhash in the dhs-04 test case.

C11.3.5 Expected results
sechash creates a new log file “hashasec.txt”, prompts the user for a comment, computes
the correct SHA-1 hash, and logs the required information in the log file.

C11.4 shs-04

C11.4.1 Purpose
The purpose of this test case is exactly as that of the previous case, except that we
compute the MD5 hash value of the entire disk after the modification described in shs-03.
We also verify that sechash creates a new log file although one with the same name
already exists, when we use the -new_log option.

C11.4.2 Test setup
Use the setup and disk content modification of case shs-03 (i.e., dhs-04).

C11.4.3 Test case dependencies
dhs-04 (for the setup and change to the disk contents), dhs-05 (for the MD5 hash value),
shs-03 (for the log file).

C11.4.4 Procedure
Run sechash using a command similar to the one used in the previous case, but
specifying the md5sum hash function:

Page 104 of 116

sechash.csh shs-04 mcmillan serban /dev/sda CC -new_log -
after -first 0 -last 71687369 -hash md5sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the hash value computed in this case to the hash value computed in
the test case dhs-05.

C11.4.5 Expected results
sechash creates a new log file “hashasec.txt” although one exists, prompts the user for a
comment, computes the correct MD5 hash of the entire disk, and logs the required
information in the log file.

C11.5 shs-05

C11.5.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether sechash correctly
computes the SHA-1 hash of sector 0, and whether it creates a log file with an alternate
name specified by using the -log_name option.

C11.5.2 Test setup
Select and insert the target disk drive into a slot of the test computer. For example,
assume that the target disk is the one externally labeled “CC” and it will be recognized as
the Linux device /dev/sda. Boot up to Linux. Use the script cal-drive-count.csh tailored
from the script cal-drive.csh of NIST’s “Computer Forensic Reference Data Set”
(CFReDS) project, to write a certain pattern on sector 0 of the device /dev/sda whose
SHA-1 and MD5 hashes are known. Invoke the cal-drive-count.csh script and save the
output for later comparisons as follows:

cal-drive-count.csh sda 1 > output.txt

Save the log file cal-log.txt written by the script for later comparisons with the hashes
computed by sechash.

C11.5.3 Test case dependencies
None.

C11.5.4 Procedure
Run sechash using the -log_name to enter an alternate log file name, -first, and -last
options to define the group consisting only of sector 0, and the -hash option to specify the
SHA-1 hash to be computed:

sechash.csh shs-05 mcmillan serban /dev/sda CC -log_name
sechashlog.txt -first 0 -last 0 -hash sha1sum

Page 105 of 116

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the SHA-1 hash value computed by sechash to the value computed by
the cal-drive-count.csh script.

C11.5.5 Expected results
sechash creates a new log file of name “sechashlog.txt”.
sechash prompts the user for a comment, which is correctly logged.
sechash computes the correct SHA-1 hash of sector 0.
sechash logs the correct information required by features 2, 4, 5.

C11.6 shs-06

C11.6.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether sechash correctly
computes the MD5 hash of sector 0, and whether it creates a new log file with an
alternate name specified by using the -log_name option, although one with the same
name exists.

C11.6.2 Test setup
Use the same setup as in shs-05.

C11.6.3 Test case dependencies
shs-05 (for the alternate log file to exist).

C11.6.4 Procedure
Run sechash using the following command:

sechash.csh shs-06 mcmillan serban /dev/sda CC -log_name
sechashlog.txt -new_log -first 0 -last 0 -hash md5sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the MD5 hash value computed by sechash to the value computed by
the cal-drive.csh script.

C11.6.5 Expected results
sechash creates a new log file with the name “sechashlog.txt”, although one with the
same name still exists.
sechash prompts the user for a comment, which is correctly logged.
sechash computes the correct MD5 value of the first disk sector, and logs the information
required by features 2, 4, 5.

Page 106 of 116

C11.7 shs-07

C11.7.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether sechash correctly
computes the SHA-1 hash of the last sector of the hard disk drive.

C11.7.2 Test setup
Select and insert the target disk drive into a slot of the test computer. For example,
assume that the target disk is the one externally labeled “CC” and it will be recognized as
the Linux device /dev/sda. Use the script cal-drive-count-seek.csh tailored from the script
cal-drive.csh of NIST’s “Computer Forensic Reference Data Set” (CFReDS) project, to
write a certain pattern with known SHA-1 and MD5 hashes on the last sector of the
device /dev/sda. Invoke the cal-drive-count-seek.csh script as follows:

cal-drive-count-seek.csh sda 1 71687369

(71687369 is the LBA address of the last sector on disk “CC”). Save the log file cal-
log.txt written by the script for later comparisons with the hashes computed by sechash.

C11.7.3 Test case dependencies
None.

C11.7.4 Procedure
Run sechash using the -before, -first, -last, -new_log options, to compute the SHA-1 hash
of the last sector:

sechash.csh shs-07 mcmillan serban /dev/sda CC -before -
new_log -first 71687369 -last 71687369

Use the ls command and a text editor to examine the name and contents of the log file
created by sechash.

