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Prognosis: Predictive Science

> Definition

to forecast the likely outcome of an situation ...
v Disease/Epidemiology
v Weather forecasting
v Economic development

— Oxford Dictionaries Online

» Originally a medical term

back in the 19t century:
o Predictive Science
v Main aim was not to cure
disease, but to give a A

medical diagnosis and
predict the patient's chance
of survival in terms of
remaining life; - a1
; Epidemiology Stock Prognosis in Weather
v Focus shifted Only decades Prediction Prediction Manufacturing Forecast
later to curing disease.
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In the Context of Manufacturing

* Predict expected progression of
degradation in a machine or its
components from its current
state to future functional
failure, and the confidence
associated with prediction;

Identity short-term and long-
term actions/decisions to
improve remaining useful life
(RUL) of a machine;

Provide scientific and technical
basis for maintenance
scheduling, asset management,
and effective decision making.
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Outline

QO Background

v' Basic concepts
v Major modeling techniques

Q Particle Filter (PF)

v' Gradual degradation and time-varying rates
v Multi-mode PF

O Case Study
v Rolling bearing remaining life prognosis

O Conclusion and Future Work
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Modeling: Inference, Tracking, and Prognosis

Vibration
sensor #2 .-

Vibration. ..
.---sensor #1 §

Prognos:s

Vlbratlon S|gna| #l oL
M\WMWWW "qu " i JMWW'L VWWWM'W
X 4
Vibration signal #2 k
I wer.M.nW'w MWM' L] WMWW

Sensor Measurement Current Part Status Part State Propagation Future Part Status
(Z1.4) (X) (X1.0) (Xket, ko2, )

Inference: estimate system/part current state, based on current measurement
Tracking: identify propagation of state using historical measurements (recursive inference)
Prognosis: predict state propagation in the future, without available measurement
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Prognostic Modeling Methods: Classification

Operation

(G

Maintenance

Mechanism
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Measurement/
Features

Data-Driven

—
Fatigue Propagation

Tool-life prediction
-

—
Kalman Filtering

Particle Filtering

-

[ Neural Network

Fuzzy Theory

Wiener Process

Gamma Process
Proportional Hazards Model

Hidden Markov Model

—

Physics-based: describe system behavior analytically, parameters experimentally determined
Data-driven: rely on measured data, numerically determine relation between current and future states
Model-based: combine the two methods for improved robustness and prediction accuracy

Alternative classification scheme: depending on how uncertainty is handled in the prediction process:
v Deterministic: machine health as defined value

v Stochastic (probabilistic): machine health as probability distribution, degradation as evolution of

distributions
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Analytical Representation (1)

Vibration S|gnal #1 _____
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Measurement "5
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Future Part
Status

(Xk+1, k+2, ... )

CASE
\SESTERN

{ESERVE
e [|ectromechanical Systems Laboratory

Inference

v Estimate the current part status through a posterior
PDF (), realized Bayes’ Rule

P (x| xx—1) B (Zx | %)

___________ G

'Postenor PDF; ' Prior PDF ! Constantl 'L|keI|hood

Tracking

v Identify the state propagation model (or recursively
update the prior PDF) through a series of posterior
PDF, following a Markov process ©)

P(xq, %y, o, X |21, Z9,) v ) Z)
= P(x1|21)P(x3]x1, Z3) -+ P(Xp | Xg—1, Zg)

Prognosis

v Predict the future state using the identified state
propagation model (a series of prior PDF)

P(xpt1|xk) P (Xpeg2 | Xg 1) -+

(1) PDF: Probability Density Function
(2) Bayes' Rule: posterior PDF can be estimated through prior pdf and likelihood
(3) Markov process: current state x, is only dependent on preceding state X, ,



Analytical Representation: (2)

° 1 a. crack length . - .
Prior PDF P (xk |xk— 1) N: cut numl?er Paris law, describing crack propagation
x — f X m AK: range of stress intensity over time (i.e. from x,; to x,)
k Ak ,Bk ( k-1 ) + K ,J Region I: Region I1: K¢ or K, +
10 [ slow crac.k power law region = final i
System state at time k | Parameters to Process-to-process growth region failure
be estimated variation e

da/dN = C(AK)™

v Also called State Evolution model
Obtained from physical or empirical knowledge

