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Passive control of quantum dot (QD) optics is achieved by tailoring QD size,
shape and composition during growth. Dynamical control of excitons in
QDs is highly desirable. For QDs embedded in nanomechanical
structures, dynamical control could be obtained by using externally
imposed mechanical strain to reengineer the QDs to modify level
degeneracies, polarize optical transitions, induce entanglement, or
change coupling between closely spaced dots, all capabilities needed to
use dots in optical nanodevices and quantum information processing.

To exploit hybrid nanomechanical/QD devices, an understanding of the
coupling between internal strain due to lattice mismatch, externally
imposed mechanical strain, and excitons in the QDs in the
nanomechanical structure is needed.

To identify the effects of mechanical strain, we present a theory of InAs
QDs in a GaAs nanomechanical bridge. The bridge is bent to simulate
external strain applied to reengineer the QDs.



DC Stark field analog

— Biaxial deformation acts like an electric field E,
» Electrons and holes shift the same way

— Shear bends act like E, "
» Electrons and holes shift the opposite way e h
— Internal relaxation and state distortion is critical

Excitons

— Strain reengineers the anisotropic exchange coupling

— This controls the phase of spin mixing in the exciton,
leading to

— Fine structure level mixing and crossing and
polarization rotation

Coupled dots
— Strain-induced state crossing and inter-dot transfer
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Geometries and applied strain
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Biaxial deformation

**Rigid” shift with fixed level ordering and
state symmetries

*Electron and hole shift the same way

Shear

Quadratic decrease

*Mixing
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Biaxial lattice relaxation in a flat bridge

Lattice relaxation in a bent bridge

with additional internal relaxation (red)
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Strain-induced charge shifts:“analoqg” to Stark effect with counterrotating e and h
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[T ¥ Double dot

Level crossing

plitude (a)
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train-induced charge shifting determines charge transfer in coupled dots
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Exciton energy follows pair
ground state

Binding can increase or decrease
by bending (charge shifting)

Fine structure: level splittings

Ex, and EXx, are dark

Ex, and EXx,...exchange split
bright states

Ex; and Ex,...asymmetric
exchange

Bend-induced anti-crossing and
polarization rotation
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Pair ground state weakly polarized,
strain polarizes along y
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Ex; 4 polarized along x-y (x+y) in
unbent structure

-
~
T

—_
e

Polarization rotates to x (y) by
bending

N
[6)]

N

o
N
o

-
(4}

-

o
-
o

Absorption (arb. units)
Absorption (arb. units)




Excitons: shear
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Absorption (arb. units)
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Pair ground state weakly polarized,
strain polarizes along x

Ex, 4 polarized along x-y (x+y) in
unbent structure

Rotates to y (x) by bending (reverse
of biaxial deformation)
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Strain-induced tuning of the magnitude of the exchange coupling between

S,= %1 e/h pair states determines the splitting between bright states

Coulomb and exchange energies (meV)
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Strain-induced tuning of the phase
of the exchange coupling between
S,= t1 e/h pair states determines
the polarization of bright states

Coulomb and exchange energies (meV)

Phase of the exchange coupling (deg)
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