C11.7.5 Expected results
sechash creates a new log file “hashbsec.txt”.
sechash prompts the user for a comment, which is correctly logged.
sechash computes the correct SHA-1 hash of the last sector (equal to the hash value
computed by the script cal-drive-count-seek.csh).
sechash logs the correct information required by features 2, 4, 5.

C11.8 shs-08

C11.8.1 Purpose
The purpose of this test case is similar to that of previous test case, the only difference
being that we compute the MD5 hash of the last sector.

Page 107 of 116

C11.8.2 Test setup
Use the setup of shs-07.

C11.8.3 Test case dependencies
None.

C11.8.4 Procedure
Run sechash as in the previous case, but specify the MD5 function instead of SHA-1:

sechash.csh shs-08 mcmillan serban /dev/sda CC -before -
new_log -first 71687369 -last 71687369 -hash md5sum

C11.8.5 Expected results
sechash creates a new log file “hashbsec.txt”.
sechash prompts the user for a comment, which is correctly logged.
sechash computes the correct MD5 hash of the last sector (equal to the hash value
computed by the script cal-drive-count-seek.csh).
sechash logs the correct information required by features 2, 4, 5.

C11.9 shs-09

C11.9.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether sechash correctly
computes the SHA-1 hash of a group of contiguous sectors.

C11.9.2 Test setup
Select and insert the target disk drive into a slot of the test computer. For example,
assume that the target disk is the one externally labeled “CC” and it will be recognized as
the Linux device /dev/sda. Use the script cal-drive-count-seek.csh tailored from the script
cal-drive.csh of NIST’s “Computer Forensic Reference Data Set” (CFReDS) project, to
write a certain pattern with known SHA-1 and MD5 hashes on a group of sectors defined
by the LBA address of its first sector and the number of sectors. Invoke the cal-drive-
count-seek.csh script and save the output for later comparisons as follows:

cal-drive-count-seek.csh sda 1000000 10000 > output.txt

(in our example the group has 1,000,000 sectors starting at address 10,000). Save the log
file cal-log.txt written by the script for later comparisons with the hashes computed by
sechash.

C11.9.3 Test case dependencies
None.

Page 108 of 116

C11.9.4 Procedure
Run sechash using the -before, -first, -last, -new_log options, to compute the SHA-1 hash
of the sector group:

sechash.csh shs-09 mcmillan serban /dev/sda CC -before -
new_log -first 10000 -last 1009999

Use the ls command and a text editor to examine the name and contents of the log file
created by sechash.

C11.9.5 Expected results
sechash creates a new log file “hashbsec.txt”.
sechash prompts the user for a comment, which is correctly logged.
sechash computes the correct SHA-1 hash of the specified group (equal to the hash value
computed by the script cal-drive-count-seek.csh).
sechash logs the correct information required by features 2, 4, 5.

C11.10 shs-10

C11.10.1 Purpose
The purpose of this test case is the same as that of the previous case, except that we want
to compute the MD5 hash of a group of contiguous sectors.

C11.10.2 Test setup
shs-09.

C11.10.3 Test case dependencies
None.

C11.10.4 Procedure
Run sechash using a similar command as in shs-09, but specifying the MD5 hash
function instead of SHA-1:

sechash.csh shs-10 mcmillan serban /dev/sda CC -before -
new_log -first 10000 -last 1009999 -hash md5sum

Use the ls command and a text editor to examine the name and contents of the log file
created by sechash.

C11.10.5 Expected results
sechash creates a new log file “hashbsec.txt”.
sechash prompts the user for a comment, which is correctly logged.
sechash computes the correct MD5 hash of the specified group (equal to the hash value
computed by the script cal-drive-count-seek.csh).
sechash logs the correct information required by features 2, 4, 5.

Page 109 of 116

C11.11 shs-11

C11.11.1 Purpose
The purpose of this test case is to verify whether sechash detects that the -first value is
larger than the -last value.

C11.11.2 Test setup
Any disk could be used.

C11.11.3 Test case dependencies
None.

C11.11.4 Procedure
Run sechash using a -first value larger than the -last value:

sechash.csh shs-11 mcmillan serban /dev/sda CC -before -
new_log -first 10000 -last 9999 -hash md5sum

Examine the standard output and/or the log file, if created, looking for an error message.

C11.11.5 Expected results
sechash issues an error message regarding incorrect LBA addresses.

C11.12 shs-12

C11.12.1 Purpose
The purpose of this test case is to test whether sechash detects an incorrect -first
argument, i.e., one outside the LBA range of the disk.

C11.12.2 Test setup
Any disk could be used.

C11.12.3 Test case dependencies
None.

C11.12.4 Procedure
Run sechash using a -first value larger than the address of the last sector on the disk:

sechash.csh shs-12 mcmillan serban /dev/sda CC –before
-new_log -first 71687370 -last 71687380

Examine the standard output and/or the log file, if created, looking for an error message.

C11.12.5 Expected results
sechash issues an error message.

