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       Case Study -- Lead Recovery Data

      Interest in the amount of lead in household paint resulted in research performed by

NIST in 2001 that was sponsored by the U.S. Department of Housing and Urban

Development (HUD).  The determination of the amount of lead is often done using

field-portable ultrasonic extraction-anodic stripping voltammetry (UE/ASV).  Several

studies have been performed during the past 10 years to assess the measurement

reliability of field-portable UE/ASV, and this case study will examine the data from

one such study.

    In that study, there was interest in determining the factors that affect “lead

recovery”, expressed as a percentage of the known amount of lead in 112 paint

specimens.  Sonicators were used for the ultrasonic lead extraction, with sonicator

power (low and high) being one of five factors, each at two levels, that were used in

the experiment.  The other four factors were sonication temperature, sonication time,

specimen mass, and specimen particle size.  The response variable, as stated, was the

lead recovery percentage.

      The factors will be denoted by the letters , , , , and , with  = SonicatorA B C D E A

(power) ,  =  Temperature,  = Time,  = Mass, and  = Size.B C D E

     It is worth noting that although there were two particle sizes (large and small)

specified for the experiment, specimen particle size is essentially a random variable,

as it is apparently not possible to grind a specimen so that the particle size is exactly

equal to a nominal value.  Thus, specimen particle size really wasn't fixed (rather, it

was more or less dichotomized), nor was specimen mass.  This necessitates alternative

methods of analysis and a comparison of the results obtained using each analysis

method.   This will be discussed further in subsequent sections.
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     Seven specimens could be handled by the sonicator on a given run, so for reasons

of efficiency this number was used per run.  This does create a potential problem from

a statistical standpoint, however, as 2  = 32 and 7 is not a factor of 32.  Consequently,5

the experiment was designed by splitting the 32 runs into two halves, with one half

replicated 3 times and the other half replicated 4 times, producing 112 observations to

correspond to the 112 specimens.  This unbalanced nature of the design does not

create any problems as long as the pair of 16 runs is chosen the way that we would

normally split a 2 , with one of the splits used as a 2  design, and as long as we5 5̂ �

don't estimate interactions of order 2 (i.e., 3 factors) and higher.  If, however, each set

of 16 is selected in such a way as to inadvertently cause a correlation between two or

more factors in each set of 16, then the design will be nonorthogonal when the two

sets are joined together because of the unequal number of replicates and there will be

non-zero correlations involving main effects and two-factor interactions.  Indeed this

is what happened, but the correlations for terms that are of interest are so small (all

a .071) as to be inconsequential.  Therefore, we will not be concerned with this very

slight departure from an orthogonal design.

I   Transforming the Response Variable

       Since we have an experiment with replicates, we can perform an analysis using

Analysis of Variance (ANOVA).  Such an analysis is based on the assumption of a

normal distribution for the error terms in a ANOVA model, which translates into an

assumption of normality for the response variable.  Percentages will not be normally

distributed, however, and in fact will be highly skewed, as can be seen below for the

112 observations.
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      In addition to the non-normality problem, we could expect to have a problem with

the error terms not having a constant variance.  More explicitly, the sample variance

computed from the replicates for each of the 32 combinations can be expected to

differ considerably.

      Even though the binomial distribution doesn't strictly apply here because we do

not have Bernoulli trials, etc., we can still use that distribution as a reference point in

guiding our analysis.

     Accordingly, it would be reasonable to transform the data using the arcsin ­ %®l

transformation in an effort to effect both approximate normality and homogeneity of

variance. (Using this transformation does create a minor problem, as measurement

error caused two of the values to be recorded as 100% plus a fraction, and the

transformation is undefined for those values.  So 99.999% was used instead for those

two percentages.)
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       The histogram for the transformed values after the transformation, using the same

number of classes as used in the preceding histogram, is shown below.  Although

some skewness remains, the improvement is obvious.  Furthermore, we should not

expect to see perfect symmetry in a histogram any more than we should expect to

encounter a data set that is exactly normally distributed, especially with a small

number of classes.  For the moment we will not be overly concerned with this degree

of asymmetry.
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       It isn't worthwhile to test for nonhomogeneity of variance when there are only a

few observations per treatment combination and when the number of observations is

not constant over the treatment combination.

