Real-world and Accelerated Degradation of PV Module Backsheets

Laura S. Bruckman

Associate Research Professor Materials Science and Engineering Case Western Reserve University

Acknowledgements

Work from this talk: Yu Wang, PhD (Avery Dennison) Devin Gordon, PhD (3M) Addison Klinke, MS (data science consultant)

GREAT LAKES

ENERGY

ESERVE

INSTITUTE SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019

Lifetime Prediction of Materials with Data Science: PV Module Focus

Accelerated Exposures are "standard" for material durability

Companies don't want to wait 3+ years to see if their material lasts

- Multiple real-world stressors
- History of failures

Utilize Data Science to move beyond "acceleration factor"

- Assumes reciprocity
- Misses combination of stressors
- Often assumes materials behave similarly

Need to build predictive models that relate

- Data driven models (Stress|Response)
- network Models (Stress|Mechanism|Response)

Combine accelerated with real-world data

PV Backsheet Degradation: Neet to Protect the Backsheet

Common Degradation Response

- Delamination
- Cracking
- Discoloration
- Hot spot
- Bubbling

Delamination

Hu, H., Gambogi, W., Felder, T., Macmaster, S., Choudhury, K. R., Wang, W., - "Study of PV Backsheet Early Degradation Signs in Field and Relevance with Lab Accelerated Aging Tests", Oral presentation, 11th SNEC, Shanghai, China, Apr 19th, (2017). SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019

VuGraph 5

Open Data Science Tool Chain

Using Open-source tools

Reproducible Research

- · Using Rmarkdown reports
- · Python Jupyter Notebooks
- · Add new data
- · Recompile your report
- · All new figures and report!
- · Well Documented Code/Reports

High Level Scripting Languages: R, Python

Rstudio Integrated Development Environment

· Commercially Supported

Git Repositories for Code Version Control

- · Share code scripts with colleagues
- \cdot Share project data and reports with others

Data Storage: NoSQL DB Abstraction of Hadoop/Hbase

Combines Lab data (Spectra, Images etc.) With Time-series Data (PV Power Plant Data)

High Performance PV Data Analytics: Petabyte Data Warehouse In A Petaflop HPC Environment

In-place Analytics: Distributed R-analytics in Hadoop/HDFS

In-memory Data Extraction: To Separate HPC Compute Nodes

IEEE JPV

A non-relational data warehouse for the analysis of field and laboratory data from multiple heterogeneous photovoltaic test sites

Yang Hu, Member, IEEE, Venkat Yashwanth Gunapati, Pei Zhao, Devin Gordon, Nicholas R. Wheeler, Mohammad A. Hossain, Member, IEEE, Timothy J. Peshek, Member, IEEE, Laura S. Bruckman, Guo-Qiang Zhang, Member, IEEE, and Roger H. French, Member, IEEE

ENERGY

GREAT LAKES HU, Y., V. Y. GUNAPATI, P. Zhao, D. Gordon, N. R. Wheeler, M. A. Hossain, T. J. Peshek, L. S. Bruckman, G. Q. Zhang, R. H. French. "A Nonrelational Data Warehouse for the Arra Field and Laboratory Data From Multiple Heterogeneous Photovoltaic Test Sites." IEEE Journal of Photovoltaics 7, no. 1 (January 2017): 230-36. doi: INSTITUTE SDLE Research Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2016 August 1, 2019, VuGraph 7

Field Surveys of Backsheets

CWRU: Yu Wang, Addison Klinke, Roger French, Laura Bruckman UL: Liang Ji, Kent Whitfield, Ken Boyce, **NREL:** Michael Kempe Arkema: Camille Loyer, Adam Hauser, Gregory O'Brien NIST: Andrew Fairbrother, Xiaohong Gu NEU: Scott Julien, KT Wan

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Field Survey Procedure

Field description

- Rack: a section of PV modules
- Column (length): horizontal direction
- Row (depth): vertical height and tilt angle

Field Survey:

- Measured 1300 + modules
- ~9 measurements each module center, edges, junction box Ο

GREAT LAKES ENERGY INSTITUTE

SDL Energy 163 to 62-69 conce & Engineering Department, Case Western Reserve University © 2019