Page 110 of 116

C11.13 shs-13

C11.13.1 Purpose
The purpose of this test case is to test whether sechash detects a -last argument outside
the LBA range of the disk.

C11.13.2 Test setup
Any setup could be used.

C11.13.3 Test case dependencies
None.

C11.13.4 Procedure
Run sechash using a correct -first value, but a -last value larger than the address of the
last sector on the disk:

sechash.csh shs-13 mcmillan serban /dev/sda CC –before
-new_log -first 71687300 -last 71687370

Examine the standard output and/or the log file, if created, looking for an error message.

C11.13.5 Expected results
sechash issues an error message.

C11.14 shs-14

C11.14.1 Purpose
The purpose of this test case is to test feature 5. Specifically, we want to test whether
sechash displays its usage mode when requested by the -h option.

C11.14.2 Test setup
You may use any setup.

C11.14.3 Test case dependencies
None.

C11.14.4 Procedure
Run sechash without arguments; with incorrect arguments; with the -h option alone on
the command line; and with the option -h with correct arguments. Capture the standard
output:

sechash.csh > output.txt
sechash.csh shs-14 mcmillan serban -h >> output.txt
sechash.csh -h >> output.txt
sechash.csh shs-14 mcmillan serban /dev/sda CC -before -
first 7300 -last 7380 -h >> output.txt

Page 111 of 116

C11.14.5 Expected results
sechash displays its usage mode in each case.

Page 112 of 116

C12 diskhash Test Case Specifications

C12.1 dhs-01

C12.1.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
the selected hard disk drive. Specifically, we want to test whether diskhash creates a new
log file with the default name for the -before option when no log file is present, correctly
logs the hard disk drive, a one-word comment entered on the command line, and the
program execution. Also, we want to test whether diskhash correctly computes the SHA-
1 hash of the entire hard disk drive and logs the result.

C12.1.2 Test setup
Select and insert the target disk drive into a slot of the test computer. For example,
assume that the target disk is the one externally labeled “CC” and it will be the Linux
device /dev/sda. Boot up to Linux. Use the script cal-drive.csh available from NIST’s
“Computer Forensic Reference Data Set” (CFReDS) project to write a certain pattern on
device /dev/sda whose SHA-1 and MD5 hashes are known. Invoke the cal-drive.csh
script as follows:

cal-drive.csh sda

Save the log file cal-log.txt written by the script for later comparisons with the hashes
computed by diskhash.

C12.1.3 Test case dependencies
None.

C12.1.4 Procedure
Delete all log files from the log disk (the Linux boot disk).

Run diskhash using a one-word comment and the -before option:

diskhash.csh dhs-01 mcmillan serban /dev/sda CC -before -
comment HashDisk -hash sha1sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the SHA-1 hash computed by diskhash to the value computed by the
cal-drive.csh script.

C12.1.5 Expected results
diskhash creates a log file with the name “hashblog.txt” on the log disk.
diskhash logs the comment and the correct information required by features 1, 2, 4, 5.

Page 113 of 116

C12.2 dhs-02

C12.2.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether diskhash appends the log
records to an existing log file, correctly logs a multi-word comment entered on the
command line, and the program execution. Also, we want to test whether diskhash
correctly computes the MD5 hash of the selected disk drive.

C12.2.2 Test setup
Use the setup of test case dhs-01. Do not delete the log file created by test case dhs-01.

C12.2.3 Test case dependencies
dhs-01.

C12.2.4 Procedure
Run diskhash using the -comment option with a multi-word comment, the -before option,
and select the MD5 function:

diskhash.csh dhs-02 mcmillan serban /dev/sda CC -before -
comment “Test MD5 hash” -hash md5sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the MD5 hash computed by diskhash to the value computed by the
cal-drive.csh script.

C12.2.5 Expected results
diskhash appends the log records to the log file “hashblog.txt” created in the preceding
test case.
diskhash logs the comment and the correct information required by features 1, 2, 4, and
5, computes the correct MD5 hash and logs it.

C12.3 dhs-03

C12.3.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether diskhash creates a new log
file even though a log file with the same name already exists, prompts the user for a
comment, logs that comment, correctly computes the SHA-1 hash of the hard disk drive,
logs the result and program execution.

C12.3.2 Test setup
Use the setup of test case dhs-02.

C12.3.3 Test case dependencies
dhs-02. Do not delete the log file created or appended in that previous test case.

Page 114 of 116

C12.3.4 Procedure
Run this test case right after dhs-02.

Run diskhash without the -comment option, but with -new_log and -before options.

diskhash.csh dhs-03 mcmillan serban /dev/sda CC -new_log
-before -hash sha1sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the SHA-1 hash computed by diskhash to the value computed by the
cal-drive.csh script.

C12.3.5 Expected results
diskhash creates a new log file “hashblog.txt”, prompts the user for a comment,
computes the correct SHA-1 hash, and logs the required information in the log file.

C12.4 dhs-04

C12.4.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether diskhash correctly
computes the SHA-1 hash of the same hard disk drive as in the previous case after some
changes to the disk contents, and creates a log file with a name appropriate for the -after
option.