10——1 —
Region I11:
rapid, unstable
crack growth

<\

da/dN, mm/cycle

v Sometimes conditional on parameters, {A,, B},
which determines the performance degradation rate Y

: ; 10 [
and may be time-varying
AK, MPam’”
* Likelihood Function P(Zk | Xk) 1 Kurtosis 4 Spectral mean 1 Spectral Kurtosis
_ o 0.8 0.8 0.8
Zy _g(xk)+vk én_ﬁ/-\l G_EW n.aM\\
go. 0.4 0.4
i 0.2 0.2 0.2
Sensordataor ii System state | | Measurement noise 0 0
extracted features at time k 4 Wavelet energ 4  Energy ratio 1 Actual wear
o 0.8 0.8 0.8
v Also called Measurement model E gi 0.6 0.6
) , . 2 0. 0.4 0.4
v"g: nonlinear mapping, from data—driven model <02 0.2 0.2

0 0 0
0 100 200 300 O 100 200 300 O 100 200 300
Cut number Cut number Cut number




Particle Filter

System
performance X, = fAkaBk (Xk—1)+ U,
degradation

A

Measurements

v

Time, t (Min)

Currenttime  pregicted PDF of
remaining life
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Each particle describes a specific state
value and two coefficients {xf(, A, BI'(}
(k: time; i: it" particle);

System state (e.g. tool wear) at a
certain time is the statistical sum of
values from a chosen number N of
particles, expressed as a probability
distribution;

Particles’ evolution directly determined
by state evolution model, which can be
linear or nonlinear

State propagation is presented as
progressive updates of prior PDF

k+1|X ZWP( k+1|X)

Computed from
state evolution
model

Recursively
updated



Improvement on PF

* Limitation of PF

v Particle degeneracy: particles of weight 0 removed when estimating time-varying distribution
v Not able to track and predict time-varying performance degradation

Posterior pdf to be
estimated

* Improvement 1: Local Search PF (LSPF) it sanpivg
v For tracking and prognosis of gradual coveriora
. ) . . importance resampling }\ Degeneracy
degradation with time-varying rates @}
. Impoverishment

v Improve particles’ diversity through adaptive ° %(b) E
change of positions of resampled particles, by ipaties saiing e -
adding a perturbation i

(c)
Wang & Gao, “Adaptive re-sampling-based PF", JMS, 2015

|:> {x/,6}, 41}

* Improvement 2: Multi-Mode PF (MMPF)

v For transient performance change

v" Each filter mode corresponds to one - Estimated state x
. . . and parameter 0 in o
deterioration scenario last iteration |::> {x1,68, 12} |:> x&0
> Mode probability p

v Mode transition automatically performed based
on Bayesian inference

C) 63

A EMISL Wang & Gao, “Markov Nonlinear System”, ASME JGTP, 2016
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Bearing Failure and Life Prognosis

Fatigue

* Rolling bearing accounts for 30% rotating
machine failure ]

Corrosion

* Common causes for bearing failure [?!:
v Fatigue

Excessive load

Overheating

Corrosion

Lubricant failure

Contamination

Misalignment

* Statistical bearing life, L,

(Eje *10°
\P)

60* N

NS NEE NI NI

Contamination

Misalignment

(\

L, =

v Not consider rffect of operating conditions
v May deviate significantly from actual life, in

some cases by nearly a factor of 5 31 [1] Tandon, A review of vibration, 1999
[2] SKF, Bearing damage chart

— [3] Zaretsky, Bearing life prediction, 2000
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Multi-Stage Life Modeling

* Bearing life stages
v Stage 1: Normal operation
v Stage 2: Defect initiation

v Stage 3: Accelerated performance
degradation

* Degradation modes
v Mode 1: gradual degradation (small
vibration variation denoted by noise )

X =X + N (4,0

N N S I

'\ibration features ' Time instance! ' Noise term i

Life stages Degradation modes

Stage 1 All Mode 1
Stage 2 Onset denoted by Mode 2
Stage 3 Most are Mode 2
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Test Condition:
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Shaft Speed - 2000 rpm

0 0.5 1.0 1.5 2.0 25 3.0
Revolution (million)

v Mode 2: exponential defect growth (derived
form spall propagation model)
At

dx ' :
= :C' m
dt (C(l—x)j oo

X =| %™ +C (1-m, )]/1 )