VuGraph 9

Field Information

Site	А	В	С	D	
Climatic Zone	Dfb: humid con	tinental climate	Cfa: humid subtropical climate		
Brand & Model	r0t0akg	untww6o	t4lqg3w, qathm7f	a5uyujm	
Air-side Material	PVDF	PA	PET, PET	PEN	
Ground Cover	Grass	Grass	Grass	Gray rock	
Installation Year	Nov, 2013	Feb, 2012	Sep, 2014	Aug, 2012	
Field Survey Year	2017	2017	2016-2018; 2017- 2018	2016	
Column Number	82	80	26	48	
Row Number	4	5	2	5	

VuGraph 10

SD

Field Survey Results

Non-uniform degradation

- gives insight into unique degradation stressors
- same climate zone

ENERGY

INSTITUTE

Need to understand relationship

between the increased stress and the time

 $Y = \beta_0 + \beta_1 L + \beta_2 L^2 + \beta_3 L^3 + \beta_4 (L - a_1)^3_{\pm}$

$$+ \beta_5 (L - a_2)_+^3 + \beta_6 D + \beta_7 D^2 + \beta_8 t + \epsilon,$$

GREAT LAKES Wang, Y., Huang, W. H., Fairbrother, A., Fridman, L. S., Curran, A. J., Wheeler, N. R., ... & Bruckman, LS (2019). Generalized Spatio-Tempora Model of Backsheet Degradation From Field Surveys of Photovoltaic Modules. IEEE Journal of Photovoltaics, 9(5), 1374-1381.

Non-uniform Irradiance

Similar rear-side irradiance distribution with YI pattern

- Measurement: rear-side irradiance measured in site D
- Simulation: physical model for ordinary PV rack^[1]

Different temperature distribution YI pattern

- Measurement: no significant difference of temperature in siteD
- Simulation: Higher temperature at center of rack^[2]

Inhomogeneous rear-side irradiance

- May cause non-uniform backsheet degradation
- Within one rack in the PV site

ASE CREAT LAKES [1] Yusufoglu, U. A., Lee, T STERN ENERGY [2] Elwood, T., & Simmons SERVE INSTITUTE Modules, Components, an NVERSITY SDLE Research Center.

[1] Yustroglu, U. A., Lee, I. H., Hetzer, I. M., Haim, A., Koduvelikulathu, L. J., Comparotto, C., ... & Kurz, H. (2014). Simulation of energy production by bitacial modules with revision of ground reflection. Energy Proceedia, 55, 388-397. [2] Elwood, T., & Simmons-Potter, K. (2017, August). Comparison of modeled and experimental PV array temperature profiles for accurate interpretation of module performance and degradation. In Reliability of Photovoltaic Cells, Modules, Components, and Systems X (Vol. 10370, p. 1037006). International Society for Optics and Photonics. SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019 Aurometic current in 10/8/2019 VuGraph 12

Conclusion

Underwriters

Generalized spatio-temporal model

- Adjusted R² range: 0.31-0.89
 - Low adjusted R² due to noise in measurement and minimal degradation

Northeastern 13

• Identify the backsheets with a higher degradation rate

Non-uniform backsheet degradation

- For columns and rows in a rack
- Inhomogeneity of rear-side irradiance
 - May lead to non-uniform backsheet degradation
- Ground cover and air-side material
 - Affect the non-uniform backsheet degradation

CASE WESTERN RESERVEARKEMA

EST 1826

Current Research is expanding these field survey data

Increase dataset and model

Retrieved Modules & Accelerated Exposures

http://datascience.case.edu

0

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Retrieved Backsheets

40 modules of 19 brands 6 outer layer materials

PVDF

- Crystalline phases (coupons phase)
- Acrylic additives (5 of 6)
- Wide range of YI values (< 6 years)

PVF

Minimal changes in YI (< 28 years)

PET

- Discoloration (< 18 years)
- Wide variety of YI values, cracking delmaniation
- Coupons had microcracking

