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Prognosis: Predictive Science

 Definition
to forecast the likely outcome of an situation …
 Disease/Epidemiology
 Weather forecasting
 Economic development

― Oxford Dictionaries Online

 Originally a medical term 
back in the 19th century:
 Main aim was not to cure

disease, but to give a 
medical diagnosis and 
predict the patient's chance 
of survival in terms of 
remaining life;

 Focus shifted only decades 
later to curing disease.
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In the Context of Manufacturing

• Predict expected progression of 
degradation in a machine or its 
components from its current
state to future functional 
failure, and the confidence
associated with prediction;

• Identify short-term and long-
term actions/decisions to
improve remaining useful life
(RUL) of a machine;

• Provide scientific and technical 
basis for maintenance
scheduling, asset management, 
and effective decision making.

Malhi and Gao, Prognosis of defect propagation using recurrent 
neural networks, IEEE Trans. Instr. Meas., 2010
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Outline

 Background
 Basic concepts
 Major modeling techniques

 Particle Filter (PF)
 Gradual degradation and time-varying rates
 Multi-mode PF

 Case Study
 Rolling bearing remaining life prognosis

 Conclusion and Future Work
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Modeling: Inference, Tracking, and Prognosis

Vibration 
sensor #1
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Vibration signal #2

Vibration 
sensor #2

Sensor Measurement
(z1:k)

Current Part Status
(xk)

Future Part Status
(xk+1, k+2, … )

Inference: estimate system/part current state, based on current measurement
Tracking: identify propagation of state using historical measurements (recursive inference)
Prognosis: predict state propagation in the future, without available measurement

Investigated 
part

Part State Propagation
(x1:k)

Inference

Tracking
Prognosis
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Prognostic Modeling Methods: Classification

• Physics-based: describe system behavior analytically, parameters experimentally determined
• Data-driven: rely on measured data, numerically determine relation between current and future states
• Model-based: combine the two methods for improved robustness and prediction accuracy
• Alternative classification scheme: depending on how uncertainty is handled in the prediction process:

 Deterministic: machine health as defined value
 Stochastic (probabilistic): machine health as probability distribution, degradation as evolution of 

distributions

Gao et.al., Cloud-enabled prognosis, CIRP Annals, 2015
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Analytical Representation (1)

Sensor 
Measurement

(z1:k)

Inference
 Estimate the current part status through a  posterior 

PDF (1), realized Bayes’ Rule (2)

Current Part 
Status
(xk) Tracking

 Identify the state propagation model (or recursively 
update the prior PDF) through a series of posterior 
PDF, following a Markov process (3)

ܲ ,ଵݔ ,ଶݔ … , ,ଵݖ|௞ݔ ,ଶݖ … , ௞ݖ
ൌ ܲ ଵݖ|ଵݔ ܲ ,ଵݔ|ଶݔ ଶݖ ⋯ܲ ,௞ିଵݔ|௞ݔ ௞ݖ

Prognosis
 Predict the future state using the identified state 

propagation model (a series of prior PDF)

ܲ ௞ݔ|௞ାଵݔ ܲ ௞ାଵݔ|௞ାଶݔ ⋯

Vibration signal #1

Vibration signal #2 zk

Part State 
Propagation

(x1:k)

Future Part 
Status

(xk+1, k+2, … )
(1) PDF: Probability Density Function
(2) Bayes’ Rule: posterior PDF can be estimated through prior pdf and likelihood
(3) Markov process: current state xk is only dependent on preceding state xk-1

ܲ ௞ݖ	|௞ݔ ൌ
ܲ ௞ିଵݔ|௞ݔ ܲ ௞ݔ	|௞ݖ

ܲ ௞ݖ
Posterior PDF Prior PDF LikelihoodConstant
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Analytical Representation: (2)
• Prior PDF ܲ ௞ିଵݔ|௞ݔ