       We might still investigate the within-cell variability, however, at least as part of

an exploratory data analysis. From such an investigation there is one unusual

observation that stands out, as one cell has the following three values for lead

recovery percentage:  30.8, 76.2, and 79.3.  If we viewed these data with an eye
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toward a “2 out of 3 decision”, then we would conclude that the 30.8 should be

investigated.   Certainly there is no other cell for which one observation differs from

the other two observations by anything even close to this difference.   We will see if

this observation that stands out in a univariate analysis will also appear aberrant in

subsequent analyses involving multiple variables/dimensions.

II   Analysis

      Since interactions involving more than three factors rarely exist in the physical

world, we might begin the analysis by fitting a hierarchical model that includes all

three-factor interactions, with the response variable being the transformed response

given in the previous section.   The initial output is given below

Estimated Effects and Coefficients for arcsinesqrt(recovery )(coded %
units)

 Term                   Effect      Coef     SE Coef     T      P
 Constant                         1.1416     0.01013  112.74  0.000
 A                      0.0196    0.0098     0.01007    0.97  0.333
 B                      0.1297    0.0648     0.01015    6.39  0.000
 C                      0.0899    0.0450     0.01013    4.44  0.000
 D                     -0.0156   -0.0078     0.01015   -0.77  0.444
 E                     -0.2992   -0.1496     0.01013  -14.77  0.000
 AB                    -0.0105   -0.0053     0.01013   -0.52  0.605
 AC                     0.0106    0.0053     0.01007    0.53  0.600
 AD                    -0.0127   -0.0064     0.01013   -0.63  0.531
 AE                     0.0149    0.0075     0.01007    0.74  0.460
 BC                    -0.0197   -0.0098     0.01015   -0.97  0.335
 BD                     0.0078    0.0039     0.01015    0.38  0.702
 BE                     0.1544    0.0772     0.01015    7.60  0.000
 CD                     0.0403    0.0202     0.01015    1.99  0.050
 CE                     0.0841    0.0421     0.01013    4.15  0.000
 DE                     0.0403    0.0202     0.01015    1.99  0.050
 ABC                   -0.0066   -0.0033     0.01013   -0.33  0.744
 ABD                    0.0185    0.0092     0.01015    0.91  0.365
 ABE                    0.0456    0.0228     0.01013    2.25  0.027
 ACD                   -0.0246   -0.0123     0.01013   -1.21  0.229
 ACE                   -0.0200   -0.0100     0.01007   -0.99  0.324
 ADE                    0.0126    0.0063     0.01013    0.62  0.535
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 BCD                   -0.0105   -0.0052     0.01015   -0.52  0.607
 BCE                    0.0177    0.0089     0.01015    0.87  0.385
 BDE                   -0.0215   -0.0107     0.01015   -1.06  0.294
 CDE                    0.0080    0.0040     0.01015    0.40  0.693

Analysis of Variance for arcsinesqrt(recovery ) (coded units)%

Source                DF      Seq SS     Adj SS     Adj MS      F      P
Main Effects           5     3.17905    3.18758   0.637517  56.39  0.000
2-Way Interactions    10     0.93123    0.92891   0.092891   8.22  0.000
3-Way Interactions    10     0.12967    0.12967   0.012967   1.15  0.338
Residual Error        86     0.97235    0.97235   0.011306
  Lack of Fit          6     0.05128    0.05128   0.008547   0.74  0.617
  Pure Error          80     0.92107    0.92107   0.011513
Total                111     5.21230

