Development of a Diffusion Mobility Database for Cu-In-Se

C. E. Campbell NIST/Metallurgy Division

Collaborators: T. Anderson (U. Florida), W.K. Kim (Institute of Energy Conversion, U. Delaware) and J.Y. Shen (General Research Institute for Non-ferrous Metals of Beijing, China)

NIST Diffusion Workshop

March 25, 2009

CIGS Solar Cell

Chalcopyrite α-Cu(InGa)Se₂

- A bilayer Ni/Al grid is used as a front contact material
- Anti-reflection (AR) coating (e.g., MgF2)
- Transparent conducting oxide film: ZnO
- CdS buffer layer (n-type)
- Polycrystalline CIGS layer
 - acts as a p-type light absorber
 - forms a p-n junction with CdS
- Back contact electrode: Mo
- Substrate:
 - -typically soda lime glass
 - flexible substrates: polymer and metal foils

Chalcopyrite α-Cu(InGa)Se₂

- Similar to Zinc-blende structure
- Cu and In are each surrounded by 4 anions (Se)
- Se is surround by 2 Cu and 2 In
- Se deficiency occurs as Cu occupies an interstitial position
- > Lattice parameter ratio c/a ≈ 2

CIGS Processing Routes

- ✓ Co-Deposition of Elements (PVD, MBE etc)
 - High efficiency achieved with this method.
- ✓ Rapid thermal processing of stacked elemental layers

W. K. Kim, NIST Diffusion Workshop, May 2008.

GOAL

Need to make CIGS cost-effective need to reduce processing time from ~ 30 min to < 3 min.</p>

Need to develop methodology to predict processing pathways to achieve order magnitude decreases in processing time

CALPHAD Approach

Published thermodynamic assessments

System	Reference		
Cu-Ga	Li JB, Ji LN, Liang JK, Zhang Y, Luo J, Li CR, Rao GH. A thermodynamic assessment of the copper- gallium system. Calphad 2008;32:447.		
Cu-In	Liu HS, Liu XJ, Cui Y, Wang CP, Ohnuma I, Kainuma ZP, Ishida K. Thermodynamic Assessment of the Cu-In Binary System. Journal of Phase Equilibria 2002;23:409.		
Cu-In	Kao CR, Chen S-L, Chen SW, Chang YA. Phase Equilibria of the Cu-In System: II Thermodynamic Assessment and Calculation of Phase Diagram. Journal of Phase Equilibria 1993;14:22.		
Cu-In	Hertz J, Aissaoui KE, Bouirden L. A Thermodynamic Optimization of the Cu-In System. Journal of Phase Equilibria 2002;23:473.		
Cu-Se	Kim WK. STUDY OF REACTION PATHWAYS AND KINETICS IN Cu(In _x Ga _{1-x})Se ₂ THIN FILM GROWTH. vol. PhD. Gainesville, FI: University of Florida, 2006.		
Ga-Se	Zheng F, Shen JY, Liu YQ, Kim WK, Chu MY, Ider M, Bao XH, Anderson TJ. Thermodynamic optimization of Ga-Se system. Calphad 2008;32:432.		
In-Se	Li J-B, Record M-C, Tedanac J-C. A thermodynamic assessment of the In-Se system. ZEITSCHRIFT FUR METALLKUNDE 2003;94:381.		
Cu-In-Se	Shen J, Kim WK, Shang S, Chu M, Cao S, Anderson TJ. Thermodynamic description of the ternary compounds in the Cu-In-Se system. Rare metals 2006;25:481.		