 , 1k kk kA B kx f x m 

Parameters to 
be estimated

System state at time k Process-to-process 
variation

 Also called State Evolution model
 Obtained from physical or empirical knowledge 
 Sometimes conditional on parameters, {Ak, Bk}, 

which determines the performance degradation rate
and may be time-varying

• Likelihood Function P(zk | xk)
( )k k kz g x v 

Measurement noiseSensor data or 
extracted features

 Also called Measurement model
 g: nonlinear mapping, from data–driven model

Paris law, describing crack propagation 
over time (i.e. from xk-1  to xk)

System state 
at time k

a: crack length
N: cut number 
K: range of stress intensity
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Particle Filter

Measurements

Failure 
threshold

Current time Predicted PDF of 
remaining life

System 
performance 
degradation

Time, t (Min)

 , 1k kk kA B kx f x u   Each particle describes a specific state
value and two coefficients
(k: time; i: ith particle);

 System state (e.g. tool wear) at a 
certain time is the statistical sum of 
values from a chosen number N of 
particles, expressed as a probability
distribution;

 Particles’ evolution directly determined 
by state evolution model, which can be 
linear or nonlinear

 State propagation is presented as 
progressive updates of prior PDF

 , ,i i i
k k kx A B

   1 1
1

| |
N

i i i
k k k k k

i
P x x w P x x 



 

Computed from 
state evolution 
model

Recursively 
updated
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Improvement on PF

• Improvement 2: Multi-Mode PF (MMPF)
 For transient performance change
 Each filter mode corresponds to one 

deterioration scenario
 Mode transition automatically performed based 

on Bayesian inference 

• Improvement 1: Local Search PF (LSPF)
 For tracking and prognosis of gradual

degradation with time-varying rates
 Improve particles’ diversity through adaptive

change of positions of resampled particles, by
adding a perturbation

Wang & Gao, “Adaptive re-sampling-based PF”, JMS, 2015

Wang & Gao, “Markov Nonlinear System”, ASME JGTP, 2016

• Limitation of PF
 Particle degeneracy: particles of weight 0 removed when estimating time-varying distribution
 Not able to track and predict time-varying performance degradation
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Bearing Failure and Life Prognosis 
• Rolling bearing accounts for 30% rotating 

machine failure [1]

• Common causes for bearing failure [2]:
 Fatigue
 Excessive load
 Overheating
 Corrosion
 Lubricant failure
 Contamination 
 Misalignment 

• Statistical bearing life, L10:

Fatigue Corrosion

Contamination
Misalignment

6

10

*10

60

eC
PL

N

 
 
 



C: dynamic load rating; P: 
equivalent bearing load; N: 
rotating speed; e: constant

 Not consider rffect of operating conditions 
 May deviate significantly from actual life, in 

some cases by nearly a factor of 5 [3] [1] Tandon, A review of vibration, 1999
[2] SKF, Bearing damage chart
[3] Zaretsky, Bearing life prediction, 2000  
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Multi-Stage Life Modeling

Phase I

Phase II

Phase III

Test Condition:
Radial Load – 5498 N;
Shaft Speed – 2000 rpm

Stage 1

Stage 2

Stage 3• Bearing life stages
 Stage 1: Normal operation
 Stage 2: Defect initiation
 Stage 3: Accelerated performance 

degradation

• Degradation modes
 Mode 1: gradual degradation (small 

vibration variation denoted by noise )

 Mode 2: exponential defect growth (derived 
form spall propagation model)

 
''

1

m

mdx C x
dt C x

 
    

1
(1 ) (1 )

1 (1 )k km m
k k k kx x C m 

    

C and m: material 
dependent parameters
∆τ: shear stress range, 
constant

 1 ,k k k kx x N   

Vibration features Time instance Noise term

Life stages Degradation modes
Stage 1 All Mode 1
Stage 2 Onset denoted by Mode 2
Stage 3 Most are Mode 2
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Bearing Time to Failure Prognosis
• Remaining Useful Life (RUL)
 Calculated as the first passage time T, at which the predicted vibration first passes 

the defined failure threshold

 