Unusual Observations for arcsinesqrt(recovery ) %

Obs  asinsqrt(Rec%) Fit       SE Fit   Residual     St Resid
  5    1.57080    1.32450    0.05458    0.24630       2.70R
  8    1.12876    1.32450    0.05458   -0.19574      -2.14R
 29    1.57080    1.36541    0.04859    0.20539       2.17R
 47    0.98030    1.22079    0.05458   -0.24049      -2.64R
 48    1.02778    1.26347    0.04859   -0.23569      -2.49R
 75    1.09845    0.90928    0.05458    0.18917       2.07R
 79    0.58834    0.90928    0.05458   -0.32095      -3.52R
 97    1.01766    1.27232    0.04859   -0.25466      -2.69R

R denotes an observation with a large standardized residual

   When we look at the list of “unusual observations” (defined as the standardized

residual exceeding 2 in absolute value), we see that observation #79 stands out.

This is the observation with a recovery percentage of 30.8 that was pointed out in

the preceding section.

       Rather than look at the list of estimated effects and try to determine which effects

are significant, it would be better to use a Pareto chart of standardized effect estimates

(i.e., t-statistics) as a visual aid.
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     Given below is the Pareto chart, with the dotted line serving as a threshold value

(obtained from using a significance level of .05), with bars that extend to the right of

the line indicating significance.
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        We observe that a 3-factor interaction is significant, but since it is very close to

the dotted line, whether the interaction is declared significant or not will depend

upon what other terms are in the model.  We would expect a moderate number of

effects for a 2  design.  Daniel 5 (1976, p. 75) estimates that four significant effects is

about average for a 2  design, so we might expect about eight for a � 2  design because5

we have almost twice as many effects to estimate with the 2  design5 .  Of course the

number of effects that are significant will depend on how well the factors in the

experiment are selected.
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      Because three effects, the ,  and interactions, are borderline in termsABE CD, DE 

of significance, we need to determine if they are significant when effects that are

clearly not significant are not included in the model.

     We might make this determination by using a variable selection approach such as

stepwise regression, using, say, the 10 largest effects from the Pareto chart as

candidate terms.  Doing so results in the following effects being selected in the order

indicated, using the letter designation as in the Pareto chart:  E, BE, B, C, CE, ABE,

CD,  DE Cand  statistic when.   This is also the model that stands out in terms of the �

all possible subsets of models are examined.  The  value is 79.18, so the modelR�

explains 79.18% of the variability in the lead recovery percentage values.   If we

wanted to know what this is on the original scale, we would have to convert the fitted

values back to the original scale and then compute the square of the correlation

between those values and the response values on the original scale.

        Other statistics for the model with the selected terms are given below and it can

be observed that all effects are significant at the .05 level. (The slight lack of

orthogonality of the design is reflected in the fact that the standard errors are not all

the same, as they are when an orthogonal design is used.)

Estimated Effects and Coefficients for arcsinesqrt(recovery ) (coded units) %

 Term         Effect    Coef     SE Coef      T      P
 Constant              1.1409    0.009699  117.63  0.000
 B           0.1304    0.0652    0.009749    6.69  0.000
 C           0.0916    0.0458    0.009699    4.72  0.000
 E          -0.2964   -0.1482    0.009699  -15.28  0.000
 BE          0.1529    0.0764    0.009749    7.84  0.000
 CE          0.0843    0.0422    0.009699    4.35  0.000
 ABE         0.0455    0.0228    0.009699    2.35  0.021
 CD          0.0430    0.0215    0.009749    2.20  0.030
 DE          0.0403    0.0201    0.009749    2.07  0.041
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     Thus, we identify eight effects as being real, which is about what we would

expect.  Since five of these effects are interactions, we are presented with a challenge

in trying to interpret the data.  We note that factor  is a component of the 3-factorA

interaction but does not appear in the model as either a main effect or in a two-factor

interaction.  Thus, if we use this model we will be using a non-hierarchical model.