C12.4.2 Test setup
Use the setup of case dhs-01.

C12.4.3 Test case dependencies
None.

C12.4.4 Procedure
Use the diskchg tool to change a single byte somewhere within the test hard disk dive, for
example the last byte of the last sector. Run diskhash using the -after option and
specifying the same hard disk drive as in dhs-01. Do not use the -hash option, in order to
test for the default hash computed:

diskhash.csh dhs-04 mcmillan serban /dev/sda CC -new_log
-after

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the hash value logged by this case to the hash value computed in case
dhs-01 or dhs-03.

Page 115 of 116

C12.4.5 Expected results
diskhash creates a new log file “hashalog.txt”, prompts the user for a comment, computes
the correct SHA-1 hash, and logs the required information in the log file. The hash value
recorded in hashalog.txt should be different from the one recorded in the previous cases.

C12.5 dhs-05

C12.5.1 Purpose
The purpose of this test case is to test features 1, 2, 3, 4, and 5 on the target computer and
selected hard disk drive. Specifically, we want to test whether diskhash creates a log file
with the name specified in the -log_name option, and correctly computes the MD5 hash
of the entire disk.

C12.5.2 Test setup
Use the setup of case dhs-01.

C12.5.3 Test case dependencies
None.

C12.5.4 Procedure
Run diskhash using the -log_name option:

diskhash.csh dhs-05 mcmillan serban /dev/sda CC -log_name
diskhashlog.txt -hash md5sum

Use the ls command and a text editor to examine the log file’s existence, name, and
contents. Compare the hash value logged by this case to the hash value computed in case
dhs-02.

C12.5.5 Expected results
diskhash creates a new log file of name “diskhashlog.txt”.
diskhash prompts the user for a comment, which is correctly logged.
diskhash computes the MD5 hash of the entire disk, which should be different from the
one computed in test case dsh-02.
seccmp logs the correct information required by features 2, 4, 5.

C12.6 dhs-06

C12.6.1 Purpose
The purpose of this test case is to test feature 5. Specifically, we want to test whether
diskhash displays its usage mode when requested by the -h option.

C12.6.2 Test setup
Use the setup of dhs-01.

Page 116 of 116

C12.6.3 Test case dependencies
None.

C12.6.4 Procedure
Run diskhash without arguments, with incorrect arguments, with the -h option alone on
the command line, and with correct arguments plus the -h option. Capture its standard
output:

diskhash.csh > output.txt
diskhash.csh dhs-06 mcmillan serban -logname -h >>
output.txt
diskhash.csh -h >> output.txt
diskhash.csh dhs-06 mcmillan serban /dev/sda CC -before -h
>> output.txt

C12.6.5 Expected results
diskhash displays its usage mode in each case.

	Abstract
	Introduction
	Section A: FS-TST Test Plan
	A1 Introduction
	A1.1 Objectives
	A1.2 Background
	A1.3 Scope
	A1.4 References

	A2 Test Items
	A3 Features to be tested
	A3.1 Common functional features
	A3.1.2 Program execution logging
	A3.1.3 Partition table logging
	A3.1.4 Comparison logging
	A3.1.5 Error reporting

	A3.2 Individual program features/requirements
	A3.2.1 diskwipe features
	A3.2.2 partab features
	A3.2.3 diskchg features
	A3.2.4 seccmp features
	A3.2.5 partcmp features
	A3.2.6 diskcmp features
	A3.2.7 corrupt features
	A3.2.8 logsetup features
	A3.2.9 logcase features
	A3.2.10 adjcmp features
	A3.2.11 sechash features
	A3.2.12 diskhash features

	A4 Approach
	A5 Pass/fail criteria
	A6 Test deliverables
	A7 Test tasks
	A8 Environmental needs
	A8.1 Hardware
	A8.1.1 Host Computers
	A8.1.2 Hard Disk Drives

	A8.2 Software

	Section B: FS-TST Test Design Specification
	B1 diskwipe Test Design Specification
	B1.1 Features to be tested
	B1.2 Approach refinements
	B1.3 Test Identification

	B2 partab Test Design Specification
	B2.1 Features to be tested
	B2.2 Approach refinements
	B2.3 Test Identification

	B3 diskchg Test Design Specification
	B3.1 Features to be tested
	B3.2 Approach refinements
	B3.3 Test Identification

	B4 seccmp Test Design Specification
	B4.1 Features to be tested
	B4.2 Approach refinements
	B4.3 Test Identification

	B5 partcmp Test Design Specification
	B5.1 Features to be tested
	B5.2 Approach refinements
	B5.3 Test Identification

	B6 diskcmp Test Design Specification
	B6.1 Features to be tested
	B6.2 Approach refinements
	B6.3 Test Identification

	B7 corrupt Test Design Specification
	B7.1 Features to be tested
	B7.2 Approach refinements
	B7.3 Test Identification

	B8 logsetup Test Design Specification
	B8.1 Features to be tested
	B8.2 Approach refinements
	B8.3 Test Identification