PA

- Micro and Macro cracking, delamination
- Pollution impact on YI

10/8/2019

- < 6 years
- Cracking in coupons, not films

GREAT LAKES

NFRGY

VuGraph 15

Accelerated Exposures on Coupons

Exposure	Irradiation (W/m²/nm at 340 nm)	Chamber Temperature	Relative humidity	Comments
DH	0	85°C	85%	Damp Heat
Xenon-1	0.8	65°C	20%	102 minutes light, 18 min water spray in the light
Xenon-2	0.8	65°C	20%	100% light, no water spray
Xenon-3	0.8	80°C	20%	102 minutes light, 18 min water spray in the light
Xenon-4	0.8	80°C	20%	100% light, no water spray
Xenon-5	0.25	80°C	20%	102 minutes light, 18 min water spray in the light
Xenon-6	0.8	65°C	50%	102 minutes light, 18 min water spray in the light
Xenon-7	0.5	65°C	20%	102 minutes light, 18 min water spray in the light
Xenon-8	0.8	65°C	50%	100% light, no water spray

VuGraph 16

Cracks of Polyamide(PA/PA/PA): Retrieved and Films

Xenon-3: High Irra, High T, Low RH, Water spray

Xenon-4: High Irra, High T, Low RH, No water spray

PA/PA/PA cracking in accelerated exposures

- Xenon-3: Removal of air-side layer, degradation and crack of core layer
- Xenon-4: Micro cracks Degradation of sun-side and core layer between cells
- No Cracking in films
- Chromatography confirmed molecular weight loss

Stress or core layer degradation: key to cracks on PA/PA/PA

RESERVE INSTITUTE SD

SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019 http://sdle.case.odu

VuGraph 17

10/8/2019

PA/PA/PA Surface Images under Accelerated Exposures

Xenon-3

- high irradiance & water spray
- 2000 hrs (Surface erosion)
- 4000 hrs (Crack formation)

Xenon-4

- high irradiance & no spray
- 4000 hrs (Micro cracks)

Xenon-5

- low irradiance & water spray
- No Cracking

GREAT LAKES

ENERGY

Size Exclusion Chromatography

• Show MW decrease

Wang, Yu et. al"Predictive Models for Backsheet Degradation in Indoor Accelerated Exposures.", in prep, 2019

SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019 International Action of the Action of

VuGraph 18

 \supset

Pollution Effect on Backsheet

Climatic Zone 🖸 Aw 🖸 BWh 🖸 Cfa 🖸 Csa 🖸 Unexposed 15 Changshu, China, roof mounted Yellowness Index 2 0 **PA-01** PA-02 **PA-06** PA-07 PA-08 **PA-03 PA-04** PA-05 SampleID **Exposure Location** NO₂ Concentration (billion molecure/mm²) 0 0000 0000 0 0000 Changshu, China Unexposed Bergamo, Italy Tonopah, AZ, US Rome, Italy Thailand Exposure Location

Air pollutant

- NO₂ causes yellowing of polyamide^[1]
- More prominent effect of NO₂:
 - Roof mounted modules
 - Potentially higher irradiance & temperature
- Lower yellowness index value
 - With grass ground cover

 Pokholok, T. V., Gaponova, I. S., Davydov, E. Y., & Pariiskii, G. B. (2006). Mechanism of stable radical generation in aromatic polyamides on exposure to nitrogen dioxide. Polymer degradation and stability, 91(10), 2423-2428.

GREAT LAKES Yadong Lyu, et al., "Impact of outdoor weathering variables on polyamide-based backsheet degradation.", Submitte

2011 Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019

0/8/2019

VuGraph 19

Effect of Water Spray on PET Backsheets

Water spray removes degraded materials for PET

- No observable degradation product peaks observed in Xenon-3 FTIR
- Small decrease of PET peaks

GREAT LAKES

ENERGY INSTITUTE

10/8/2019

VuGraph 20

netSEM modeling of PET: Network Structural Equation Modeling

netSEM is modified Structural Equation Modeling

- sociology
- adds nonlinear relationships between variables (semi-supervised)

PET exposed to 0.8 w/m²/nm at 340 nm, 80°C

- with water spray (A)
- without water spray (B)

ATR-FTIR indicated

- Surface removal of degraded products with water spray
- Identify degradation products without water spray

Bruckman, Laura, et al. Backsheets: Correlation of Long-Term Field Reliability with Accelerated Laboratory Testing, No. DOE-UL-0007143. Renewable Energy, Underwriter's Laboratories, Northbrook, IL 60062, 2019. SDLE Research Center Materials Science & Engineering Department, Case Western Reserve University 2019

