

Enabling Technologies for High Speed HTS Motors/Generators

L. Bromberg, P. Michael, J.V. Minervini MIT Plasma Science and Fusion Center NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines September 8, 2015

Enabling technologies

- Refrigerators
- Cryostats

Rotating coupling

- Thermal insulation
- Cables
- Sensors/protection (quench)

State of the art refrigerators

NIST 500 W@30K Stirling-PT cooler

Refrigerators-I

- Issues
 - Cost, cost , cost
 - Cost decreases with economies of mass production
 - Reliability
 - Reciprocating devices ~ 2000-9000 hours MTBM
 - Turbomachinery has good characteristics

van ter Brake (2002)

Refrigerators-I

- Issues:
 - Mass/cost related to compressor power, insensitive to cooling temperature or power

Turbo-Brayton Cryocoolers Secret

Features

- Miniature high-speed turbomachines with non-contact bearings
 - Ultra-high reliability, Long life, Low/no vibration
- Remote and distributed cryogenic heat transport
- Operation independent of orientation
- Flexible packaging and integration
- Efficiency and mass/size scale well to high capacities and low temperatures (unlike GM or Stirling machines)

Key Cryocooler Components Steare

- Centrifugal compressors
 - Circulate cycle gas and provide pressure ratio
 - High efficiency
 - Shaft supported by non-contacting gas bearings
- Turbines
 - Refrigeration is provided by expansion of cycle gas
 - Fluid or electrical dissipation/recovery of expansion work at warm end of cryocooler
 - High efficiency
 - Shaft supported by non-contacting gas bearings
- Recuperative heat exchangers
 - Used to improve cycle efficiency
 - Need to have high thermal performance and low pressure drop

Compressors

Competing Technologies at High Capacity (1 kW at 50 K)

	Best Competitor	Turbo-Brayton	Turbo-Brayton Benefit
Cooling	1kW @ 50K	1kW @ 50K	Same Cooling
Units Needed	3	1	1 Unit
Input Power	47 kW	26 kW	1/2 the Power
Weight	800 kg	110 kg	7 Times Lighter
Volume	1 m ³	0.2 m ³	5 Times Smaller
Maintenance	Every 10,000 hrs	Never	Maintenance Free
Production Price	>\$300k	<\$250k	20% Less Expensive

It takes 3 Current Commercial Systems (Cryomech GM AL600 + Cryozone Circulator) to equal 1 Turbo Cryogenics unit.

EERE goals for refrigerators (2007)

Technology Attributes		Near-Term Goals (present – 2007)	Mid-Term Goals (2008 – 2011)	Long-Term Goals (2012 – 2015)		
ics	Carnot Efficiency	12% @ 65 K	20% @ 65 K	30% @ 65 K		
Cryogeni	Reliability 95%		99%	> 99.9%		
	Cost	\$100/W @ 65K	\$60/W @ 65K	\$25/W @ 65K		

Road map for cryostats

- Ideally, thermal insulation without vacuum
- If vacuum, ideally, closed system without active pumping
- Non-metallic cryostats for armature winding
- Maintaining good vacuum challenging

Technology Attributes		Near-Term Goals (present – 2007)	Mid-Term Goals (2008 – 2011)	Long-Term Goals (2012 – 2015)		
ole stats*	Heat Leak	2 W/m	1 W/m	< 0.5 W/m		
Cab Cryos	Cost	\$500/m	\$300/m	\$100/m		

Navigant Peer review 2007

Non-refrigerator cryogenic issues

- Rotating coupling for high speed HTS rotor
 - Ferrofluid and clearance seals
 - Coolant leakage
 - Lifetime issues
 - Power dissipation
- Potential solutions:
 - Stationary HTS field winding
 - Flux switching rotating machinery
 - Rotating resistive armature winding, stationary field HTS field winding

Quench detection/protection

- Conventional means to detect quench are challenging
 - Electrically noisy environments (especially in stator)
 - High temperature, low quench propagation velocity
- Metrics:
 - Sensing within < 200 ms (12 line-cycles @ 60 Hz)
- Options
 - Voltage taps
 - Fiber optics
 - Unconventional sensors

Cables?