	B9 logcase Test Design Specification
	B9.1 Features to be tested
	B9.2 Approach refinements
	B9.3 Test Identification

	B10 adjcmp Test Design Specification
	B10.1 Features to be tested
	B10.2 Approach refinements
	B10.3 Test Identification

	B11 sechash Test Design Specification
	B11.1 Features to be tested
	B11.2 Approach refinements
	B11.3 Test Identification

	B12 diskhash Test Design Specification
	B12.1 Features to be tested
	B12.2 Approach refinements
	B12.3 Test Identification

	B13 Disk Logging Test Design Specification
	B13.1 Features to be tested
	B13.2 Approach refinements
	B13.3 Test Identification
	B13.4 Feature pass/fail criteria

	Section C: FS-TST Test Case Specifications
	C1 diskwipe Test Case Specifications
	C1.1 Dkw-01
	C1.1.1 Purpose
	C1.1.2 Test setup
	C1.1.3 Test case dependencies
	C1.1.4 Procedure
	C1.1.5 Expected results

	C1.2 Dkw-02
	C1.2.1 Purpose
	C1.2.2 Test setup
	C1.2.3 Test case dependencies
	C1.2.4 Procedure
	C1.2.5 Expected results

	C1.3 Dkw-03
	C1.3.1 Purpose
	C1.3.2 Test setup
	C1.3.3 Test case dependencies
	C1.3.4 Procedure
	C1.3.5 Expected results

	C1.4 Dkw-04
	C1.4.1 Purpose
	C1.4.2 Test setup
	C1.4.3 Test case dependencies
	C1.4.4 Procedure
	C1.4.5 Expected results

	C1.5 Dkw-05
	C1.5.1 Purpose
	C1.5.2 Test setup
	C1.5.3 Test case dependencies
	C1.5.4 Procedure
	C1.5.5 Expected results

	C1.6 Dkw-06
	C1.6.1 Purpose
	C1.6.2 Test setup
	C1.6.3 Test case dependencies
	C1.6.4 Procedure
	C1.6.5 Expected results

	C1.7 Dkw-07
	C1.7.1 Purpose
	C1.7.2 Test setup
	C1.7.3 Test case dependencies
	C1.7.4 Procedure
	C1.7.5 Expected results

	C1.8 Dkw-08
	C1.8.1 Purpose
	C1.8.2 Test setup
	C1.8.3 Test case dependencies
	C1.8.4 Procedure
	C1.8.5 Expected results

	C1.9 Dkw-09
	C1.9.1 Purpose
	C1.9.2 Test setup
	C1.9.3 Test case dependencies
	C1.9.4 Procedure
	C1.9.5 Expected results

	C1.10 Dkw-10
	C1.10.1 Purpose
	C1.10.2 Test setup
	C1.10.3 Test case dependencies
	C1.10.4 Procedure
	C1.10.5 Expected results

	C2 partab Test Case Specifications
	C2.1 Ptb-01
	C2.1.1 Purpose
	C2.1.2 Test setup
	C2.1.3 Test case dependencies
	C2.1.4 Procedure
	C2.1.5 Expected results

	C2.2 Ptb-02
	C2.2.1 Purpose
	C2.2.2 Test setup
	C2.2.3 Test dependencies
	C2.2.4 Procedure
	C2.2.5 Expected results

	C2.3 Ptb-03
	C2.3.1 Purpose
	C2.3.2 Test setup
	C2.3.3 Test dependencies
	C2.3.4 Procedure
	C2.3.5 Expected results

	C2.4 Ptb-04
	C2.4.1 Purpose
	C2.4.2 Test setup
	C2.4.3 Test dependencies
	C2.4.4 Procedure
	C2.4.5 Expected results

	C2.5 Ptb-05
	C2.5.1 Purpose
	C2.5.2 Test setup
	C2.5.3 Test dependencies
	C2.5.4 Procedure
	C2.5.5 Expected results

	C2.6 Ptb-06
	C2.6.1 Purpose
	C2.6.2 Test setup
	C2.6.3 Test dependencies
	C2.6.4 Procedure
	C2.6.5 Expected results

	C2.7 Ptb-07
	C2.7.1 Purpose
	C2.7.2 Test setup
	C2.7.3 Test dependencies
	C2.7.4 Procedure
	C2.7.5 Expected results

	C2.8 Ptb-08
	C2.8.1 Purpose
	C2.8.2 Test setup
	C2.8.3 Test dependencies
	C2.8.4 Procedure
	C2.8.5 Expected results

	C3 diskchg Test Case Specifications
	C3.1 dch-01
	C3.1.1 Purpose
	C3.1.2 Test setup
	C3.1.3 Test case dependencies
	C3.1.4 Procedure
	C3.1.5 Expected results

	C3.2 dch-02
	C3.2.1 Purpose
	C3.2.2 Test setup
	C3.2.3 Test dependencies
	C3.2.4 Procedure
	C3.2.5 Expected results

	C3.3 dch-03
	C3.3.1 Purpose
	C3.3.2 Test setup
	C3.3.3 Test dependencies
	C3.3.4 Procedure
	C3.3.5 Expected results

