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Overview

e High-resolution X-ray Diffraction
— SiGe box and grade structures (X-ray vs. SIMS)
— SiGe heterojunction bipolar transistor (HBT)

o X-ray Reflectivity
- metallic layers

— dielectric layers
— gate oxide layers

e Traceability
— Instrumentation
— Software

e Reference Standards
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X-ray tools are well-matched to thin
fim dimensions and structure

e Convenient sources in range 0.8 <1 < 8.0 A
— Easy access to layers in range 10 - 20,000 A

— wavelengths nearly equal inside and out (<<0.01%)
e material-dependent uncertainties are very small

e Slow but useful Z-dependence of interactions

— “Goldilocks” values are effective in composition
modeling (they are “just right”)

e X-rays readily penetrate structures of interest
— access to thin low-Z layer under thick high-Z stack

e Amplitude, not intensity, addition
- rich interference phenomena that can be interpreted
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Introduction

Incident X-ray beam
conditioned in wavelength A4
and divergence A0

Diffracted or reflected

X-ray beam
2dsing = A
Crystalline sample for diffraction
Measure the scattered e.g. epitaxial Si-Ge semiconductor
intensity as function of
angle, in 6/26 scan, Crystalline or amorphous sample
over typically ~2° for reflectivity

e.g. dielectric or metallic layers on Si
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Step 1:
Measure scattered X-ray
intensity,as function of

incident and scattered angles

Experimental data
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Data analysis

Model
layer #1

Step 2:

layer #N-1
layer #N

substrate

Step 3:

Compare simulated and measured
data, refine model to give

best agreement

Genetic Algorithms now largely automate
this process, and make it objective

Data-fitting

Create model to describe
sample structure

Use model to simulate
diffraction from theory

Simulated data
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Experimental

0.05 x 10 mn? slit

ol
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Sample Cu-anode sealed

Asymmetric

S1(022) CCC tube (2.2 kW)

0.5 x 10 mm 2 slit

\ EDRa Bede D1 diffractometer
scintillation detector
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HRXRD 1: SiGe structure (box)
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HRXRD 1: SiGe structure (box)

Intensity (cps)
o

¢ u (deg)

Ge Concentration (atomic %)

Si/Si; ,Ge,//Si(001)
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If we model the XRD from the SIMS profile it is clearly wrong.

Rounded SiGe/Si interfaces and some gradients are a known SIMS

artifact
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HRXRD 2: SiGe structure (grade)
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HRXRD 3: SiGe HBT

Nominal Best-Fit
1 06 L Layer Material z (%) ¢t (nm) z (%) ¢ (nm)
E 3 Si - 45.0 —  45.3£1.0
2 Si1_»Ge, 1 X R(z — 22) 35.0 x1 x R(z — #») 31.34+3.0
- 1 Si_»Ge, 17.5 15.0 17.64+0.1  17.54+2.0
1 05 - Sub.  Si - %) - %)
4
10" ¢

Intensity (cps)

e Differences in
] this region are
il diffuse scatter
] from defects
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XRR 1: Interference from multilayers

Si substrate + TiN (100) + a-S;O
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XRR 2: metal films

_ Actual Data Fitted Data
105 -+ A =
\ Layer Material d, A o, A pipo

4 NiFeCo 14.4 3.4 0.21

104 —+ 3 NiFeCo 19.0 8 0.82 &
2 NiFeCo 30.4 6 1.06 w|
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Good signal/noise is essential for correct interpretation
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Tantalum Nitride (Cu diffusion barrier)

@ Initial Sematech-16 (1998)

— Expected density
e Near metallic

— Expected conductivity
e Near metallic

Failed functional tests
e Resistivity too high
@ NIST study showed
Densities too low
— Densities highly variable
- Inhomogeneous structures

©® Other structural data

— Columnar growth
— Leading to high resistivity
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Grazing Angle (s)

Good uniformity

phase change part
way through growth
shown by beating of
fringes
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Good
matching
over range
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NIST round robin

Mean of all data

NIST (B)

NIST (A)

Bede (AL4J6FA) run #2

Bede (AL4J6FA) run #1
e e

— (qV . (QV
Thickness (A)

Oxynitride sample

from Round Robin organised
by James Ehrstein, NIST

Common specimen
treatment

NIST data by J. Pedulla and
R.D. Deslattes

Bede data by M. Wormington
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Traceability

... link to the base unit of length in the International System
of Units (the SI) by an unbroken measurement chain that does
not degrade the indicated reproducibility.

The only stable measurement systems are those that are accurate

e Instrument calibration

e Measurement procedures
o Software certification

e Interpretation procedures

NIST ULSI 2000 Conference



NST Bede Scientiﬁ{:ﬁ] Incorporated

Instrument calibration

e Traceability depends on
- wavelength
e Cu Ko emission wavelength - already NIST-traceable
- angle
o self-referential to 2n
e Calibration and angle standards available in principle
e Could be more convenient and accessible
— Intensity
e Little difficulty if counting used below saturation
— correct procedure
o NIST specification is desirable

There is more hope of making HRXRD and XRR fully
traceable than there is for most analytical techniques!
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Software traceability

e Some parameters are easily deduced from
fundamentals

— composition of isolated layer
— thickness of isolated layer

e Others need software
— graded composition layers
— thickness of multiple layers

e Are all software vendors’ products equivalent?
— Relatively few studies*, but clearly NO!

e RoOle for NIST in certifying analytical software
— defined limits of application

NIST ULSI 2000 Conference *M. Grundmann and A. Krost, "Atomic structure based simulation of X-ray
scattering from mesoscopic structures”, sub. Phys. Rev. Lett. 1998
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Reference standards

e Ideal standard should be
— calibrated with traceability to NIST
— stable over time, or have specified lifetime
— calibrate over actual instrument ranges
- measured in the same way that wafers are measured
— provide quantitative assessment

e Absolute composition standard - HRXRD
e Secondary angular standard - HRXRD
e Secondary angular standard - XRR
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Proposed absolute Si-Ge
composition/thickness standard
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Verification of standard

e HRXRD gives

— Si-Ge composition from peak angles
— thickness from fringes

e Need to know

— wavelength (and only this for thickness)

— lattice parameters and elastic constants as
f(composition)

- theory: Bragg law and interference equation
e Cross check: XRF

— calibrated with pure element standards
— gives composition*thickness product (mass)
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Secondary calibration for HRXRD

sigetest.dat

e No need for absolute
composition/thickness
e Calibrate coarse
and fine angles
e Superlattice S
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Secondary calibration for XRR (1)
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Secondary calibration for XRR(2)
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Stability of Si-Ge Superlattice
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Period:

1991: 308 + 3 A
(A.R. Powell)
1999: 306 + 2 A

(M. Wormington;
see figure for data
and simulation)

Different Bede
instruments used in
1991 and 1999
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Summary

e X-ray metrology is up and running in the semiconductor
industry

e Both HRXRD and XRR are traceable techniques, which
give unique information on epitaxial, polycrystalline and
amorphous layers

e Traceability is excellent in principle but at present is not
convenient in practice.
e NIST standards are very desirable in
— software verification
— procedure approval
— secondary reference standards

e In-line fab tools are available, which do not require
expert operators
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