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Global Climate Goals
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Why Direct Air Capture?

Negative Emission Technologies
Remove CO, from ambient air — permanently store CO,

e 10’s Gt/y globally
* Acceptable costs < $100/t CO,
* Achieve in climate relevant timeframe 2030-2050

Schematic-direct air capture
Washington Post, Feb 2016

Direct Air Capture
* Chemical processes to remove CO,
* High potential capture capacity and scalable

==~  Schematic-carbon sequestration
in geologic formation
Washington Post, Feb 2016 3




Direct Air Capture — Today

Climeworks & Carbfix — Iceland
4000 tons CO,/year; Operational Sept 2021
Solid sorbent

Klaus Lackner ASU & Silicon Kingdom Holdings
Mechanical Tree Farm — Arizona
Passive collection — Moisture swing

Carbon Engineering — Canada & Texas Prototype Dec 2021

~400 tons CO,/year
Liquid sorbent
DAC and Air-to-Fuel



Why NIST?

Direct Air Capture Challenges

* Capture 400 ppm CO, from ambient air, energy intensive

* Understand fundamental physics & chemistry driving the processes
* New & multiple technologies, new materials, high costs

* Rapid scale-up -4000 t now to 10 Gt CO,/y by 2050

NIST role - Develop benchmark materials, measurements, data, models, standards to
accelerate innovation, validate performance, & enable commercialization

. Monitoring (5%)
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NETL, Cost and Performance Baseline for Fossil Energy Plants, Revision 3, July 2015



Outreach and stakeholder engagement

Industry, academia, and Federal agencies

e Mini-workshops —
* Seminars and NIST colloquia

* SME discussions

* Interagency working groups
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Recommendations from stakeholders

Confirmed need for validation of:
* New materials & technologies
* Scalable solutions
* Global carbon accounting

content
‘4 measurement

\\




Expansion of sorbent characterization

Facility for Adsorbent Characterization and Developi tomized biliti
Testing (FACT Lab) eveloping customized capabilities

e Quality-assured reference isotherms * Breakthrough measuremen.tg
+ Interlaboratory studies under real-world DAC conditions
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Leveraging NIST expertise

Structure
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Carbon Capture, Use, and Storage
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