	C3.4 dch-04
	C3.4.1 Purpose
	C3.4.2 Test setup
	C3.4.3 Test dependencies
	C3.4.4 Procedure
	C3.4.5 Expected results

	C3.5 dch-05
	C3.5.1 Purpose
	C3.5.2 Test setup
	C3.5.3 Test dependencies
	C3.5.4 Procedure
	C3.5.5 Expected results

	C3.6 dch-06
	C3.6.1 Purpose
	C3.6.2 Test setup
	C3.6.3 Test dependencies
	C3.6.4 Procedure
	C3.6.5 Expected results

	C3.7 dch-07
	C3.7.1 Purpose
	C3.7.2 Test setup
	C3.7.3 Test dependencies
	C3.7.4 Procedure
	C3.7.5 Expected results

	C3.8 dch-08
	C3.8.1 Purpose
	C3.8.2 Test setup
	C3.8.3 Test dependencies
	C3.8.4 Procedure
	C3.8.5 Expected results

	C3.9 dch-09
	C3.9.1 Purpose
	C3.9.2 Test setup
	C3.9.3 Test dependencies
	C3.9.4 Procedure
	C3.9.5 Expected results

	C3.10 dch-10
	C3.10.1 Purpose
	C3.10.2 Test setup
	C3.10.3 Test dependencies
	C3.10.4 Procedure
	C3.10.5 Expected results

	C3.11 dch-11
	C3.11.1 Purpose
	C3.11.2 Test setup
	C3.11.3 Test dependencies
	C3.11.4 Procedure
	C3.11.5 Expected results

	C3.12 dch-12
	C3.12.1 Purpose
	C3.12.2 Test setup
	C3.12.3 Test dependencies
	C3.12.4 Procedure
	C3.12.5 Expected results

	C3.13 dch-13
	C3.13.1 Purpose
	C3.13.2 Test setup
	C3.13.3 Test dependencies
	C3.13.4 Procedure
	C3.13.5 Expected results

	C3.14 dch-14
	C3.14.1 Purpose
	C3.14.2 Test setup
	C3.14.3 Test dependencies
	C3.14.4 Procedure
	C3.14.5 Expected results

	C3.15 dch-15
	C3.15.1 Purpose
	C3.15.2 Test setup
	C3.15.3 Test dependencies
	C3.15.4 Procedure
	C3.15.5 Expected results

	C3.16 dch-16
	C3.16.1 Purpose
	C3.16.2 Test setup
	C3.16.3 Test dependencies
	C3.16.4 Procedure
	C3.16.5 Expected results

	C3.17 dch-17
	C3.17.1 Purpose
	C3.17.2 Test setup
	C3.17.3 Test dependencies
	C3.17.4 Procedure
	C3.17.5 Expected results

	C3.18 dch-18
	C3.18.1 Purpose
	C3.18.2 Test setup
	C3.18.3 Test dependencies
	C3.18.4 Procedure
	C3.18.5 Expected results

	C3.19 dch-19
	C3.19.1 Purpose
	C3.19.2 Test setup
	C3.19.3 Test dependencies
	C3.19.4 Procedure
	C3.19.5 Expected results

	C3.20 dch-20
	C3.20.1 Purpose
	C3.20.2 Test setup
	C3.20.3 Test dependencies
	C3.20.4 Procedure
	C3.20.5 Expected results

	C3.21 dch-21
	C3.21.1 Purpose
	C3.21.2 Test setup
	C3.21.3 Test dependencies
	C3.21.4 Procedure
	C3.21.5 Expected results

	C3.22 dch-22
	C3.22.1 Purpose
	C3.22.2 Test setup
	C3.22.3 Test dependencies
	C3.22.4 Procedure
	C3.22.5 Expected results

	C4 seccmp Test Case Specifications
	C4.1 scm-01
	C4.1.1 Purpose
	C4.1.2 Test setup
	C4.1.3 Test case dependencies
	C4.1.4 Procedure
	C4.1.5 Expected results

	C4.2 scm-02
	C4.2.1 Purpose
	C4.2.2 Test setup
	C4.2.3 Test case dependencies
	C4.2.4 Procedure
	C4.2.5 Expected results

	C4.3 scm-03
	C4.3.1 Purpose
	C4.3.2 Test setup
	C4.3.3 Test case dependencies
	C4.3.4 Procedure
	C4.3.5 Expected results

	C4.4 scm-04
	C4.4.1 Purpose
	C4.4.2 Test setup
	C4.4.3 Test case dependencies
	C4.4.4 Procedure
	C4.4.5 Expected results

	C4.5 scm-05
	C4.5.1 Purpose
	C4.5.2 Test setup
	C4.5.3 Test case dependencies
	C4.5.4 Procedure
	C4.5.5 Expected results

	C4.6 scm-06
	C4.6.1 Purpose
	C4.6.2 Test setup
	C4.6.3 Test case dependencies
	C4.6.4 Procedure
	C4.6.5 Expected results