     The model does not violate the principle of , however, which waseffect heredity

introduced by Hamada and Wu (1992).  This principle, which is somewhat the reverse

of the principle of hierarchical modeling, states that a two-factor interaction should

be included in a model only if the interaction contains at least one factor identified as

having a significant main effect.  Lin (1998-99) challenged this concept, noting that

Box and Draper (1987) contains numerous real data sets that violate the principle of

effect heredity.   (Such datasets should be analyzed using conditional effects, as the

violation could be caused by large interactions.)

        We will first focus attention on factor , which appears in two of the two-factorD

interactions, but does not appear in the model as a main effect.   If we add factor  toD

the model that we have selected, we obtain the results given below.

Estimated Effects and Coefficients for arcsinesqrt(recovery ) (coded %
units)

Term         Effect      Coef     SE Coef       T      P
Constant               1.1409    0.009716  117.42  0.000
 B           0.1293    0.0646    0.009792    6.60  0.000
 C           0.0916    0.0458    0.009716    4.72  0.000
 D          -0.0155   -0.0077    0.009767   -0.79  0.430
 E          -0.2964   -0.1482    0.009716  -15.25  0.000
 BE          0.1540    0.0770    0.009792    7.86  0.000
 CE          0.0843    0.0422    0.009716    4.34  0.000
 ABE         0.0455    0.0228    0.009716    2.34  0.021
 CD          0.0430    0.0215    0.009766    2.20  0.030
 DE          0.0404    0.0202    0.009767    2.07  0.041
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     When there are large interactions (“large” means an interaction effect in which,

for a two-factor interaction, the interaction effect is at least 1/3 or so of the smaller of

the two main effects), it is necessary to look at conditional effects.   That is, since the

CD D interaction is the larger of the two two-factor interactions involving factor , we

should look at the effect of factor  at each level of factor C.   It is known that theseD

conditional effects are obtained as  , so the conditional effects of  areD CD Da

^ a0.0155 0.0430 = 0.0585  0.0275. ^ and Notice that the first

number is larger in absolute value than three of the interactions that are judged to be

significant.  These numbers are not directly comparable, however, because the

standard error of a conditional effect is larger than the standard error of an

unconditional effect.   Therefore, a conditional effect would have to be divided by

l� so as to make a conditional effect comparable to an unconditional effect in two-

level designs.  Since   =  which is greater than the^ ^0.0585 0.0414, / l�

(significant)   interaction, factor  is not unimportant.  Rather, it simply appearsDE D

to be unimportant when only unconditional effects are examined because the

conditional effects are opposite in sign and add to a small number

      There are various ways in which we could view the  interaction.  One view isABE

recognizing that the interaction differs for each level of  .  Graphically, thisBE A

means that the interaction profiles for  will be noticeably different for each levelBE

of . Quantitatively, the  conditional interaction effects are A BE BE ABE =a

0.1540 0.0455 = 0.1085 and 0.1995.a  

       Since the  effect was not significant, we can proceed as before and insert factorA

A in the model, after first removing factor .  The results are given below.D

Estimated Effects and Coefficients for arcsinesqrt(recovery ) (coded units) %

 Term         Effect      Coef     SE Coef     T      P
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 Constant               1.1409    0.009704  117.57  0.000
 A            0.0183    0.0091    0.009704    0.94  0.348
 B            0.1304    0.0652    0.009754    6.68  0.000
 C            0.0916    0.0458    0.009704    4.72  0.000
 E           -0.2964   -0.1482    0.009704  -15.27  0.000
 BE           0.1529    0.0764    0.009754    7.84  0.000
 CE           0.0843    0.0422    0.009704    4.35  0.000
 ABE          0.0455    0.0228    0.009704    2.35  0.021
 CD           0.0430    0.0215    0.009754    2.20  0.030
 DE           0.0403    0.0201    0.009754    2.07  0.041

      The sonicator power effect is small, but we need to look beyond the 0.0183

number because the  effect is significant. Analogous to the precedingABE

calculations, we obtain the conditional main effects for    as     =  A A ABEa 0.0183

a  0.0455 = 0.0638 and 0.0272. ^ These numbers require some

explanation since  is a 3-factor interaction rather than a 2-factor interaction.  TheABE