Cu-In Thermodynamics

3 solution phases:

liquid, fcc(Cu) and β (bcc)

2 ordered phases:

- γ (Cu)_{0.654}(Cu,In)_{0.115}(In)_{0.231}
- η (Cu)_{0.545}(Cu,In)_{0.122}(In)_{0.333}

3 stoichiometric phases:

- δ (Cu_{0.7}In_{0.3}),
- η (Cu_{0.64}In_{0.36})
- Cu₁₁In₉

Thermodynamics by Shen and Kim 2006

η phase modified for diffusion modeling and did not extended to ternary system
η (Cu,Va) (Cu) (In)

Cu-In Thermodynamics

Revised Description

3 solution phases:

liquid, fcc(Cu) and β (bcc)

2 ordered phases:

- γ (Cu)_{0.654}(Cu,In)_{0.115}(In)_{0.231}
- η (Cu)_{0.545}(Cu,In)_{0.122}(In)_{0.333}

3 stoichiometric phases:

- δ (Cu_{0.7}In_{0.3}),
- η (Cu_{0.64}In_{0.36})
- Cu₁₁In₉

Thermodynamics by Shen and Kim 2006

η phase modified for diffusion modeling and did not extended to ternary system
η (Cu,Va) (Cu) (In)

In-SeThermodynamics

2 solution phases (Se and In)

- 1 ionic liquid
- 6 stoichiometric phases
 - In₄Se₃,
 - InSe,
 - In₆Se₇,
 - In₉Se₁₁,
 - In₅Se₇
 - polymorphic In₂Se₃
 (α, β, γ, and δ)

Thermodynamics by Shen and Kim 2006

Cu-Se Thermodynamics

Thermodynamics by Shen and Kim 2006

Cu-In-Se

Ternary Phases

- 1 Ionic Liquid (Cu+1, In+3) (Se-2, Va, Se)
- α CuInSe₂ (Cu%,In,Va)(Cu,In%,Va)Se₂ (Chalcopyrite)
- δ CuInSe₂ (Cu%,In,Va)₂ Se (Se,Va)₂ (Sphalerite)
- β Culn₃Se₅ (Cu%,In,Va) (Cu,In,Va)₃Se₅ (Defect Chalcopyrite)
- γ Culn₅Se₈ (Cu%,In,Va) (Cu,In%,Va)₅ Se₈
- β Cu₂Se (Cu,Va) Se (Cu,In)

 β and γ phases are treated as stoichiometric phases for the initial diffusion modeling

Thermodynamics by Shen and Kim 2006

Cu-In-Se Thermodynamics

Diffusion Mobility Descriptions

Inputs:

- Thermodynamics (CALPHAD approach)
- Diffusion experiments (unary, binary, ternary systems)
 - Tracer diffusivity,
 - Intrinsic diffusivity,
 - Interdiffusion coefficients/Marker motion
- Optimize value of mobilities, M_i, for all binaries consistent with available data
 - Composition and Temperature-dependent
 - Consistent with estimates of Metastable end members e.g., FCC W
 - Optimized using code, DICTRA (Parrot)

$$M_i = \frac{M_i^{\circ}}{RT} \exp\left(\frac{-\Delta Q_i^*}{RT}\right)$$
 where $\Delta Q_i^* = f(c_i, T)$

 M_i^0 is exponentially dependent on composition

$$M_i = \frac{1}{RT} \exp\left(\frac{\Delta Q_i^*}{RT}\right)$$

$$\Delta Q_i = \Delta Q_i^* - RT\Theta_i \quad \text{and} \quad M_i^0 = \exp(\Theta_i)$$
$$\Delta Q_i = \sum_{p=1}^n x_p Q_i^p + \sum_p \sum_{q>p} x_p x_q \left[\sum_{r=0}^m {^rA_i^{pq} (x_p - x_q)^r} \right] + \sum_p \sum_{q>p} \sum_{v>q} x_p x_q x_v \left[v_{pqv}^{s-s} B_i^{pqv} \right]$$

Assessment of Diffusion Mobilities

Diffusion Modeling Challenges

- Stoichiometric compounds
- > Ternary intermetallic phases
- Anisotropic crystal structures
- Lots of missing data
- Many reactions are promoted by epitaxy: vacancy-driven diffusion is not the dominate diffusion mechanism.

