
11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 1/8

Catskills Research Company OpenASR21
Constrained condition application of NVidia
NeMo ContextNet5x1 with subword tokenization
model to Farsi and Somali

Lars Ericson

Quantitative Analytics Specialist

Catskills Research Company

1334 Hudson Place Davidson, NC 28036

lars.ericson@wellsfargo.com (mailto:lars.ericson@wellsfargo.com)

11 November 2021

Abstract
We describe the Catskills Research Company system for NIST OpenASR21. In EVAL
Constrained condition, this system scored a WER of 0.986509 for Farsi and 0.993126 for
Somali. These are last-place scores for both conditions.

Core algorithmic approach
We used the NVidia NeMo ASR package [1] and followed their instructions [2] for training a new
language from scratch (Constrained condition) using the ContextNet 5x1 model [3] and BPE
a/k/a SentencePiece tokenizer [5]. Vocabulary input to subword tokenizer was that observed in
the BUILD transcriptions. Our model configuration was derived from a stock YAML file modified
for the subword tokenization of the language [4]. For Farsi the size of the decoder layers was
also doubled over stock. Final model for EVAL was selected from trained model checkpoints
based on WER on the alphabetically first BUILD audio input file, using the NeMo built-in WER
calculation [6]. For training we used the Novograd optimizer [8],[9]. We did many short separate
batches of training with manual adjustment of initial learning rate from .01 to 1e-10. We found
that initial rates closer to 0.001 were more effective but had to search manually for the right
initial training rate to see improvement in error during the batch. We stopped training when we
could find no learning rate that would result in continued improvement. Inference with time
stamps was done on entire recordings using the frame-by-frame attribution approach [7].

Key modelling choices were:

Size of layers in Jasper segment of encoder of ContextNext 5x1 pipeline
Number of subword tokens
Training sequence
Model selection.

mailto:lars.ericson@wellsfargo.com

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 2/8

For Farsi we chose

Layer sizes 256, 5x512, 2048
1024 subword tokens
Model number 20079 out of our sequence of checkpoints

For Somali we chose

Layer sizes 128, 5x2565, 1024
1024 subword tokens
Model number 932 out of our sequence of checkpoints

For the training sequence, we

Split 10 minute audio recordings into smaller segments corresponding to lines in the NIST
annotation
Initially trained the net progressively for segments of length 0.2 to 1 seconds, 0.2 to 1.5
seconds and so on up to 0.2 to 14 seconds, with decreasing batch sizes from 1024 down to
whatever would fit in memory (lowest around 32)
Finally trained on entire recordings with batch size 1

Additional features and tools used, including software
packages and publicly available external resources
We used:

Python 3.7.9
sph2pip_v2.5 for SPH to WAV conversion [5]

Python modules IPython , functools , glob , librosa , matplotlib , nemo ,
numpy , omegaconf , pandas , pickle , pyaudio , pydub ,
pytorch_lightning , soundfile , sqlite3 , tarfile , torch , tqdm ,
unidecode

Other data used (outside provided data)
Only NIST OpenASR21 BUILD samples were used for training.

Significant data pre-/post-processing

Data augmentation

We used spectral augmentation [9] in the training pipeline with configuration:

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 3/8

In []:

Speaker activity detection and translation

We operated on entire 10-minute recordings using the frame-by-frame approach [7] to time
stamp subwords followed by knitting of subwords and coalescing of subword timestamps to get
the timestamp for the whole word. This means we don't have to do Voice Activity Detection
outside of the model or any kind of splitting of the input text into non-silent segments prior to
transcription. Not having to do VAD or splitting is a major simplification. The function to obtain
inference at frame-by-frame level is:

In [1]:

where

In [2]:

The main function which also does the time stamping of words is:

 spec_augment:

 target: nemo.collections.asr.modules.SpectrogramAugmentation

 rect_freq: 50

 rect_masks: 5

 rect_time: 120

def get_prediction(asr_model, AUDIO_FILENAME):

 idx_to_label=np.array(list(asr_model.decoder.vocabulary) + [' '])

 files = [AUDIO_FILENAME]

 logits = asr_model.transcribe(files, logprobs=True)[0]

 clr()

 probs=softmax(logits)

 preds = np.argmax(probs, axis=1)

 decoded_prediction = []

 decoded_index = []

 blank_id=1024

 previous = blank_id

 for i, p in enumerate(preds):

 if (p != previous or previous == blank_id) \

 and p != blank_id:

 decoded_prediction.append(p)

 decoded_index.append(i)

 previous = p

 decoded_prediction=np.array(decoded_prediction)

 decoded_index=np.array(decoded_index)

 hypothesis_text='&'.join(idx_to_label[decoded_prediction]\

).replace('&##','').replace('&',' ')

 return preds, idx_to_label, decoded_prediction, \

 decoded_index, hypothesis_text

def softmax(logits):

 e = np.exp(logits - np.max(logits))

 return e / e.sum(axis=-1).reshape([logits.shape[0], 1])

