An Alternative Paradigm for Digital Exposure Notification: Detecting Super-spreading Events

Brian Thompson, Kyle Lemoi, Phil LaGambino, Molly McKnight

NIST Workshop on Challenges in Digital Proximity Detection in Pandemics January 28, 2021

Overview

Motivation

- Much of COVID-19 spread is attributable to super-spreading events*, where aerosolized virus can accumulate and permeate a room due to poor ventilation
- Current GAEN/TC4TL paradigm does not capture most of these infections,
 e.g., because they are not close enough or index case does not have the app

Idea

- Send an exposure notification if the user spent a significant amount of time in the simultaneous presence of multiple others who later report a positive test
- Threshold based on an a posteriori estimate of likelihood the user got infected

Properties

- Works within the GAEN system but fundamentally changes configuration of the "attenuation" and "days" parameters and criteria for sending a notification
- Targets high-impact events: the more people, the greater the statistical power
- Linear dependence on adoption rate: works even if index case not using app
- <u>Implicitly captures transmission factors GAEN cannot</u>: biological, situational

*E.g., see <u>Goyal et al. (2020)</u>

GAEN Configuration — Comparison to Current Paradigm

Parameter	Description	Configuration under current paradigm	Configuration under new paradigm	Motivation/Rationale
Days	# of days prior to positive test or symptom onset	High score if at most 2 days; based on infectiousness curve	High score if at least 3 days; based on incubation period	Current paradigm considers whether the person was infectious at the time of contact; new paradigm considers whether the person got infected then
Attenuation	Bluetooth signal attenuation; proxy for distance	High score if estimated to be within 6 feet	High score if estimated to be within 30 feet	Current paradigm considers whether an infectious person was in close contact; new paradigm considers whether people who later got infected were in the same room
Duration	Duration of contact	High score if at least 15 minutes	High score if at least 30 minutes	Current paradigm based on "plume" model of transmission during close contact; new paradigm considers "room" model where virus-laden aerosols accumulate in the air
Notification criteria	When to send a notification to the app user	"Too close for too long" contact with an infected person	Nearby multiple others who likely got infected around that time	Current paradigm considers whether the app user got infected by a specific person; new paradigm flags when the user was present at a likely super-spreading event

80 people in a bar with a highly infectious person who does not have the app

- 80 people in a bar with a highly infectious person who does not have the app
- 30 of the 80 susceptible people are app users (38% adoption rate)

- 80 people in a bar with a highly infectious person who does not have the app
- 30 of the 80 susceptible people are app users (38% adoption rate)
- 40 people get infected, including 15 app users

- 80 people in a bar with a highly infectious person who does not have the app
- 30 of the 80 susceptible people are app users (38% adoption rate)
- 40 people get infected, including 15 app users
- 25 of those infected eventually become symptomatic, including 10 app users

Example Scenario — Outcome

Current paradigm: Nobody gets notified because the infectious person does not have the app and others were not infectious at the time

Example Scenario — Outcome

- <u>Current paradigm</u>: Nobody gets notified because the infectious person does not have the app and others were not infectious at the time
- New paradigm: After the first 3 symptomatic app users report a positive test via the app, the other 27 app users get notified, 12 of whom were infected

© 2021 THE MITRE CORPORATION. ALL RIGHTS RESERVED

Example Scenario — Timeline

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					Day 0 Super-	Day 1
Day 2	Day 3 Early sympto first 30% of s seconda	Day 4 om onset for symptomatic ry cases	Day 5 Early symptom testing	Day 6	Day 7 Test results → exposure notifications	Day 8
Day 9	Estimate will still infecte spr	d 26%* of sym be pre-sympto d — those are ead the virus tl	ptomatic seco matic 7 days a the people mo ne following we	ndary cases fter getting st likely to eekend	Incubation	period (days)

*Based on maximum likelihood estimate of incubation period distribution by Ferretti et al. (2020)

Vision

- GAEN could provide users with several different notification types, each with appropriate messaging/recommendations:
 - Close contact with infected person, low likelihood of transmission
 - Inform user of exposure to raise awareness and motivate behavior change
 - Close contact with infected person, high likelihood of transmission
 - Inform user of exposure, recommend testing and/or self-quarantine
 - Attendance at likely super-spreading event
 - Inform user of exposure, recommend testing and/or self-quarantine