$$> D_{eff} \neq D_{bulk} + D_{stress} + D_{gb} + D_{ele}$$

Disordered Phases: FCC

 $M_{i} = \frac{M_{i}^{\circ}}{RT} \exp\left(\frac{-\Delta Q_{i}^{*}}{RT}\right) \text{ where } \Delta Q_{i}^{*} = f(c_{i}, T)$

- Cu-In parameter evaluated based on experimental work.
- Self diffusion for fcc Se based on diffusion correlations of Brown and Ashby (after calculating a metastable fcc melting temperature for Se)

$$\Delta^{fcc} Q_{Cu}^{*} = x_{Cu} Q_{Cu}^{Cu} + x_{In} Q_{Cu}^{In} + x_{Se} Q_{Cu}^{Se} + x_{Cu} x_{In} Q_{Cu}^{Cu,In}$$

$$\Delta^{fcc} Q_{In}^{*} = x_{Cu} Q_{In}^{Cu} + x_{In} Q_{In}^{In} + x_{Se} Q_{In}^{Se} + x_{Cu} x_{In} Q_{In}^{Cu,In}$$

$$\Delta^{fcc} Q_{Se}^{*} = x_{Cu} Q_{Se}^{Cu} + x_{In} Q_{Se}^{In} + x_{Se} Q_{Se}^{Se}$$

Both Se and In have anisotropic crystal structures.

Use average values or value for the fastest diffusion directions.

Disordered Parameters

Parameter	Value	Reference
$\int_{Cu}^{fcc} Q_{Cu}^{Cu}$	-205872+R*T*LN(4.889e-5)	[Ghosh, 2001]
$f^{cc}Q^{In}_{Cu}$	-120904+R*T*LN(8.3e-5)	This work
$fcc O_{Cu}^{Se}$	-120904+R*T*LN(8.3e-5)	This work (treat like In)
$fcc O_c^{Cu,In}$	+691337-346*T	This work
$fcc Q_{ln}^{Cu}$	-193000+R*T*LN(1.3e-4)	This work (based on [Hoshino K, 1981,1982])
$f^{cc}Q^{In}_{In}$	-111000+R*T*LN(4.47e-4)	[Ghosh, 1998]
$\int_{fcc} Q_{In}^{Se}$	-193000+R*T*LN(1.3e-4)	This work (treat like Cu in fcc-In)
$fcc O_{I}^{Cu,In}$	+100405	This work
$f_{cc} O_{c}^{Cu}$	-177187+R*T*(7.6e-5)	This work (based on [Kreyns, 1962])
fcc O^{In}	-177187+R*T*(7.6e-5)	This work Treat like Se in fcc-Cu
$\mathcal{L}_{Se}^{fcc}Q_{Se}^{Se}$	-47566 +R*T*LN(1.0e-5)	This work (Brown Ashby correlation)
$^{In-bct}Q_{In}^{In}$	-78240+R*T*LN(3.2e-4)	This work (based on [Dickey, 1959])
$^{tri}Q^{Se}_{Se}$	-115822+R*T*LN(8.2e-7)	This work (based on [Günther, 1985])
$^{tri}Q^{Se}_{In}$	-7400+R*T*LN(5.6e-10)	[Akhundov, 1958]

Diffusion in FCC

Tracer Diffusivity

Interdiffusion

In and Se tracer diffusivity

Modeling of Stoichiometric Intermetallic Phases

- Generally only a single interdiffusion coefficient available.
- Model with no composition dependence; all the parameters are set equal.
- Using "GENERAL" diffusion model in DICTRA
 - Mobilities on the individual sublattices are summed.
 - Example: (A,B)(A,B)₂
 - $M(PHASE, A\#1) = (y'_A y''_B M'_{A:B} + y'_B y''_A M'_{B:A}) \frac{y'_A}{RT}$
 - M(Phase,A)=M(PHASE,A#1)+M(PHASE,A#2)

$$D_{A}^{*} = \left(y_{A}' M_{A}' + y_{A}' M_{A}'' \right) \frac{RT}{u(A)}$$

• where *u*(*A*)= total number of atoms of A.