BE interaction is the average of two average response values, which one average

computed when both factors are at the same levels, and then the other average

computed when the factors are at opposite levels.  If we computed the effect of A

under each of these two scenarios, we would obtain and 0.0638 0.0272^

as the conditional effects.  Of course we don't actually have to do this, but this is

what underlies the arithmetic.  Since  which exceeds0.0638 = 0.0451, / l� 

two of the significant unconditional effects, factor   is not unimportant.A

III  Checking Assumptions

       Before we rely very heavily on the results in the preceding section, we need to

check the assumptions.  As stated previously, it is difficult to check the assumption of

homogeneity with only 3 or 4 observations per treatment combination.  We observe a

problem when we look at a normal probability plot of the standardized residuals,
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however, as the p-value for the Anderson-Darling test for non-normality is .011, as is

shown below.

P-Value:   0.011
A-Squared: 1.006

Anderson-Darling Normality Test

N: 112
StDev: 1.00475
Average: 0.0000962
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       It is obvious from the graph, however, that this small p-value is caused by a few

poorly fit observations, and we recall from Section I that observation #79 looked very

suspicious because it differed greatly from the other two observations at the same

combination of factor levels. When that observation is excluded from the analysis,

the -value is .062.  We should keep in mind that with 111 or 112 observations wep

are going to have pretty good power in detecting even fairly small departures from

normality, but such a degree of non-normality will not undermine the analysis to an

appreciable extent.

      (We should also keep in mind that we are never doing a true test for

nonnormality when we test for nonnormality because ANOVA models do not have a

single error term.  Rather there is an error term for each treatment combination, and
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we certainly can't test for non-normality with only 3 or 4 observations, any more than

we can practically test equality of variances with such small numbers.)

       We might exclude observation #79 from the analysis, but we really wouldn't

want to do that unless there was evidence that something went wrong and the

observation is not a good data point.  The scientists involved in the experiment had

no such evidence, so we will use all of the observations and simply recognize that we

do have a minor problem with non-normality that is caused by a few data points. (Of

course we could downweight one or more data points that look suspicious, but we

will not pursue that here.)

IV  Replicates or Multiple Readings?

       The analysis in the preceding section presupposes that the multiple observations

per treatment combination constitute true replicates, as would be the case if an

experiment were repeated by “starting over” for each replicate.  Since most replicated

experiments are probably not performed this way --- and indeed this experiment

wasn't performed this way --- the question arises as to whether or not the experiment

was performed in such a way as to permit the type of analysis to be performed as if

there were true replicates and appropriate randomization was performed for each

replicate.

      If this were not the case, it would be better to use the average value at each

treatment combination, or at least to do the analysis with the averages in addition to

the analysis with the replicates.

       As stated previously, particle size is very much a random variable, and particle

mass is also not fixed.  If factors cannot be fixed, then a replicated experiment cannot
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be performed, because to replicate an experiment means to use the same factor levels

in each replicate.  Clearly that isn't going to happen if at least one factor is random,

as is the case here.  Consequently, it is highly desirable to perform an analysis using

the averages and compare the results.

     As before, the response variable is the arcsin of the square root of the lead

recovery proportions.  The Pareto chart of the  ist-statistics of the effects estimates

given below and we see little difference between this chart and the chart that results

from using all of the observations.  One noticeable difference is that the CD DEand 

interactions fall below the .05 line, whereas they were right at the line when all of the

observations are used.
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       Of course that doesn't mean that the effects won't be judged significant when a

variable selection approach is used.  In this instance, however, the use of stepwise

regression does result in those interactions not being selected.  It seems clear why the

CD DE and interactions are not significant, as recall they were not selected when

observation #79 was deleted in the analysis using the replicates.

      Thus, it seems apparent that the significance of those two interactions was

strongly affected by one or more extreme observations, which of course have a lesser

effect when averages are used.