Next Steps

- Assess the feasibility and efficacy of the new paradigm
 - Can it notify enough people early enough to significantly reduce spread?
 - How does its precision-recall tradeoff compare to the current paradigm?
- Estimate impact on population-level health outcomes and social burden
 - Building on Oxford's open-source agent-based simulation model to include super-spreading events, both observed and unobserved factors in viral transmission, and explicit representation of contact tracing mechanisms
 - Consider new paradigm as alternative and complement to current paradigm

Collaborate with others to reduce the spread of COVID-19

- Explore the technical and operational challenges involved in adapting GAEN for super-spreading event detection
- Integrate our changes into Oxford's open-source repository for public use
- Help inform PHAs in determining messaging around exposure notifications

Brian Thompson

bthompson@mitre.org

© 2021 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

Efficacy of GAEN — Study Design

- Simulate interactions between infected and susceptible users of GAEN-based apps, then use the GAEN risk formula to infer whether transmission occurred
 - Transmission model integrates components from established and recent literature: infectiousness, emission, transport, and dose-response models
 - Consider both observed and unobserved biological and situational factors
- Measure efficacy as GAEN's ability to achieve both high recall (detection rate of true transmission events) and high precision (low false alarm/notification rate)
 - Evaluate under both ideal and noisy conditions (e.g., attenuation -> distance)

Efficacy of GAEN — Study Conclusions

- Fundamental limit on GAEN's ability to accurately predict transmission Detecting 50% of transmissions means that more than 90% of exposure notifications will be false alarms — even if GAEN perfectly infers distance, duration, and days — which may drive down app usage and compliance
- New solutions must break out of the current paradigm if a more favorable precision-recall tradeoff is to be achieved

GAEN under ideal conditions, using recommended configuration

Manual contact tracing, assumes perfect memory and doesn't work for strangers

Efficacy of GAEN — Transmission Factors Considered

Efficacy of GAEN — Impact of Transmission Factors

Transmission Factor Used by GA		How to infer	Accuracy	Impact on effectiveness
Who (person)	No	Only evident in retrospect if many infections result	Moderate with data on forward-traced infections, low otherwise	High — maximum amount of virus transmitted can vary by multiple orders of magnitude across individuals [Jacot et al. (2020), Asadi et al. (2020)]
What (activity)	No	Assumption based on environment	Moderate with location data (bar vs. restaurant vs. train), low otherwise	High — amount of virus transmitted can vary by over two orders of magnitude from breathing to singing or shouting [Morawska et al. (2009), Asadi et al. (2020)]
Where (environment)	No	Location data, RSSI/sensors for indoor/outdoor	High with location data, moderate with sensor data, low otherwise	Moderate — size of space is helpful for identifying super-spreading events, less important for tracing individual contact events except for indoor/outdoor
When (time)	Yes	date of self-report or + test, proxy for symptom onset	Moderate if infected person is symptomatic, low otherwise	High — amount of viable virus transmitted decreases by multiple orders of magnitude if more than 1-3 days before or after the time of peak infectiousness
How close/crowded (proximity)	Yes	Bluetooth RSSI and/or other sensor data	High with sensor data, moderate with RSSI only	Moderate — high accuracy is helpful for tracing individual contacts; moderate accuracy is probably sufficient for identifying super-spreading events
How long (duration)	Yes	Timestamps of scans when ID appeared	High (within 5 minutes)	Moderate — amount of virus transmitted grows between linearly and quadratically with duration, depending on ventilation rate and other factors

Measuring Impact — Integration with Oxford model *

- What is the Oxford model?
 - Population-level agent-based simulation model capturing demographics, person-to-person interactions, virus spread, NPIs, and health outcomes
 - Developed at Oxford Big Data Institute, published in Science, open-source
- Proposed augmentations to the Oxford model:
 - Group interactions many people in an enclosed space for a prolonged period of time (bars, public transit, etc.); "room" model vs. "plume" model; enables modeling of super-spreader events
 - Contact tracing apps higher-fidelity model enables comparison of effectiveness of different exposure risk inference algorithms

* Hinch et al. (2020). "COVID-19 Agent-based Model With Instantaneous Contact Tracing". Open-source code repository: <u>https://github.com/BDI-pathogens/OpenABM-Covid19</u>

Measuring Impact — Integration with Oxford model

MITRE