 
1

1
(1 ) (1 )

1

inf : ,                for Mode 1

inf : (1 )     for Mode 2T T

T

p k k k
i k

m m
p T T T

RUL T x N Threshold

RUL T x C m Threshold

 
 

 


       

      



inf(•) denotes the first passage time

μ and σ: to be estimated by PF

C and m: to be estimated by PF

• RUL Model Compensation
 Vibration maintain at a level before defect initiation 

→  predicted RULs by Mode 1 almost constant
 A compensation needed for Mode 1

1
, ,

1

1 k
k comp k predicted

x x
RUL RUL k

x
 

   
 
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Experimental Setup

Inner-race defect Outer-race defect

 Constant rotational speed at 2,000 rpm, a radial load of 6,000 lb
 Four ZA-2115 double row bearings, with force lubricated
 vibration data were collected every 10 minutes, with 20 kHz sampling rate
 A magnetic plug placed in the oil feedback pipe to collect debris; experiments 

stopped when the accumulated debris exceeded a certain level

Lee, J, IMS, University of Cincinnati. "Bearing Data Set", 
NASA Ames Prognostics Data Repository, 2007 
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Multi-Mode Prognosis
R

M
S
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Performance Evaluation

Standard PF with nonlinear 
degradation function Multi-mode LSPF

Prediction error
RMSE [hour] 7.9 2.9

Onset of Stage 2 
(defect initiation): 

21000 min 

Onset of Stage 3 
(accelerated defect growth): 

21330 min 

 Onset of stage 2: the first transition point in 
time from Mode 1 to Mode 2
→  a jump occurs in the measured vibration 

 Onset of stage 3: the point in time when 
Mode 2 is switched on
→ large vibration variation caused by 
accelerated spall propagation, accelerated 
material fracture

Comparison between standard PF and multi-mode PF

• Automatic detection of transition 
among different bearing life stages
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Comparison: PF vs. KF

Particle Filter Extdended Kalman Filter
Comp. Steps Computational Complexity Comp. Steps Computational Complexity
Prediction N * (n2 + n) Prediction n3 + 2n2 + n
Update N * (2p2n + pn + p) Kalman gain 2p3 + 2p2n + 2pn + p
Resampling N * (2anN + n2 + 2n +qn) Update pn2 + 2n2 + 2pn + p + n

Note:  N: number of particles in PF; n: state dimension; p: measurement dimension
a: coefficient related to resampling strategy, between 0 and 1; q: constant

Multi-Mode PF
 RMSE: 0.021
 Running time: 17.1 s

Extended KF
 RMSE: 0.060
 Running time: 0.2 s 

Wang & Gao, “Adaptive re-sampling-based PF”, JMS, 2015
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Broad Applications of PF

Performance 
Tracking

Machine tool

Motor

Gearbox

HVAC system
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Measurement
True wear
Median of prediction
90% confidence limits
Prediction paths

Tool wear prediction

Heat exchange degradation prediction

(Wang and 
Gao, IEEE 
TASE, 2017) (Wang et al. JMS, 2017)

(Wang and 
Gao, JMS, 
2015)
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Moving Forward

AE

Temp
.

Vibration

Speed

Micro wireless 
sensing networks

Acoustic 
array

High-speed 
cameras

Sensor Measurement

• Deterministic feature
extraction 

• Feature fusion through PCA
• Time-freq. analysis (e.g. 

STFT, wavelet)

Techniques Results

• Fault diagnosis: type 
and degree

• Condition-based
maintenance

Time [s]

• Probabilistic inference (e.g. 
PF, Bayesian network)

• Deep Learning (e.g. DBN, 
DCNN)

• Multi-physics data fusion

• Fault Prognosis: 
degradation tracking 
and prediction

• Intelligent predictive
maintenance

Machines Data Analytics
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Thank You!