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 4/8

In [5]: def asr_with_timecode(asr_model, AUDIO_FILENAME, stm_dir,

 shipping_dir, phase, model_fn,

 language, debug = False):

 recording = AUDIO_FILENAME.split('/')[-1][0:-4]

 rec=recording.replace('_inLine', '').replace('_outLine', '')

 channel = '1' if '_inLine' in recording else '2'

 rec_chan=f'{rec}_{channel}'

 signal, sample_rate = librosa.load(AUDIO_FILENAME, sr=None)

 preds, idx_to_label, decoded_prediction, \

 decoded_index, hypothesis_text = \

 get_prediction(asr_model, AUDIO_FILENAME)

 starts=np.hstack([decoded_index*.01, [signal.shape[0]/16000]])

 start_end=np.vstack([starts[0:-1], starts[1:]]).T

 tokens=idx_to_label[decoded_prediction]

 n = len(tokens)

 final=[]

 i = 0

 while i < n:

 text1 = tokens[i]

 start1, end1 = start_end[i]

 if i < n-1:

 j=i+1

 while j < n:

 start2, end2 = start_end[j]

 text2 = tokens[j]

 if text2[0:2]=='##':

 text1 = f'{text1}{text2[2:]}'

 end1 = end2

 j=j+1

 else:

 break

 i = j

 else:

 i=i+1

 if start1 > end1:

 end1 = start1 + 0.02

 final.append([rec, channel, rec_chan, start1, end1, text1])

 stm_columns = ['recording', 'channel', 'rec_chan',

 'start', 'end', 'text']

 df=pd.DataFrame(final, columns=stm_columns)

 stm_fn = f'{stm_dir}/{recording}.stm'

 df.to_csv(stm_fn, index=False, sep='\t', header=False)

 # print('saved', stm_fn)

 hyp =' '.join(df['text'].values).replace('(<hes>)','')

 if phase != 'eval':

 stms_fn=f'stms/{language}/{phase}/{recording}.stm'

 # print("reading", stms_fn)

 stm=pd.read_csv(stms_fn, delimiter='\t',

 header=None, names=stm_columns).dropna()

 stm.columns=stm_columns

 gold=' '.join(stm['text'].values).replace('(<hes>)','')

 wer = word_error_rate(hypotheses=[hypothesis_text],

 references=[gold])

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 5/8

Features that were the most novel or unusual and/or led
to the biggest improvements in system
performance
Inference worked well in BUILD for Farsi. We didn't have enough time to make it work for
Somali. It didn't transfer as well to DEV. We have two interpretations of this:

The BUILD and DEV vocabularies intersected only 50%
There were multipled dialects and different dialects may pronounce the same word using
different phonemes in kind and number
For training purposes there were unequal sized samples of each dialect and in addition the
DEV and BUILD samples may have different proportions of each dialect.

Here is a sample of first 5 WER scores alphabetically on file name for BUILD for Farsi with our
model 20079:

phase score

BUILD 30.07

BUILD 07.46

BUILD 24.64

BUILD 14.90

BUILD 39.28

BUILD 15.31

Here are the DEV scores on the first 5 DEV files using the same model:

phase score

DEV 84.98

DEV 92.37

DEV 91.03

DEV 88.13

DEV 87.97

DEV 85.66

System configuration

Our system configuration was

 print(f"WER,{language},{phase},"

 "{round(wer*100,2):05.2f},{AUDIO_FILENAME},{model_fn}")

 if not debug:

 cmd = f"OpenASR_generate_ctm_file.py " \

 "-f {stm_fn} -o {shipping_dir}"

 os.system(cmd)

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 6/8

Intel core i9 processor
3TB SSD
64GB RAM
NVidia RTX 2080TI GPU with 11GB of VRAM
Ubuntu 21.10 operating system
Python 3.9.6

Minimal required hardware specs to run your
system

Evaluation required less than 2GB of GPU VRAM and less than 5GB of CPU RAM. Evaluation
was fast, less than 5 minutes for a DEV or EVAL run.

Minimal required time and amount of data to train/tune
your system
We trained for thousands of sessions under varying conditions of initial learning rate, network
size, and size of training samples. We used a single GPU with 11GB of VRAM. We were
constrained in our choices by the VRAM size. Approximately 200 hours of training was done for
each language under varying conditions using the single GPU.

Diagram giving a visual representation of our system’s
workflow

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 7/8

References
[1] https://github.com/NVIDIA/NeMo (https://github.com/NVIDIA/NeMo)

[2]
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_with_Subword_Tokenization.ipynb
(https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_with_Subword_Tokenization.ipynb)

[3] https://docs.nvidia.com/deeplearning/nemo/user-
guide/docs/en/stable/asr/models.html#contextnet
(https://docs.nvidia.com/deeplearning/nemo/user-
guide/docs/en/stable/asr/models.html#contextnet)

https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_with_Subword_Tokenization.ipynb
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/models.html#contextnet

11/11/21, 12:52 PM catskills_openasr_system_description - Jupyter Notebook

localhost:8888/notebooks/catskills_openasr_system_description.ipynb# 8/8

[4]
https://github.com/NVIDIA/NeMo/blob/54e6f6ee688f09810d3e54661275fd5c8718db00/examples/
(https://github.com/NVIDIA/NeMo/blob/54e6f6ee688f09810d3e54661275fd5c8718db00/examples

[5] https://github.com/google/sentencepiece (https://github.com/google/sentencepiece)

[6]
https://github.com/NVIDIA/NeMo/blob/25c61f2e6f68af7fe90853b11bd073e6b2625c72/nemo/collec
(https://github.com/NVIDIA/NeMo/blob/25c61f2e6f68af7fe90853b11bd073e6b2625c72/nemo/colle

[7] https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Offline_ASR.ipynb
(https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Offline_ASR.ipynb)

[8] https://www.openslr.org/3/ (https://www.openslr.org/3/)

[9] https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_with_NeMo.ipynb
(https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_with_NeMo.ipynb)

https://github.com/NVIDIA/NeMo/blob/54e6f6ee688f09810d3e54661275fd5c8718db00/examples/asr/conf/citrinet/config_bpe.yaml
https://github.com/google/sentencepiece
https://github.com/NVIDIA/NeMo/blob/25c61f2e6f68af7fe90853b11bd073e6b2625c72/nemo/collections/asr/metrics/wer.py
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Offline_ASR.ipynb
https://www.openslr.org/3/
https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_with_NeMo.ipynb

