Direct Air Capture (DAC) and Carbon Sequestration in Building Materials

dac.ccus@nist.gov

VCAT - Oct 26, 2021

POCS: MML - PAM CHU, ANDREW ALLEN NCNR - DAN NEUMANN, CRAIG BROWN EL: ARON NEWMAN

Global Climate Goals

Paris Agreement goal: Limit global temperature rise to < 2 °C

Difficult to decarbonize all sectors of the economy

Need net negative emissions technologies to meet climate goals

Why Direct Air Capture?

Negative Emission Technologies

Remove CO₂ from ambient air – permanently store CO₂

- 10's Gt/y globally
- Acceptable costs < \$100/t CO₂
- Achieve in climate relevant timeframe 2030-2050

Schematic-direct air capture Washington Post, Feb 2016

Direct Air Capture

- Chemical processes to remove CO₂
- High potential capture capacity and scalable

Schematic-carbon sequestration

in geologic formation Washington Post, Feb 2016

Direct Air Capture – Today

Climeworks & Carbfix – Iceland 4000 tons CO₂/year; Operational Sept 2021 Solid sorbent

Carbon Engineering – Canada & Texas ~400 tons CO₂/year Liquid sorbent DAC and Air-to-Fuel

Klaus Lackner ASU & Silicon Kingdom Holdings
Mechanical Tree Farm – Arizona
Passive collection – Moisture swing
Prototype Dec 2021

Why NIST?

Direct Air Capture Challenges

- Capture 400 ppm CO₂ from ambient air, energy intensive
- Understand fundamental physics & chemistry driving the processes
- New & multiple technologies, new materials, high costs
- Rapid scale-up 4000 t now to 10 Gt CO₂/y by 2050

NIST role - Develop benchmark materials, measurements, data, models, standards to accelerate innovation, validate performance, & enable commercialization

Outreach and stakeholder engagement

Industry, academia, and Federal agencies

- Mini-workshops
- Seminars and NIST colloquia
- SME discussions
- Interagency working groups

Recommendations from stakeholders

Confirmed need for validation of:

- New materials & technologies
- Scalable solutions
- Global carbon accounting

Expansion of sorbent characterization

Facility for Adsorbent Characterization and Testing (FACT Lab)

- Quality-assured reference isotherms
- Interlaboratory studies

Binary gas adsorption measurements

Developing customized capabilities

 Breakthrough measurements under real-world DAC conditions

Leveraging NIST expertise

Carbon Capture, Use, and Storage

Energy Futures Initiative, 2019