	C4.7 scm-07
	C4.7.1 Purpose
	C4.7.2 Test setup
	C4.7.3 Test case dependencies
	C4.7.4 Procedure
	C4.7.5 Expected results

	C5 partcmp Test Case Specifications
	C5.1 pcm-01
	C5.1.1 Purpose
	C5.1.2 Test setup
	C5.1.3 Test case dependencies
	C5.1.4 Procedure
	C5.1.5 Expected results

	C5.2 pcm-02
	C5.2.1 Purpose
	C5.2.2 Test setup
	C5.2.3 Test case dependencies
	C5.2.4 Procedure
	C5.2.5 Expected results

	C5.3 pcm-03
	C5.3.1 Purpose
	C5.3.2 Test setup
	C5.3.3 Test case dependencies
	C5.3.4 Procedure
	C5.3.5 Expected results

	C5.4 pcm-04
	C5.4.1 Purpose
	C5.4.2 Test setup
	C5.4.3 Test case dependencies
	C5.4.4 Procedure
	C5.4.5 Expected results

	C5.5 pcm-05
	C5.5.1 Purpose
	C5.5.2 Test setup
	C5.5.3 Test case dependencies
	C5.5.4 Procedure
	C5.5.5 Expected results

	C5.6 pcm-06
	C5.6.1 Purpose
	C5.6.2 Test setup
	C5.6.3 Test case dependencies
	C5.6.4 Procedure
	C5.6.5 Expected results

	C5.7 pcm-07
	C5.7.1 Purpose
	C5.7.2 Test setup
	C5.7.3 Test case dependencies
	C5.7.4 Procedure
	C5.7.5 Expected results

	C5.8 pcm-08
	C5.8.1 Purpose
	C5.8.2 Test setup
	C5.8.3 Test case dependencies
	C5.8.4 Procedure
	C5.8.5 Expected results

	C5.9 pcm-09
	C5.9.1 Purpose
	C5.9.2 Test setup
	C5.9.3 Test case dependencies
	C5.9.4 Procedure
	C5.9.5 Expected results

	C6 diskcmp Test Case Specifications
	C6.1 dcm-01
	C6.1.1 Purpose
	C6.1.2 Test setup
	C6.1.3 Test case dependencies
	C6.1.4 Procedure
	C6.1.5 Expected results

	C6.2 dcm-02
	C6.2.1 Purpose
	C6.2.2 Test setup
	C6.2.3 Test case dependencies
	C6.2.4 Procedure
	C6.2.5 Expected results

	C6.3 dcm-03
	C6.3.1 Purpose
	C6.3.2 Test setup
	C6.3.3 Test case dependencies
	C6.3.4 Procedure
	C6.3.5 Expected results

	C6.4 dcm-04
	C6.4.1 Purpose
	C6.4.2 Test setup
	C6.4.3 Test case dependencies
	C6.4.4 Procedure
	C6.4.5 Expected results

	C6.5 dcm-05
	C6.5.1 Purpose
	C6.5.2 Test setup
	C6.5.3 Test case dependencies
	C6.5.4 Procedure
	C6.5.5 Expected results

	C7 corrupt Test Case Specifications
	C7.1 cor-01
	C7.1.1 Purpose
	C7.1.2 Test setup
	C7.1.3 Test case dependencies
	C7.1.4 Procedure
	C7.1.5 Expected results

	C7.2 cor-02
	C7.2.1 Purpose
	C7.2.2 Test setup
	C7.2.3 Test case dependencies
	C7.2.4 Procedure
	C7.2.5 Expected results

	C7.3 cor-03
	C7.3.1 Purpose
	C7.3.2 Test setup
	C7.3.3 Test case dependencies
	C7.3.4 Procedure
	C7.3.5 Expected results

	C7.4 cor-04
	C7.4.1 Purpose
	C7.4.2 Test setup
	C7.4.3 Test case dependencies
	C7.4.4 Procedure
	C7.4.5 Expected results

	C7.5 cor-05
	C7.5.1 Purpose
	C7.5.2 Test setup
	C7.5.3 Test case dependencies
	C7.5.4 Procedure
	C7.5.5 Expected results

	C7.6 cor-06
	C7.6.1 Purpose
	C7.6.2 Test setup
	C7.6.3 Test case dependencies
	C7.6.4 Procedure
	C7.6.5 Expected results

	C8 logsetup Test Case Specifications
	C8.1 lgs-01
	C8.1.1 Purpose
	C8.1.2 Test setup
	C8.1.3 Test case dependencies
	C8.1.4 Procedure
	C8.1.5 Expected results

	C9 logcase Test Case Specifications
	C9.1 Lgc-01
	C9.1.1 Purpose
	C9.1.2 Test setup
	C9.1.3 Test case dependencies
	C9.1.4 Procedure
	C9.1.5 Expected results

	C10 adjcmp Test Case Specifications
	C10.1 acm-01
	C10.1.1 Purpose
	C10.1.2 Test setup
	C10.1.3 Test case dependencies
	C10.1.4 Procedure
	C10.1.5 Expected results

