Face & Ocular ChallengeS (FOCS)

Dr. P. Jonathon Phillips

NIST

National Institute of Standards and Technology

...working with industry to foster innovation, trade, security and jobs

Collaborators

- Ross Beveridge
- Soma Biswas
- David Bolme
- Kevin Bowyer
- Rama Chellappa
- Bruce Draper
- Patrick Flynn
- Geof Givens
- Patrick Grother
- Fang Jiang
- Yooyoung Lee
- Yui Man Lui
- Alice O'Toole
- George Quinn
- Vishal Patel
- Todd Scruggs

MBE 2010 Still Face

ら ろ ろ

Problem Definition

- Frontal Faces
- One Face Image per Person

Problem 1: Controlled Studio Environment

Problem 2: Studio vs. Ambient Lighting

Technology Progress

Goals of MBE 2010 Still Face Track

- Evaluation period: Jan May 2010
 - Measure progress since FRVT 2006
 - Leverage massive operational data corpora.
 - To evaluate face recognition technologies in a proper one-tomany identification mode.
- Multiple Biometric Evaluation 2010: Still Face Report, P. Grother, G. Quinn, and P. J. Phillips, NISTIR 7709, 2010, http://face.nist.gov

From FERET to MBE 2010

One Face Image per Person

Problem 1: Controlled Illumination vs. Controlled Illumination

From FERET to MBE 2010

Year of Evaluation

Closed-set Identification

Large Gallery (1.6 million)

Who is this person?

- All probes in gallery
- Score: Rank 1 Identification
- Selectivity: Number of average matches returned

Closed-set Identification

S

Rank 1 Identification

False Reject Rate at False Alarm Rate = 0.001

Main Results

- Improvements in 1-1 verification
 - Three order improvement since 1993
 - FRR = 0.003 at FAR of 1 in 1,000
- Closed Set Identification
 - Gallery of 1.6 million faces
 - Rank 1 ID = .93
- Is face recognition solved?
 - Not for unconstrained environments

Face & Ocular Challenges (FOCS)

- Video
- The Good, the Bad, & the Ugly
- NIR Ocular
- Performance Prediction

Video

(MBGC ver2)

Walking vs. Activity Activity vs. Activity

Walking

976 sequences

Activity 784 sequences

Activity 784 sequences

Activity 784 sequences

ŊZ

Human Performance on Video

□Recognizing people from dynamic and static faces and bodies: Dissecting identity with a fusion approach ," P. J. Phillips, A. J. O'Toole, S. Weimer, D. Roark, J. Ayadd, R. Barwick, J. Dunlop, Vision Research, in press, 2010.

Video: Walking vs. Walking

- Human subject raters respond...
 - 1. sure they are the same person
 - 2. think they are the same person
 - 3. not sure
 - 4. think they are not the same person
 - 5. sure they are not the same person

Video: Human & Machine Performance

UT Dallas--Walking to Walking

ISN

Video: Walking vs. Conversation

- Human subject raters respond...
 - 1. sure they are the same person
 - 2. think they are the same person
 - 3. not sure
 - 4. think they are not the same person
 - 5. sure they are not the same person

Video: Conversation vs. Conversation

- Human subject raters respond...
 - 1. sure they are the same person
 - 2. think they are the same person
 - 3. not sure
 - 4. think they are not the same person
 - 5. sure they are not the same person

Video: There is Head Room

Human Performance Machine Performance 1.0 1.0 0.8 0.8 Verification rate 0.6 Verification rate 0.4 0.6 0.6 Ľ 0.4 H 9 0.2 0.2 Walking-Walking - -Conversation-Walking 0.0 Conversation-Conversation 0.0 C 0.2 0.2 0.8 1.0 0.0 0.4 0.6 0.4 1.0 0.0 0.6 0.8 False accept rate False accept rate

ISN

Gait Experiments

gait video

conversation video

Static Face GG

CG

CC

body only

face

Next Directions

- In hard cases (poor viewing conditions), humans take advantage of video, face, & video
- Evidence: algorithms do NOT take advantage of video, face, & body/gait
- Learn from the human visual system.
- Incorporate into algorithm design.

The Good, the Bad, and the Ugly Still Face Challenge

Goal of GBU

- Encourage development of "hard" still frontal face recognition algorithms
- Improvement not at expense of "non-hard" images
- Three performance levels
 - Good
 - Bad
 - Ugly
- Discover the "phantom" covariates to which humans appear immune.