         The statistics for the model with the six terms are given below.

Estimated Effects and Coefficients for arcsinesqrt(recovery )(coded units) %

Term       Effect     Coef      SE Coef     T      P
Constant             1.1341    0.009079  124.92  0.000
 B         0.1269    0.0635    0.009079    6.99  0.000
 C         0.0888    0.0444    0.009079    4.89  0.000
 E        -0.2937   -0.1469    0.009079  -16.18  0.000
 BE        0.1509    0.0755    0.009079    8.31  0.000
 CE        0.0774    0.0387    0.009079    4.26  0.000
 ABE       0.0507    0.0254    0.009079    2.79  0.010

Analysis of Variance for arcsinesqrt(recovery% (coded units)

Source           DF      Seq SS     Adj SS     Adj MS      F      P
Main Effects      6     1.13281    1.13281   0.188802  71.58  0.000
Residual Error   25     0.06594    0.06594   0.002637
  Lack of Fit     9     0.02084    0.02084   0.002315   0.82  0.606
  Pure Error     16     0.04510    0.04510   0.002819
Total            31     1.19875

    It is worth noting that the  value for this model is .945, which is much higherR�

than the  value (.795) that is obtained using all 112 observations.  (The  valuesR R� �

are slightly higher when they are converted back to the original scale and are .963

and .817, respectively.)
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     The difference between the .945 and the .795 is undoubtedly due in part to the

fact that  generally declines as the number of observations is increased.   It is alsoR�

likely due in part, however, to the few observations of the 112 that were not well-fit

by the model, including the one suspicious observation (#79).

V  Omitted Factors

      In a previous study, three factors that were not examined in this study --

operator, substrate, and overlayer -- were found to be significant.  One might

conjecture the extent to which  would have been increased if they had beenR�

included in this study, but we also need to consider other possible effects of their

omission.  Since particle size has the largest effect, an obvious question is whether or

not the operators performed almost identically in grinding the specimens to what has

been “large” and “small”.

      For example, was the particle size for observation #79 considerably larger than it

was supposed it be, which might explain why the recovery percentage was so small?

Another possible explanation is that the specimen could have had a thick-oil

overlayer that might have made it difficult to grind the particle down to the desired

size.  If so, there would then be an operator effect, in a manner orf speaking.  It

would be a different type of effect from what one speaks of in experimental design,

however, as the effect would be to cause incorrect levels of another factor, which is

different from the way that we generally view extraneous factors.                                                  

      Because of these and other uncertainties associated with the experiment, it is

desirable to also analyze the data as having come from an unreplicated experiment, as

well as to look for unusual observations.  Although it might be difficult or impossible

to after the fact discover any problems caused by extraneous factors when data on
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those factors were not recorded, suspicions might lead to future experiments being

designed differently. Therefore, in the next section we use a formal search for

unusual observations.

VI   Unusual Observations

    Outliers and unusual observations in general can only be classified as such

relative to a model.  This doesn't mean that we should wait until we have a model to

look for unusual observations, as bad data points could send us in the wrong

direction in our search for a good model, and indeed observation #79 was identified

as being unusual before a model was fit.

     Before a model with the resultant coefficients is used and interpreted, a final

search for unusual observations should be conducted.  Various statistics might be

used in such a search, such as Cook's-  statistic, DFFITS, etc.  These statistics haveD

been most often associated with regression analysis, and we should recognize that

with a 2  design we are not going to have any 5 X-outliers (i.e, points that are outlying

in the factor space).  Therefore, our search should be for -outliers and influentialY

data points, and our search will be for the model with be for the model with the

constant term plus the terms  , , , , , , , and B C E BE CD CE DE ABE.