- How to make medium to high current cables
- How to integrate cooling with cable
- Integrating cooling into cables (MgB₂) while avoiding breakdown (LH2 cooling)

CORC (ACT)

Conventional HTS power transmission cables

MgB₂ CICC (MIT)

0 6.4

Twisted Stack-Tape Cable (MIT)

Roebel Cable (KIT)

Ø 3.3

No insulation winding for rotor

- Developed for high field NMR magnets
- Much higher current density than conventional winding
- Can address protection/detection issues with YBCO tapes

No-insulation winding

Partially slit tapes

Prototype enabler demonstrations?

- To reduce costs, cryo-refrigerators need either new concepts or mass production
- Rotating couplings could be developed separately from machines (high-speed clearance seals will always leak a little)
- Scale-up quench-tolerant, no-insulation rotor winding for a ~ 1 MW motor
- Quench sensors can be developed separately from machines
- Cables can be developed separately from machine, ~ 3 kA level, 6~15 kV voltage
- Investigate "safety" of H₂ cooling for MgB₂, with realistic cables
- HTS to resistive transformer to couple current through cryostat boundary (eliminating current lead losses)

Refrigerators

- Several designs reach high efficiency (15~25% of Carnot)
 - Reduce parasitic losses by reduced cryogenic loads
 - HTS only in field winding to minimize ac loss
 - However, substantial gains if armature winding is SC
 - However
 - Size of refrigerators are large
 - Costs are large

Typical refrigerators

	Refrigeration			Approximate				Capital Cost			Input Power/	
	Temperature	Working Fluid	Capacity	Refrigeration	Cycle	Expander	Plant Cost	per Watt		Input Power	Cooling Pwr	% Carnot
	<u>(K)</u>		(Supplier Units)	<u>(W)</u>				<u>\$\$\$</u>		(KW)	<u>(W/W)</u>	
Large Scale GM Systems												
Leyblod 120T	65	He	130 W	130	GM	Recip	\$20,200	\$155.38	3.1	6.5	50.0	7.23%
Cryomech AL200	65	He	150 W	150	GM	Recip	\$19,600	\$130.67	3.6	5.5	36.7	9.86%
Helium Gas Systems												
PSI Model 1620	65	He	1200 W	1200	Claude	Recip	\$400,000	\$333.33	3.8	105	87.5	4.13%
Stirling Cycle												
Stirling Cryogenics LPC04	80	He	4200 Watts	4200	Stirling	Recip	\$400,000	\$95.24	8.9	45	10.7	25.67%
SPC-4T	20	He	300 Watts				\$400,000		8.9	45		
Large Scale Recondensing Systems												
PSI	80	??	11,500 Watts	11,500	Brayton	Turbine	\$800,000	\$69.57	4.8	167	14.5	18.94%
Liquid Air Plants												
Cosmodyne GF-1	80	No	4 T/Day	8,400	Brayton	Turbine	\$700,000	\$83.33	1.9	372	44.3	6.21%
Cosmodyne Aspen 1000	80	N ₂	1000 nM ³ /Hr	64,969	Brayton	Turbine	\$2,650,000	\$40.79	1.9	1400	21.5	12.76%
GEECO EDLP-20TN	80	N ₂	20 T/Day	42,000	Brayton	Turbine	\$1,790,000	\$42.62	1.9	933	22.2	12.38%
GEECO EDLP-40TN	80	N ₂	40 T/Day	84,000	Brayton	Turbine	\$2,750,000	\$32.74	1.6	1773	21.1	13.03%

DOE Review

Addressing through Topologies

- Gramme-ring (toroidal stator)
 - Individual cryostats for stator

- Flux switching machines
 - Both armature and field windings stationary