Applied to Cu-In: δ (Cu_{0.7}In_{0.3}), η (CuIn) and Cu₁₁In₉ In-Se: In₄Se₃, InSe, In₆Se₇, In₉Se₁₁, In₅Se₇ and the polymorphic In₂Se₃ Cu-Se: Cu₃Se₂ CuSe (α , β , γ) Cu₂Se

Comparison of Interdiffusion in Various Intermetallics in Cu-In-Se

Cu/In/Cu Solder Joints at 290 °C for 16 days

Sommadossi, et al. 2003

Note : Diffusion in Cu₁₁In₉ must be adjusted.

Diffusion Model for Ternary Intermetallics

α-CuInSe₂: (Cu%,In,Va)(Cu,In%,Va)Se₂

- Diffusion via Cu vacancies dominates. (Dagen 1992)

$$D_{Cu}^{*} = \frac{RT}{u_{Cu}} (y_{Cu}' M_{Cu}' + y_{Cu}'' M_{Cu}'')$$
$$D_{In}^{*} = \frac{RT}{u_{Cu}} (y_{In}' M_{In}' + y_{In}'' M_{In}'')$$
$$D_{Se}^{*} = \frac{RT}{u_{Se}} (M_{Se}''')$$

Similar approach applied to: δ CulnSe₂ (Cu%,In,Va)₂ Se (Se,Va)₂ β Culn₃Se₅ (Cu%,In,Va)(Cu,In,Va)₃Se₅ γ Culn₅Se₈ (Cu%,In,Va) (Cu,In%,Va)₅ Se₈

Interdiffusion Coefficients in α-CuInSe₂

Measured and Calculated Temperature Dependence

Predicted Composition Dependence

 α -CuInSe₂ diffusion mobilities modeled using general model

 $Q = -25050 \text{ J/mole}; M_0 = 9.975e-10 \text{ m}^2/\text{s}$

Cu₂Se/In₂Se₃ Diffusion Couple at 550 °C for 1.5 h

CIS = CuInSe₂

 β = defect chacopyrite (Culn₃Se₅)

 $\gamma = Culn_5Se_8$ 100 5um $CIS \mid \beta$ 80 Cu₂Se In₂Se₃ Composition (at.%) 60 40 Cu₂Se CIS β γ In₂Se₃ 20 - Cu Ω 20 40 60 80 0 100 Distance (µm)

•Estimate of In diffusion in Cu₂Se =4.2x10⁻¹⁰ m²/s

- •Defect structure leads to rapid diffusion.
- •In diffuses via an ionic lattice diffusion through the Cu vacancy sites on Cu₂Se

Type of Reactions to Simulate

Kim et. al., *J. Phys. Chem. Solids*, 2005. : CuSe/In₂Se₃ precursor

Activation energy 162 +/- 5 KJ/mol (parabolic model)

J. Crystal Growth , 2005. : Cu/In selenization

CuSe +In + *n*Se (vapor) \rightarrow CuSe2 +In +*n*Se (vapor) \rightarrow CIS

Activation energy 124 +/- 19 kJ/mol (Avrami model); 100 +/- 14 kJ/mol parabolic

Conclusions

Significant challenges

✓ Lack of data

- Use diffusion correlations
- Extract activation energies
- Estimate from bulk diffusion couples

✓ Anisotropic crystal structures

Treat average diffusion (assume polycrystalline)

Diffusion models

- Models have developed and are in the process of being implemented
- Enhanced diffusion due to coherency relations
 - Mechanisms available to adjust thermodynamics and diffusion activation energies

These challenges can be overcome