Degraded Surface Loss: Water Spray

Degradation product observed in DI water

Parallel Factor Analysis

ESERVE

INSTITUTE

Excitation/Emission Fluorescence

700

DI water

SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019

VuGraph 22

100

80

DI water after

immersion

Conclusion

Mismatch between field data and accelerated exposures in some cases

- Duplication of PA/PA/PA crack in Xenon-3 successfully
- Severe bond cleavage observed in PVF/PET/EVA in Xenon-3

Effect of Water: delivery method and water amount is key to accelerated tests

Northeastern 23

• Parallel factor analysis identified degradation products

Compare accelerated exposures to real-world exposures

Semi-Supervised Machine Learning **Extraction of Crack Parameters**

Quantitative Comparison of Accelerated and Real-World Behavior

Graduate Student Addison Klinke

Yu Wang (Backsheets)

f Energy

Parallel **Transverse Branches** Blistering

23 different backsheet types

> 900 samples

Accelerated Real-world Exposures

GREAT LAKES Klinke, A. G., Gok, A., Ifeanyi, S. I., & Bruckman, L. S. (2018). A non-destructive method for crack quantification in photovoltaic backsheets INSTITUTE under accelerated and real-world exposures. *Polymer degradation and stability*, 153, 244-254. SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019 and and and and a stability of 2019 VuGraph 25

Optical Profilometry Theory

- Axial chromatic aberration: focuses wavelengths at different depths
- Reflected light passes through spatial filter
- Only the in-focus wavelength passes through with high efficiency
- · Non-destructive and non-contact

GREAT LAKES ENERGY

Measurement Methodology

- Measure height (z-axis) every 1.0 µm in x-direction
- Repeat for 10 equally spaced "lines" in the y-direction
- Time-efficient yet robust to local variations in cracking
- Ideal for parallel cracks with minimal deadhesion

SDLE

Crack Quantification Algorithm and Extraction of Parameters: R

GREAT LAKES ENERGY INSTITUTE

Localized Regression

- Non-parametric statistical technique that weights model at each point towards the closest data
- Friedman's Super Smoother optimizes the span parameter for each x-value (sample width)
- Iterative application allows simultaneous outlier detection to decrease computational time (average 2.7 iterations)

Computation

- Fleets of parallel Slurm jobs run in about 6 minutes on CWRU's High Performance Computing Cluster
- Over 52,000 cracks measured (at a rate of 17.3 cracks/minute)

Measured Crack Features / Parameters

- · Average depth, width, and area
- Min, max, and average spacing
- Number of cracks
- Normalized depth and number of cracks

$$D_n = \frac{d_{avg}}{d_L UVA_{<360}}$$

$$C_n = \frac{c_{avg}}{UVA_{<360}}$$

SDLE

SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019 http://dlc.org/auto/ 10/8/2019

Automatically Generated Reference Plots - Parallel Cracks (FPE2)

- Parallel cracks and consistent surface (no deadhesion) are easily handled by the algorithm
- Most samples had these characteristics

Automatically Generated Reference Plots - Blistering (FPE2)

- · Data points associated with blistering are successfully detected as outliers
- Super Smoother follows the expected surface

SDLE Research Center, Materials Science & Engineering Department, Case Western Reserve University © 2019 http://sdle.case.edu 10/8/2019

VuGraph 29

Automatically Generated Reference Plots - Delamination (FPE2)

- Delamination (right side of profile) results in large trough
- Incorrectly handled by outlier detection \rightarrow now part of the "surface" is on the inner/core layer interface

Crack Progression Over Time: Residual Plots (FPE1 Cyclic QUV)

- Density, depth, and number of cracks increases with exposure
- Can visualize propagation of cracks through backsheet layers

GREAT LAKES ENERGY

VuGraph 31

Convolution Neural Network for Image Analysis

Image Analysis of Backsheet Cracking

- Convolution neural network
- Identification of cracking patterns
- Discoloration

Field Survey Application

• Image analysis of backsheets

Figure 8. Six examples of crack inspection task performed on the test images using the trained Model O. The different color in the (b) and (c) column images indicated different crack classes shown in the color bar.

Zhang, B., Grant, J., Bruckman, L. S., Wodo, O., & Rai, R. (2019). Degradation Mechanism Detection in photovoltaic Backsheets by fully convolutional neural network. *Scientific reports*, 9(1), 1-13. URGraph 32

Thank You!

GREAT LAKES ENERGY INSTITUTE