Experiment Specifics

- Nikon D70-6 Mpixels
- Uncontrolled images
 - Indoors
 - Outdoors
- 9,307 pool of images
- 437 qualified subjects
- Images in MBGC
- Images included in FRVT 2006
- Select by FRVT 2006 algorithms

Experiment Specifics

- Same number of images per subject
 - Each Sig Set
 - Each Partition
- Variation in performance on image attributes

Data Set	Target Size	Query Size
The Good	1085	1085
The Bad	1085	1085
The Ugly	1085	1085

Face Pairs

Good

ISN

Challenging

Very Challenging

Face Pairs

Good

S

Challenging

Very Challenging

Face Pairs

Good

JSN

Challenging

Very Challenging

Good, Bad, Ugly Performance

ISN

GBU Fusion ROC

ISN

Big "Four" Problems in Face Recognition

- A Aging (time lapse)
 P Pose
 I Illumination
- **E** Expression

"Four" Big Problems in Face Recognition

Lighting & Expression

Same lighting, Same expression

Same lighting, Different expression

Different lighting, Same expression

Different lighting, Different expression

Verification rate @ FAR = 0.1%

	Lighting & Expression									
	Verification rate @ FAR = 0.1%									
	Same Lighting, Same Expression Same Lighting, Different Expression					Different Lighting, Same Expression Different Lighting, Different Expression				
Good	99.5% 1641				98.3% 98.6% 823 490		98.6% 490	95.9% 343		
Bad	85.6 57	5% 0	77.9% 959	/o		76.5% 65.2% 690 1078		65.2% 1078		
Ugly	37.6% 311		19.6% 807	16.1% 604			7.6% 1575			

What is the quality of these images?

<u>ן</u>

Hard and Easy to Match

Easy to Match

JN

Quality comes in Pairs

Quality comes in Pairs

5 N

Quality comes in Pairs

ທ Z

Hard to Match

Human Performance Procedure

- Human subject raters respond...
 - 1. sure they are the same person
 - 2. think they are the same person
 - 3. not sure
 - 4. think they are not the same person
 - 5. sure they are not the same person

GBU Human Performance

<u>ן</u>

CSU/NIST GBU Baseline Algorithm

Local Region PCA Algorithm

- •13 Local Features +Whole Face
- •Self Quotient Lighting Removal
- •PCA based whitening
 - •250 basis vectors per feature.
 - •3500 total basis vectors.
- •Fisher Criterion Weighting
- •All features combined
- •Similarity based upon Correlation

Self Quotient Preprocessing

Local Regions

Performance on GBU

S N

Sample match from Good Data

Sample match from Challenging Data

Sample match from Very Challenging Data

F

From Face to Ocular GBU Baseline Algorithm

Whole Face 14 Local Regions

Left Ocular 3 Local Regions

MPF Ocular `94, `98

IEEE TRANSACTIONS ON IMAGE PROCESSING

Volume: 7 Issue: 8 Date: Aug 1998 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 8, AUGUST 1998

Matching Pursuit Filters Applied to Face Identification

P. Jonathon Phillips, Member, IEEE

Figure 3.2: The facial features used. A is the interior the face. B is the tip of the nose. C and D are the left and right eyes. E is the bridge of the nose.

Performance on GBU

Sample match from Good Data

Sample match from Challenging Data

Sample match from Very Challenging Data

GBU Performance

- Three partitions
 - Same subjects
 - Differences are image covariates
 - More than expression and lighting direction
- Human Performance
 - Bad & Ugly partitions statistically not different
- Machine Performance
 - Bad & Ugly partitions different
- Humans "Blind" to Algorithm Differences
- Human Performance as Benchmark

Ocular

ISN

Ocular Data

- Individual frames of IOM data can be used increase or decrease the level of difficulty in ocular recognition.
- Measure improvement over iris only recognition algorithm.

Ocular data from IOM

ົງ

Near Infrared (NIR) Video Sequence

Ocular data difficulty

ISN

Recognition performed across all combinations

5 N

Predicting Performance

5 N

Predicting Performance

New Target Set

New Query Set

Levels of Predictions

- General Assessment
- Measuring Improvement
- Ranking of Algorithms
 - Relative performance
 - Ranking stable across data sets
 - Limited success
- Predict Performance

Considerations

Modeling

- Demographics
- Acquisition conditions
- Queries to be processed
- Deep questions
 - Ability to generalize?
 - Specific to algorithm?
 - Specific to task?
- Links
 - Quality
 - Failure/error analysis
 - Biometric-completeness

Conclusions

Challenges in Unconstrained Face Recognition

- Video: MBGC Video Challenge
- Still: Good, Bad, & Ugly
- Ocular
 - Visible: GBU
 - NIR: At a distance sequences
- Performance Prediction

Questions?

S