	C10.2 acm-02
	C10.2.1 Purpose
	C10.2.2 Test setup
	C10.2.3 Test case dependencies
	C10.2.4 Procedure
	C10.2.5 Expected results

	C10.3 acm-03
	C10.3.1 Purpose
	C10.3.2 Test setup
	C10.3.3 Test case dependencies
	C10.3.4 Procedure
	C10.3.5 Expected results

	C10.4 acm-04
	C10.4.1 Purpose
	C10.4.2 Test setup
	C10.4.3 Test case dependencies
	C10.4.4 Procedure
	C10.4.5 Expected results

	C10.5 acm-05
	C10.5.1 Purpose
	C10.5.2 Test setup
	C10.5.3 Test case dependencies
	C10.5.4 Procedure
	C10.5.5 Expected results

	C10.6 acm-06
	C10.6.1 Purpose
	C10.6.2 Test setup
	C10.6.3 Test case dependencies
	C10.6.4 Procedure
	C10.6.5 Expected results

	C11 sechash Test Case Specifications
	C11.1 shs-01
	C11.1.1 Purpose
	C11.1.2 Test setup
	C11.1.3 Test case dependencies
	C11.1.4 Procedure
	C11.1.5 Expected results

	C11.2 shs-02
	C11.2.1 Purpose
	C11.2.2 Test setup
	C11.2.3 Test case dependencies
	C11.2.4 Procedure
	C11.2.5 Expected results

	C11.3 shs-03
	C11.3.1 Purpose
	C11.3.2 Test setup
	C11.3.3 Test case dependencies
	C11.3.4 Procedure
	C11.3.5 Expected results

	C11.4 shs-04
	C11.4.1 Purpose
	C11.4.2 Test setup
	C11.4.3 Test case dependencies
	C11.4.4 Procedure
	C11.4.5 Expected results

	C11.5 shs-05
	C11.5.1 Purpose
	C11.5.2 Test setup
	C11.5.3 Test case dependencies
	C11.5.4 Procedure
	C11.5.5 Expected results

	C11.6 shs-06
	C11.6.1 Purpose
	C11.6.2 Test setup
	C11.6.3 Test case dependencies
	C11.6.4 Procedure
	C11.6.5 Expected results

	C11.7 shs-07
	C11.7.1 Purpose
	C11.7.2 Test setup
	C11.7.3 Test case dependencies
	C11.7.4 Procedure
	C11.7.5 Expected results

	C11.8 shs-08
	C11.8.1 Purpose
	C11.8.2 Test setup
	C11.8.3 Test case dependencies
	C11.8.4 Procedure
	C11.8.5 Expected results

	C11.9 shs-09
	C11.9.1 Purpose
	C11.9.2 Test setup
	C11.9.3 Test case dependencies
	C11.9.4 Procedure
	C11.9.5 Expected results

	C11.10 shs-10
	C11.10.1 Purpose
	C11.10.2 Test setup
	C11.10.3 Test case dependencies
	C11.10.4 Procedure
	C11.10.5 Expected results

	C11.11 shs-11
	C11.11.1 Purpose
	C11.11.2 Test setup
	C11.11.3 Test case dependencies
	C11.11.4 Procedure
	C11.11.5 Expected results

	C11.12 shs-12
	C11.12.1 Purpose
	C11.12.2 Test setup
	C11.12.3 Test case dependencies
	C11.12.4 Procedure
	C11.12.5 Expected results

	C11.13 shs-13
	C11.13.1 Purpose
	C11.13.2 Test setup
	C11.13.3 Test case dependencies
	C11.13.4 Procedure
	C11.13.5 Expected results

	C11.14 shs-14
	C11.14.1 Purpose
	C11.14.2 Test setup
	C11.14.3 Test case dependencies
	C11.14.4 Procedure
	C11.14.5 Expected results

	C12 diskhash Test Case Specifications
	C12.1 dhs-01
	C12.1.1 Purpose
	C12.1.2 Test setup
	C12.1.3 Test case dependencies
	C12.1.4 Procedure
	C12.1.5 Expected results

	C12.2 dhs-02
	C12.2.1 Purpose
	C12.2.2 Test setup
	C12.2.3 Test case dependencies
	C12.2.4 Procedure
	C12.2.5 Expected results

	C12.3 dhs-03
	C12.3.1 Purpose
	C12.3.2 Test setup
	C12.3.3 Test case dependencies
	C12.3.4 Procedure
	C12.3.5 Expected results

	C12.4 dhs-04
	C12.4.1 Purpose
	C12.4.2 Test setup
	C12.4.3 Test case dependencies
	C12.4.4 Procedure
	C12.4.5 Expected results

	C12.5 dhs-05
	C12.5.1 Purpose
	C12.5.2 Test setup
	C12.5.3 Test case dependencies
	C12.5.4 Procedure
	C12.5.5 Expected results

	C12.6 dhs-06
	C12.6.1 Purpose
	C12.6.2 Test setup
	C12.6.3 Test case dependencies
	C12.6.4 Procedure
	C12.6.5 Expected results