Bearing Time to Failure Prognosis

* Remaining Useful Life (RUL)

v Calculated as the first passage time T, at which the predicted vibration first passes

the defined failure threshold

]
%+ > N(4,0;) =Threshold for Mode 1

i=k+1

(RULp :inf{T

}

* RUL Model Compensation

v Vibration maintain at a level before defect initiation
— predicted RULs by Mode 1 almost constant

v A compensation needed for Mode 1

RUL (*10in)

Xk _Xl
X

RUI—k,comp = I:QULk,predicted —k (1 B

1
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Experimental Setup

‘ Thermocouples

Radial
Accelerometers Load
%

?‘_ j/;_kx,_/d.f,;]: IAM/":.’ F_

— s d
1 B | o o | o
J O @,
A L PSP LA

Bearingl  Bearing2  Bearing3  Bearing4

Constant rotational speed at 2,000 rpm, a radial load of 6,000 Ib
Four ZA-2115 double row bearings, with force lubricated
vibration data were collected every 10 minutes, with 20 kHz sampling rate

A magnetic plug placed in the oil feedback pipe to collect debris; experiments
stopped when the accumulated debris exceeded a certain level

Motor

Inner-race defect Outer-race defect

AN NN

Caselé Lee, J, IMS, University of Cincinnati. "Bearing Data Set",
NR\L NASA Ames Prognostics Data Repository, 2007
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Multi-Mode Prognosis
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Performance Evaluation

2 ——— — ° Automatic detection of transition
18| / - among different bearing life stages
16| | OnsetofStage2 | 1
Lal | (defect nitiation): | _ v Onset of stage 2: the first transition point in
: 21000 mi :
Ll | 4Xfmn | _ time from Mode 1 to Mode 2
é 1 — a jump occurs in the measured vibration
08 A — / | v Onset of stage 3: the point in time when
[ Onset of Stage 3 | . .
06 | (accelerated defect growth): | | Mode 2 is switched on
0.4 - 3 21330 min |

——————————————— | — large vibration variation caused by
] accelerated spall propagation, accelerated
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Comparison between standard PF and multi-mode PF

_ Standard PF with nonlinear -
degradation function

Prediction error
RMSE [hour
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Comparison: PF vs. KF

0.8 T 0.8 :
Median estimation * Estimation “
0.7 r % True value w ] 0.7 1 *  True value % |
061 1 06
o5 Multi-Mode PF ! o5 Extended KF §
% 04! v RMSE:0.021 - 204f ¥ RMSE:0.060 |
0al ¥ Runningtime:17.1s | 05 ¥ Running time: 0.2 f |
02} 3
0.1
0 : : ' 0 ‘ : ‘
600 700 800 900 1000 600 700 800 900 1000
Time (*10 min) Time (*10 min)
Particle Filter Extdended Kalman Filter
N * (n?+ n) n3+2n2+n
N *(2p*n + pn + p) 2p%+2pn + 2pn + p
N * (2anN + nZ + 2n +qn) pN2+2n2+ 2pn +p + N

Note: N: number of particles in PF; n: state dimension; p: measurement dimension
a: coefficient related to resampling strategy, between 0 and 1; g: constant

MESSS Electromechanical Systems Laboratory Wang & Gao, “Adaptive re-sampling-based PF”, JMS, 2015



Broad Applications of PF

Tool wear prediction

121 *  Measurement /
(Wang and True wear 7
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Moving Forward

» Deterministic feature

Vibration extraction « Fault diagnosis: type
/. » Feature fusion through PCA |> and degree
Jz, Temp * Time-freq. analysis (e.g. « Condition-based
il . ,
e S STFT, wavelet) maintenance
/ Iy
Speed” —— S I
. O e - = ———— ——3
e AE ~ % _ _i{;? :7;7 —_————
$ R
o * Probabilistic inference (e.g. * Fault Prognosis:
#-"%,., Micro wireless ) PF, Bayesian network) degradation tracking
Sggsensng NEONS * Deep Learning (e.g. DBN, and prediction
ACO;?E; _ o DCNN) * Intelligent predictive
H. - § Multi-physics data fusion maintenance
= igh-spee T N
& j cameras . RUL pdf 90% confidence
K Failure Threshold N
Measurqn.ents 4—4"*‘""”:
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Thank You!

4 EMSL

sl Electromechanical Systems Laboratory