       The dotplot for the DFFITS values (using all 112 data points) is shown below
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        The absolute value of the benchmark for DFFITS proposed by Jensen (2000) is

2 , with the l� «­� ^ � ®�� �� h�� being the leverage values, which are the diagonal

elements of the “hat matrix” in regression are all approximately .08 for these.  The h�� 

data, so using that number produces benchmarks of 0.59.  There are four DFFITSa

values between 0.825 and 0.912 and three are between 0.701 and 0.806.  It is^ ^

of particular interest to see if any of the extreme values occur at the same treatment

combination, with the four extreme observations on the low end are numbers 79 (as

expected), 97, 48, and 47, in descending order in terms of absolute value.  These are

all at different treatment combinations, but it would be of interest to try and

determine why two of the values are consecutive observations.  On the high end, of

the three observations that stand out as being extreme (numbers 5, 29, and 75), the

first two had recorded values of 100.2% and 100.6% (i.e., there was at least slight

measurement error), and the three observations all occurred at different treatment

combinations Measurement error might be the explanation for all three values on the.  
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high end, and since the four observations on the low end are even more extreme (and

are all greater in absolute value), a cause of their extreme DFFITS values should be

sought.

     Although Cook's-  is a frequently used diagnostic for identifying unusualD

observations, it is of very limited value in replicated designs.  This can be explained

as follows.  The statistic can be written as the product of four factors, one of which is

h h h�� �� ��
�y�

�

/(1 ).  Factorial designs are equileverage designs with , with ^ y � ��

denoting the number of parameters in the model.  Thus, with 9 parameters, as in the

current model, we would have each   = 9/  if there were no replicates.  If there areh n��

k h kr r replicates, then each  = 9/( ), with here denoting the number of distinct��

treatment combinations.  Thus, the  can be quite small when for replicated designsh��

n h h is at least of moderate size, so that /(1 ) will also be quite small.   One�� ��^

suggested threshold value for Cook's- is 1.0, but even highly unusual data pointsD 

will have values of the statistic far less than 1.0 for replicated designs.  Indeed as the

graph below shows, the largest value is quite small (actually 0.0857), and this is the

value for observation #79.
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VII   Determination of Optimum Operating Conditions

    Since the objective is of course to maximize lead recovery, it is obviously

desirable to have a small particle size, with particle size having the most pronounced

effect. Therefore, if we condition on small particle size and use only the 56

observations with small particle size, it doesn't make any significant difference which

time and temperature we use, but there is a preference for a small particle mass. (Of

course this makes sense because the smaller the size, the smaller the mass.)   Note

that this is not in accord with the conclusion that time and temperature were

important when all 112 observations were used.   Thus, the conditional effects of

time and temperature for the small particle size are not significant.  Since the

unconditional effects are significant, this means that time and temperature have

pronounced effects for the large particle size(s).
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         The results are given below.

Estimated Effects and Coefficients for arcsinesqrt(recovery ) using %
 only small particle size (coded units)

 Term        Effect     Coef       SE Coef     T      P

 Constant             1.28908     0.01361   94.73  0.000
 A          0.00203   0.00101     0.01361    0.07  0.941
 B         -0.02474  -0.01237     0.01375   -0.90  0.373
 C          0.00730   0.00365     0.01361    0.27  0.790
 D         -0.05594  -0.02797     0.01375   -2.03  0.047

SUMMARY

     We have analyzed the data that resulted from an investigation of lead recovery

with a 2  design used to investigate the effect of 5 factors. We have noted some5

nuances that slightly complicated the analysis, but these are not at all different from

what very often transpires when experiments are performed.  The analysis showed

that a follow-up experiment would be desirable to investigate certain possible effects

that were previously noted in NISTIR 6834, with their possible effect indicated here.

Textbook  examples unfortunately often fail to convey various complications that can

occur when experimentation is performed.

      Within the past several years there has been interested demonstrated in the

literature in trying to determine the effects when experiments are not performed in a

textbook manner (e.g., there are restrictions on randomization, etc.). The issue of

replicates versus multiple readings must also be considered and in this study we

noted that it was impossible to achieve true replicates, primarily because the particle

size could not be fixed.
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